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G. J. Rodin 
Department of Aerospace Engineering 

and Engineering Mechanics, 
The University of Texas at Austin, 

Austin, TX 78712 
Assoc. Mem. ASME 

Stress Transmission in 
Polycrystals With Frictionless 
Grain Boundaries 
A simple method of  analysis of stress transmission in polycrystals with frictionless grain 
boundaries is presented. This method applies to a large class of two-dimensional and 
three-dimensional polycrystals which can be modeled as either periodic or disordered 
arrays of polyhedra. Calculations are performed for the periodic arrays of  rhombic 
dodecahedra and truncated octahedra, and for arrays generated by the Voronoy 
tessellation of  disordered point lattices. Results of  these calculations show that normal 
stresses transmitted by frictionless grain boundaries are significantly different from 
applied stresses. In particular, it is predicted that, in disordered polycrystals subjected to 
uniaxial compression, 45 percent of grain boundaries are in tension and the maximum 
tensile stress is one half of  the applied stress. 

1 Introduction 
In this paper, we are concerned with stress transmission in 

polycrystals with frictionless grain boundaries. This idealiza- 
tion of polycrystals is relevant to their behavior under condi- 
tions encountered during high-temperature service and fabri- 
cation. Under those conditions, it is common that grain 
boundary shear tractions arc rapidly relaxed as a result of 
easy transport of matter along grain boundaries. The trans- 
port occurs either by grain boundary diffusion or flow of an 
intergranular liquid phase, or a combination of these two 
mechanisms. The objective of this paper is to evaluate the 
average normal stresses transmitted by individual grain 
boundaries or, following Nix et al. (1989), the facet stresses. 

So far, the facet stresses have been determined for peri- 
odic arrays of regular squares, hexagons, cubes (Beere, 1982), 
and truncated octahedra (Anderson and Rice, 1985; Dib and 
Rodin, 1993). In this paper we develop an approach relevant 
to both periodic and disordered arrays. The present ap- 
proach is motivated by the observation that the facet stresses 
in some periodic arrays can be determined directly from the 
equilibrium equations. In two dimensions this can be done 
for the periodic array of regular hexagonal homogeneous 
grains; a three-dimensional example is the periodic array of 
rhombic dodecahedra (the surface of the rhombic dodecahe- 
dron is formed by 12 rhombic faces). In contrast, in the 
periodic array of truncated octahedra (the surface of the 

Contributed by the Applied Mechanics Division of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOUR- 
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, 
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until four months after final publication of the paper itself in the ASME 
JOURNAL OF APPLIED MECHANICS. 

Manuscript received and accepted by the ASME Applied Mechanics 
Division, May 25, 1993. Associate Technical Editor: G. J. Dvorak. 

truncated octahedron is formed by six square and eight 
hexagonal faces), the number of independent facet stresses 
exceeds the number of independent equations by one. In the 
present approach, such statical indeterminacy is resolved 
with a stress-based variational principle which generalizes the 
one proposed by Anderson and Rice (1985) for the periodic 
array of truncated octahedra. The variational principle pro- 
posed here applies to periodic and disordered arrays alike. 

This paper is organized as follows. In the text section, we 
analyze three-dimensional periodic arrays with special em- 
phasis on those which exhibit central symmetry. Specific 
examples include the periodic arrays of rhombic dodecahedra 
and truncated octahedra. Also, Section 2 should be regarded 
as background for Section 3 where we focus on disordered 
arrays. In Section 4, we summarize results for both two-di- 
mensional and three-dimensional arrays and discuss certain 
implications of our analysis for micromechanical constitutive 
modeling. 

Throughout the paper we interchange the geometrical 
terms, face, and polyhedron with the corresponding physical 
terms, grain boundary, and grain. 

2 Three-Dimensional Periodic Arrays 

2.1 Equilibrium Equations. In this section, we derive 
equilibrium equations for the representative polyhedral grain 
(P of a general three-dimensional periodic array in terms of 
the resultants acting on the grain boundaries. Since it is 
supposed that the grain boundaries are frictionlcss, there are 
only three nonzero rcsultants per grain boundary. The total 
number of equilibrium equations for the grain is 12. Beside 
the six standard equations, there are six equations which 
relate the resultants to a prescribed macroscopic stress. 

First let us consider a finite planar surface $ subjected to 
normal tractions. For this surface we introduce a Cartesian 

Journal of Applied Mechanics MARCH 1995, Vol. 62/1 

Copyright © 1995 by ASME
Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



coordinate system with the origin at the centroid of $ and 
base vectors ea, e2, and n. In this coordinate system, the 
vector n is normal to $ and the position vector of a point 
y ~ 8 is y = yle~ + y2e2. In the absence of shear tractions, 
the traction field on $ is of the form fly) = ~(y)n, and the 
nonzero resultants of g(y) are 

N = f j ( y ) ~ ,  Mi = f j2o'(y)~,  

and M 2 = - f j l ~ r ( y ) d A .  (1) 

Here N is the normal force, M~ is the counterclockwise 
moment about the yl-axis, and M 2 is the counterclockwise 
moment about the y2-axis. The moments M~ and M 2 are the 
only nonzero components of the torque vector, 

T d e f f y  × t(y)dA = M~e 1 + M2e2, (2) = j $  

and of the dipole tensor, 

d e f l  
D = -~ )$[y ® t(y) + t(y) ® y]dA 

1 
= ~ [ - M 2 ( e  1 ® n + n ® e r )  + M l ( e  2 ® n + n ® e 2 )  ]. 

(3) 
The facet stress on $ is defined as the average of ~r(y). 

In a periodic array, the volume of the representative 
polyhedron is denoted by V and the centroid, which is also 
chosen as the origin for the position vectors, by O. For each 
face, $~, c~ = 1 . . . .  , p, we denote the outward unit normal 
by n~ and the centroid by 04; the position vector of O, is 
denoted by 14. If the array is subjected to a uniform macro- 
scopic stress ~ ,  the equilibrium equations for 6", evaluated 
with respect to O, are 

p 

N~n~ = 0, (4) 

p 

N~I~ × n~ + T~ = 0, (5) 
n ¢ = 1  

and 

P 1 
~N~(I~ ® n~ + n~ ® 1~) + D~ = V ~ .  (6) 

Here N~, T~, and D, are defined for $, according to (1)-(3). 
Equation (6) is obtained by integrating a divergence-free 
stress field inside 6" (Hashin, 1983). 

There are 3p unknowns in the 12 equilibrium equations, 
thus, in general, only periodic arrays formed by tetrahedra 
can be regarded as statically determinate. Those arrays, 
however, do not resemble real polycrystals, which have about 
13 faces per grain and five edges per face (Underwood, 
1970), so it is desirable to supplement (4)-(6) with additional 
equations for the resultants. Typically, such equations have 
to be derived from compatibility conditions and constitutive 
equations. Nevertheless, in some cases it is possible to invoke 
symmetry conditions such that additional equations can be 
derived without introducing the strain field. 

2.2 Arrays With Central  Symmetry. In this section, we 
demonstrate that, in the presence of central symmetry, (4)-(6) 
can be substituted by a system of six equations for p/2 
unknowns. As a result, polyhedra with up to 12 faces can be 
treated as statically determinate. 

Definition: The polyhedron 6' possesses central symme- 
try, or is symmetric about O, if and only if x E 6' ~ - x ~ 6". 

/ / 
/ / 

/ / A ;  
/ 1 

Fig. 1 Periodic arrays with central symmetry: The face $~ and the 
face  oppos i te  to it. The points A and B are related by symmetry,  
and B and C by periodicity. 

Fig. 2 Periodic arrays with central symmetry: the cut by the sur- 
face e,  The arrows designate the traction vectors. 

Definition: A tensor field F(x) of rank r possesses central 
symmetry, or is symmetric about O, if and only if 6" is 
symmetric about O and F(x) = ( - 1 ) r F ( - x ) ,  Vx ~ 6'. 

Dib and Rodin (1993) have shown that if 6" is symmetric 
about O and the material comprising 6" is homogenous then 
the fields induced by ~ are symmetric about O. In this 
section, we suppose that both restrictions on 6" have been 
satisfied. 

In order to prove that the number of unknowns in (4)-(6) 
can be reduced to p/2, let us consider a face $4 and the face 
opposite to it (Fig. 1). Periodicity and symmetry imply that 
these faces are equal and each is symmetric about its cen- 
troid. For an arbitrary point A E $4, we identify two related 
points: B and C. The former is symmetric to A about O, and 
the latter is related to B by periodicity. It is straightforward 
to show that A and C are symmetric about O~, and that 
o-(A) = o-(B) = o-(C). By considering the properties of A 
and C, we conclude that the normal stress distribution is 
even on $,, thus according to (1)-(3) 

T . = D . = 0 ;  

of course the torque and dipole vanish on the opposite face 
as well. Further, the normal forces on the two faces are 
equal, thus the number of unknowns in (4)-(6) can be re- 
duced to 1)/2. 

Now we prove that there are only six independent equilib- 
rium equations for the p/2 normal forces. Further, (4) and 
(5) are satisfied trivially, so that the set of independent 
equations, 

p/2 

2 ~ N~I~ ® n~ = V ~ ,  (7) 
a = l  

is derived solely from (6); the sum in (7) includes only one 
face per pair of opposite faces. 

Although it is obvious that (4) is satisfied trivially, the 
proof for (5) requires the following construction (Fig. 2): 

Step 1: Identify p/2 faces such that none of them is the 
opposite of the other, and their union, $',  is a simply 
connected surface. The surface $'  can be chosen such that 
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the remaining faces, which form the surface g", satisfy the 
same requirements. The faces in the set $ '  are numbered 
from 1 to p/2, and the remaining faces from p/2 + 1 to p. 

Step 2: Cut & by a surface 12 which is symmetric about 
O and intersects the surface of 6 ~ along the boundary 
between g '  and g". The body bounded by g ' ( g " )  and 12 is 
denoted by 6"(6, , ) .  

Step 3: Choose a point A'  ~ (P' infinitesimally close to 
the surface 12, and identify B" ~ 6'" as the point symmetric 
to .,4' about O. A point inside 6 ~' which is infinitesimally 
close to B" is denoted by B'. 

Step 4: Invoke symmetry for the traction vectors at A'  
and B" and continuity for the traction vectors at B" and B', 
and show that t (A')  = fiB'); thus 

ex x t (x)dA -= 0 

for any traction field symmetric about O. Since the tractions 
on 12 acting on (P' are statically equivalent to the system of 
forces acting on 8", we conclude that 

P 
N.I~ × n~ ~ O. 

a = p / 2  + 1 

Apparently the same identity holds for the forces acting on 
S t , 

p/2 
E N . I .  × n .  ~ 0. 

a = l  

Thus (5) is trivially satisfied for periodic arrays with central 
symmetry. 

The equivalence between (6) and (7) is established once 
we observe that the tensors 

p/2 p 
E N . I .  ® n .  and ~ N . I .  ® n .  

a = l  a = p / 2 +  1 

are symmetric, thanks to the identities just proved, and equal 
to each other. 

2.3 Array of Rho mhie  Dodecahedra .  This array is cho- 
sen in order to demonstrate how statically determinate peri- 
odic arrays are analyzed. The rhombic dodecahedron can be 
defined as the Voronoy polyhedron of the face-centered 
cubic lattice. It is constructed in three steps. First, the lattice 
point at the centroid of a face is connected by straight line 
segments with 12 nearest neighbors. Second, each segment is 
bisected by a plane. Third, the rhombic dodecahedron is 
formed as a body bounded by these planes (Fig. 3). The 
rhombic dodecahedron possesses central symmetry and its 
surface consists of 12 identical rhombic faces equidistant 
from the centroid. If the period of the cubic lattice is 2a, 
then A, is the area of each face, l, the distance between each 
face and the centroid of the polyhedron, and V are given by 

A =--~--a , l = - ~ - a ,  a n d V = 2 a  3. 

Also each 1, = ln~. 
For the calculations in (7), we choose six faces with out- 

ward normals (Fig. 3) 

n I = - ~ - ( i  z + i3 ) ,  n2 = - ~ - ( i  2 - i3)  , 

n 3 = - ~ - ( i  1 + i 3 ) ,  n 4 = - ~ - - ( i  1 - i 3 )  , 

n5 = - ~ - - ( i l  + i : ) ,  n 6 = - -~ - ( i  1 - i2 ) .  

I 

i14 

Fig. 3 The rhombic dodecahedron as the Voronoy polyhedron of 
the face-centered cubic lattice 

Further, (7) can be expressed in terms of the facet stresses, 

1 6 

E = (8) 

with the solution 1 

0-1 = --~11 + ~22 -I- ~33 -q- 2~23,  

02 = - - ~ l l  q- ~22 q- ~33 -- 2~23,  

0-3 = "~-~11 -- ~22 -1- ~33 -1- 2~13, 

0"4 = 'q'-~ll -- ~22 -1- ~33 -- 2~13,  

O'5 = +~11  + ~22 -- ~33 "{- 2~12 ,  

0"6 = q '-~ll  q'- ~22 -- ~33 -- 2~ t2"  

In order to elucidate the relationship between % and ~ ,  let 
us determine the facet stresses with the provision that one of 
them, say 0-1, is maximized as a result of a particular align- 
ment of the macroscopic stress eigenvectors with respect to 
&. If the principal macroscopic stresses are such that ~l >- 
~2 >- ~3, the macroscopic stress tensor which maximizes 0-1 
is 

o- = 0-1n I ® n 1 + ~ 2 n 2  ® n 2 + ~ 3 i l  ® i I .  

T h e  c o r r e s p o n d i n g  f a c e t  s t r e s s e s  a r e  

0-1 = 2 ~1 - ~3, 0-2 = 2 ~2 -- ~3 ,  

and 0- 3 = 0- 4 = 0-5 = 0-6 = @3. 

2.4 Array of Truncated Octahedra.  In this section, we 
consider the periodic array of truncated octahedra as an 
example of how the facet stresses are determined in statically 
indeterminate periodic arrays. Our analysis follows closely 
that of Anderson and Rice (1985) but, in contrast to their 
calculations, the macroscopic stress is not required to exhibit 
axial symmetry. 

The truncated octahedron can be defined as the Voronoy 
polyhedron of the body-centered cubic lattice (Fig. 4). The 
truncated octahedron possesses central symmetry and its 

1Obtained with M a t h e m a t i c a .  
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1131 13 

n61 

112 

n7 n s 

Fig. 4 The truncated octahedron as the Voronoy polyhedron of the 
body-centered cubic lattice 

surface is formed by 14 faces: six identical squares and eight 
identical regular hexagons. Thus, for the truncated octahe- 
dron, the number of unknowns exceeds the number of equi- 
librium equations by one. If the cubic lattice period is 2a, 
then 

1 --~--a3~/3 2, i h = __4a ' A S =  ~ a  2, A h = l" = a, 

and V = 4 a  3. 

Here the superscripts s and h are assigned to square and 
hexagonal faces, respectively. Also each I ,  = ln~. 

For the calculations we choose seven faces with outward 
normals (Fig. 4) 

n 1 = i l ,  n2 = i2, n3 = i3, 

v5 
n 4 = - - ~ - ( i  1 + i 2 + i 3 ) ,  n 5  = - ~ - - ( i  1 + i 2 - i 3 )  , 

n 6 = - ~ - ( i  1 - -  i 2 + i 3 ) ,  n 7  = - ~ - ( i  I - -  i 2 - i 3 ) .  

In terms of the facet stresses, (7) is rewritten in the form 

1 3 9 7 
E 0-~n~ ® n .  = ~ .  (9) 

o t= l  

Following Anderson and Rice (1985), the statical indeter- 
minacy is resolved by using the minimum complementary 
energy principle of linear elasticity. Accordingly, the stress 
field inside the truncated octahedron is approximated as 

7 

tr (x )  = E 0- .n.  ® n , l , ( x ) .  (10) 

Here I s is the indicator function of the domain of the prism 
whose bases are $, and the face opposite to it. Anderson 
and Rice (1985) used one more coordinate function, uni- 
formly distributed hydrostatic pressure; for our purposes, this 
function is neither necessary nor useful. Based on (10), the 
complementary energy * of 6 ~ is 

a 3 3 9a 3 7 
• (0-,) = ~ E 0-g + ~ E 0-2, (11) 

~ = 1  a = 4  

where E is the elasticity modulus of the material comprising 
the grain. At this point, the facet stresses can be determined 

if * ( % )  is minimized with respect to 0-. subject to (9). The 
minimization procedure is carried out readily using a La- 
grange multiplier for (9); the solution is 

0-1 = 4~n - t rY,  0-2 = 4#22 - t rY,  0-3 = 4 ~ 3 3  --  t rY,  

1 4 
O" 4 = ~-tr~ + " 3 ( ~ - ~ 1 2  -1- ~13 -1- # 2 3 ) '  

1 4 
0-s = ~ t r ~  + ~ (  +~12 - ~13 - ~23), 

1 4 
0-6 = -~t r~ + - 5 ( - - # 1 2  + ~13 --  # 2 3 ) '  

1 4 
0-v = -~tr~ + 7 (  -~12 - ~13 + P23). 

For prescribed principal macroscopic stresses, the facet stress 
0-1 is maximized if the normal n 1 coincides with the eigenvec- 
tor of the maximum principal macroscopic stress. In particu- 
lar, if the macroscopic stress is uniaxial tension T normal to 
the square $1, we obtain 

1 
0-1 = 3T, O'2 = 0-3 = - T ,  0-4 = 0-5 = 0-6 = 0-7 = ~ T .  

Analogously, the facet stress a 4 is maximized if the normal 
n 4 coincides with the eigenvector of the maximum principal 
macroscopic stress. If the macroscopic stress is uniaxial ten- 
sion T normal to the hexagon S 4, we obtain 

1 5 1 
0-1 : 0-2 = 0-3 = "3 T, 0" 4 : ~ T, 0-s = 0-6 = 0"7 = - - - 9  T. 

In each case, the maximum facet stress coincides with the 
one predicted by Anderson and Rice (1985). A remarkable 
feature of these estimates is that they are less than eight 
percent different from those predicted from detailed finite 
element computations (Dib and Rodin, 1993): 3 versus 2.77 
for the maximum 0-1, and 5/3 = 1.67 versus 1.72 for the 
maximum 0-4. Also, let us emphasize that, according to Dib 
and Rodin (1993), the variational approach of Anderson and 
Rice (1985) is insufficiently accurate as far as the displace- 
ment and strain fields are concerned. 

3 T h r e e - D i m e n s i o n a l  D i s o r d e r e d  Arrays  

3.1 Background. In Section 3, we consider disordered 
arrays of polyhcdra which satisfy the following restrictions: 

• Each array is comprised of a large number of grains. 
• Dimensions of the polyhedra comprising the array are 

not correlated with any particular orientation. 
• Each array is the Voronoy tessellation of a point lab 

ticc. 

Although all thrcc restrictions are introduced in order to 
simplify calculations, the first two can be viewed as a loose 
definition of a disordered polycrystalline representative ma- 
terial element (Hashin, 1983). The third restriction is some- 
what artificial but it can be easily justified since the Voronoy 
tessellation is a well-accepted geometrical construction for 
polyhedral grains. 

In disordered arrays, we do not consider individual grains; 
instead governing equations arc formulated for the entire 
array. Accordingly, all predictions must be interpreted as 
appropriate averages. 

3.2 Equilibrium Equations. Equilibrium equations for a 
disordered array can be derived directly from (4)-(6). This 
task is simplified if the vectors 1~ in (4)-(6) arc redefined as 
follows. First, for each grain, the origin O is shifted from the 
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Fig. 5 Two pyramids formed by the face S~ and the two adjacent 
latt ice points 

centroid to the lattice point.Second, the point O~ is chosen 
such that the vector 10: = 004 is normal to 8.. With these 
changes, the first term in (5) as well as the skew-symmetric 
part of 10: ® n~ vanish. Upon application of Newton's third 
law to the tractions on each grain boundary, we conclude 
that the sums arising from (4) and (5) are identically equal to 
zero, and the sum arising from (6) can be written as 

q 

E N~d~n~ ® n~ = l/~. (12) 
0:=1 

Here the sum is over all grain boundaries in the array, d~ is 
the distance between the two lattice points associated with 
the grain boundary 80: (Fig. 5), V is the volume of the array, 
and no: is a unit normal to 8~ whose sign does not have to be 
specified. Equation (12) can be also expressed in terms of the 
facet stresses, 

q 

3 E %V~n, ® n ,  = V~ ,  (13) 
0:=1 

where V~ is the volume of the two pyramids which share the 
base 80: (Fig. 5). 

3.3 Determination of the Facet Stresses. Apparently the 
six equations in (13) are insufficient to determine the many 
facet stresses in the array, therefore, following the analysis 
for the periodic array of truncated octahedra, a variational 
formulation is introduced. For the disordered array, instead 
of choosing a statically admissible stress field, we construct 
an ad hoc expression for the complementary energy as a 
function of the facet stresses. To this end it is expedient to 
emphasize two properties of the complementary energy 
• (%) in (11). First, as far as the determination of the facet 
stresses is concerned, ~(0-0:) can be multiplied by any positive 
constant, i.e., it is sufficient to establish how the complemen- 
tary energy is partitioned with respect to the facet stresses. 
Second, it is apparent that ~(0-,), as determined for the 
truncated octahedron, is partitioned such that the weight of 
each %2 is proportional to the volume of the pyramid with 
apex at O and base 80:. If the same partition is adopted for 
the disordered array, the weight of each %2 becomes pro- 
portional to the volume of the two pyramids shown in Fig. 5, 
so that the complementary energy can be chosen as 

1 q 
• ( % )  = ~ E 0-2V~ . (14) 

0~=1  

In order to minimize ~ ( % )  with respect to % subject to 
(13), we introduce a second rank symmetric tensor a as the 
Lagrange multiplier for (13). Accordingly, the augmented 
energy is 

lq (q ) 
' (0-o1 = g I2  0-£go - a "  3 I2  0- g n0: ® n .  - . 

0:= I  0 : = 1  

After obvious manipulations we obtain 

% = 3A" (n~ ® n . )  (15) 

and 

9 A ' (  ~ V ~ n ~ ® n ~ ® n " ® n ~ )  = V ~ ' , ~ = I  (16) 

Since the array is disordered and q is large, the sum in (16) is 
evaluated as 

q 

y'~ V,~n~ ®n~, ®n,~ ® n , ~ = V ( n ® n ® n ® n )  
o:=1 

1 
= - ~ V ( 6 ®  6 - 2 1 ) .  

Here the corner brackets denote the averaging operation 
over the surface of a unit sphere, 6 and I are the second and 
fourth rank symmetric identity tensors, respectively. Now it is 
easy to solve for a and obtain the expression for the facet 
stresses, 

5 1 
% = ~ "  (n~ ® n~)  - ~ t r ~ .  (17) 

The maximum facet stress is 

5 1 1 
max{%) = ~ 1  - -~tr~ = 2 ~  1 -- ~ ( ~ 2  + ~3)"  ( 1 8 )  

Expression (18) for the maximum facet stress is close to the 
one suggested by Nix et al. (1989) who, based on the analysis 
of Anderson and Rice (1985), used 2.24 and 0.62 instead of 2 
and 1/2, respectively. If the expression suggested by Nix et al. 
(1989) were based on the more accurate analysis of Dib and 
Rodin (1993a), the numerical coefficients would be 2.08 and 
0.54, respectively. Also, in (18), the maximum facet stress is a 
linear combination of ~1 and trY. This supports the func- 
tional form of Nix et al. (1989) rather than that of Dib and 
Rodin (1993b), who chose the maximum facet stress as a 
linear combination of ~1 and the Mises macroscopic stress. 
Although it may be appropriate to modify the expressions for 
the maximum facet stress used by Nix et al. (1989) and Dib 
and Rodin (1993b), we do not believe that these changes 
would significantly affect the conclusions of those papers. 

4 Di scuss ion  

In the preceding sections, we developed an approach which 
lends itself to simple calculations of the facet stresses in a 
large class of arrays with frictionless grain boundaries. While 
the arrays considered there are exclusively in three-dimen- 
sions, it is clear that two-dimensional arrays can be analyzed 
as well 2. In particular, it can be shown that in two-dimen- 
sional disordered arrays 

1 
% = 2 ~ .  (u s ® n~)  - ~ ( ~ 1  + ~2) 

and 
3 1 
m m -  

max{%} = 20-1 - 20-'2 . 

Here ~1 and ~2 are in-plane principal macroscopic stresses. 
Note that the estimate for the maximum facet stress coin- 
cides with the one for the periodic regular hexagonal array 
(Beere, 1982). 

Based on (17), let us examine how the macroscopic stress 

2Two-dimensional arrays are relevant to micromechanical modeling of 
the so-called $2 columnar ice. 
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is transmitted in polycrystals with frictionless grain bound- 
aries. In doing this, we restrict our attention to axisymmetric 
macroscopic stress tensors, 

~ =  TAe®e+ T t ( 8 - e ® e  ), 

such that the axial principal stress, T A > 0, is fixed and the 
two lateral principal stresses, T L, vary from minus infinity to 
plus infinity. If the fraction of grain boundaries in compres- 
sion is denoted by c and ,q = Tc/TA, the facet stress distribu- 
tion in (17) yields the following expression: 

F 

3~ /5~-  5! if r/ < 1/3 

c ( r / ) =  0 if 1/3 < ' q < 2  (19) 

3 / ~ - 1  
1 -  5 i f ~ >  2. 

In the limit as r I ~ - ~ ,  which is in effect biaxial compres- 
sion, c ~ 0.77; if rl ~ ~, c ~ 0.23. Under uniaxial tension 
(7 = 0), the fraction of grain boundaries in compression is 
almost 45 percent! In this case the overall equilibrium is 
maintained because grain boundaries in tension transmit 
higher facet stresses than those in compression. For example, 
the maximum tensile facet stress is 2T A while the maximum 
compressive facet stress i~ only TA/2. The presence of com- 
pressive stresses under macroscopic tension and tensile 
stresses under macroscopic compression has not received 
much attention in the mechanics community so far. This 
phenomenon, however, is critical to the understanding of 
high-temperature fracture of ceramics, particularly because 
the majority of creep tests on ceramics are conducted under 
bending so that both macroscopic tension and compression 
are involved (Chuang and Wiederhorn, 1988). 

In our analysis of disordered arrays, the maximum facet 
stress is calculated as the average over the facet stresses 
transmitted by the many grain boundaries aligned normal to 
the direction of the maximum principal macroscopic stress. 
This averaging procedure is relevant to micromechanical 
modeling of materials whose failure is associated with grad- 
ual accumulation of intergranular cracks (Dib and Rodin, 
1993b). The other extreme, relevant to materials which fail 
shortly after the first intergranular crack is formed, requires 
the determination of the maximum facet stress transmitted 
by a single grain boundary. In this case, it is necessary to 
specify explicitly the polycrystalline geometry and perform 
large-scale finite element computations. Results of such an 
analysis in two-dimensions are forthcoming (van der Giessen 
and Tvergaard, 1994). 

In conclusion, let us observe that the present approach can 
be extended to cellular solids with truss-like microstructure 
and polycrystals with traction-free grain boundaries. The 
connection with cellular solids becomes obvious if one mod- 
els their geometry using the Delaunay tessellation of random 
point lattices. Accordingly, such a truss is constructed by 
assigning a member between the lattice points of any two 
adjacent polyhedra of the Voronoy tessellation. In this case, 
the sums in (13) and (14) must be interpreted as follows: a 
runs over the members, V~ is the volume of the member a, 
and the complementary energy of the truss is obtained by 
dividing the sum in (14) in E. If the energy is minimized, one 
finds that the overall elastic constants of the cellular solids 
are 

1 1 
E = ~ b E  a n d S =  4 '  (20) 

where ~b is the volume fraction of the members. This result, 
well-known in mechanics of cellular solids, is due to Gent 
and Thomas (1959). In (20), the overall constants are derived 
by minimizing an exact expression for the complementary 
energy subject to relaxed equilibrium conditions (13). Impli- 
cations of this approximation are unclear, and the validity of 
(20) is still debated in the literature (Christensen, 1986; 
Gibson and Ashby, 1988). The present approach is applicable 
to polycrystals with traction-free grain boundaries simply 
because the sums over grain boundaries do not have to 
include all grain boundaries but only those with nonzero 
facet stresses. Furthermore, such an exclusion of grain 
boundaries can simplify the calculations. For example, if in 
the periodic array of truncated octahedra one pair of faces is 
traction-free, then the array becomes statically determinate. 
Also it is possible to consider arrays with voids at the ver- 
tices. For example, if in the periodic array of rhombic dode- 
cahedra there is a spherical void at each vertex, such that the 
volume fraction of the grains is 4', then the facet stresses 
derived in Section 2.3 should be multiplied by ~b -2/3. 
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Two-Phase Potentials for the 
Treatment of an Elastic Inclusion 
in Plane Thermoelasticity 
A solution to the uncoupled two-dimensional steady-state heat conduction and 
thermoelastic problems of an elastic curvilinear inclusion embedded in an elastic 
matrix, with different thermomechanical properties, is provided. The proposed analysis 
describes the heat conduction problem in terms of  one holomorphic complex potential 
and the thermoelastic problem in terms of two holomorphic potentials," known hereafter 
as two-phase potentials. The general results' of the developed analysis are applied to 
specific examples and explicit forms of  the solution are obtained. It is shown that a 
uniform heat flow at infinity induces a linear stress distribution within the elliptic 
inclusion. 

Introduction 
A model, which is often adopted in the analysis of the 

thermomechanical behavior of heterogeneous materials, is 
that of the infinite elastic matrix containing an elastic inclu- 
sion with different thermomechanical properties. Although 
the elastic inclusion problem under mechanical loadings have 
been examined extensively, only a limited number of studies 
have been made of the corresponding problem under thermal 
loading. The thermoelastic problem is receiving considerable 
attention as a result of the widespread use of high-tempera- 
ture composites in engineering applications. 

The elastic elliptic inclusion for a uniform temperature 
change has been studied earlier by Mindlin and Cooper 
(1950). They showed that such a temperature change intro- 
duces a uniform stress field within the inclusion. The inter- 
face penny-shaped crack in two bonded isotropic bodies 
under a uniform heat flow at infinity has been treated by 
Bregman and Kassir (1975). The same problem has been 
examined in combination with a particular thermal boundary 
condition on the crack faces (Martin-Moran et al., 1983; 
Barber and Comninou, 1983). The corresponding two-dimen- 
sional interracial problem has also been discussed and solu- 
tions have been provided for certain special cases (Brown 
and Erdogan, 1968; Kuo, 1990). Rigid inclusions with an 
interracial crack in infinite elastic planes have also been 
considered (Kattis and Duka, 1990, 1991; Hasebe et al., 1991; 
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Prysov, 1972; Kattis, 1991a,b). Elastic line inclusion in an 
infinite elastic plane was further examined by Sekine (1977), 
and Grilitskii et al. (1983). 

The analysis is based upon the conformal mapping tech- 
nique of the complex variable theory of elasticity with the 
matrix region of the physical plane (z-plane) being mapped 
to the external region of the unit circle of another plane 
((-plane). Extending analytically the mapping function defi- 
nition in the internal of the unit circle and using the mapped 
plane as a parametric plane, general representations of the 
complex potentials are constructed so that the required ther- 
mal and mechanical interface continuity of the relevant 
quantities are satisfied. In these representations, the complex 
potentials of the thermoelastic problem are expressed in 
terms of two holomorphic functions, while those of the heat 
conduction problem are expressed in terms of a single holo- 
morphic function. These functions constitute the two-phase 
potentials of the current two-phase system. The proposed 
relationships provide, as special cases, the well-known results 
of the continuation method for the case of a cmvilinear rigid 
inclusion or a hole in an infinite plane matrix. 

The two-phase potentials can be sought in series forms 
adapted to the singular requirements of the problems. The 
series coefficients are calculated so that the single-valuedness 
condition of the temperature and displacements are ensured 
and the thermal and mechanical singular conditions are 
satisfied. Such a technique is completely illustrated in the 
case of an elastic circular inclusion where the thermal singu- 
lar conditions correspond to a uniform heat flow at infinity 
and to a point heat source at a point of the matrix. The latter 
case, along with the concentrated force results, provide the 
necessary tools to treat some interesting and more compli- 
cated thermoelastic problems. Also, two-phase potential so- 
lutions are given for an elliptical elastic inclusion and for a 
hypotrochoidal rigid inclusion with an insulated boundary 
disturbing a uniform heat flow of the matrix. 
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Fig. 1 (a) A curvilinear elastic Inclusion in an elastic plane matrix 
and (b) the corresponding mapped ~'-plane 

Statement of the Problem and Governing Equations 
Consider an infinite elastic matrix containing a curvilinear 

elastic inclusion with different thermomechanical properties. 
The two materials are assumed to be perfectly bonded along 
the interface C z at a reference temperature 3 0 and in such a 
way that the connected system remains unstressed• The elas- 
tic matrix occupies the open region L z and the inclusion of 
the region R z of the z-plane. The z-plane refers to a Carte- 
sian orthogonal system (x, y)  whose origin lies inside R z. 
The region L z is conformally mapped by z = m ( ( )  into the 
exterior L~ of the unit circumference C~, 1(1= 1, of the 
~-plane with the interface C z corresponding to the circumfer- 
ence CC (Fig. 1). 

A temperature change T = 3 - 5 o, with 3 being the abso- 
lute temperature, in the system causes a thermal stress distri- 
bution as a result of the different thermomechanical proper- 
ties of the two phases, each one of which has been assumed 
to be thermally and mechanically homogeneous and isotropic. 
According to Muskhelishvili (1953), the Cartesian compo- 
nents of the stresses o-x, O'y, O'xy and the Cartesian compo- 
nents of the displacements u, v can be written in terms of 
the two complex potentials W and W in the form 

O" x + O'y = W ( z )  "4" W ( Z ) ,  (1) 

2( ~ry - iO-xy ) = W ( z )  + W ( z )  + z W ' ( z )  + "W ( z ) ,  (2) 

4/~(u + iv) = ~ W ( z )  - z W ( z )  -"rd7 ( z )  + fi/ q r ( z ) ,  

(3) 

where ~ ( z )  is an analytic function which accounts for the 
presence of the temperature field in the thermoelastic prob- 
lem and must be determined a priori by solving the corre- 
sponding heat conduction problem. In (3), K = 3 - 4v and 
/3 t = 4/zat(1 + w) for plane strain, K = (3 - v)/(1 + v) and 
13 t = 4txa t for plane stress, with /, and v being the shear 
modulus and Poisson's ratio, respectively, and a t is the coeffi- 
cient of linear thermal expansion. Left and right prime func- 
tions denote indefinite integration and differentiation with 
respect to the appropriate variable. 

The Cartesian components of the heat flow qx, qy and the 
temperature change T of the heat conduction problem of the 
uncoupled thermoelastic problem can be expressed in terms 
of a single complex potential F such that 

q~ 
- - -  = F ' ( z )  + F ' ( z ) ,  (4) 

kt 

• qy 
t - -  = F ' ( z )  - F ' ( z ) ,  (5) 

k, 

T = F ( z )  + F ( z ) ,  (6) 

where k t is the thermal conductivity. Once the heat conduc- 
tion problem is solved, the temperature function ~" is deter- 
mined 

q~(z) = 2 F ( z ) .  (7) 

In the following, the traction and heat flow continuity 
along the interface will be used in their equivalent integrated 
forms. These forms can be expressed by the resultant force R 
and the total heat flow Q on an arc by 

2 i R ( z , 2 )  =" W ( z )  + z W ( z )  + " W ( z ) ,  (8) 

i 
- - - Q ( z ,  2 )  = V ( z )  - F ( z ) .  (9) 

kt 

If the complex potentials of the heat conduction and the 
thermoelastic problems are known, the field variables of both 
problems are completely defined by means of Eqs. (1)-(6)• 
These variables must satisfy the imposed boundary condi- 
tions and ensure the required interfacial continuity. Since the 
interfacial continuity constitutes a defined internal condition 
of the multiphase system, a question arises regarding the 
least number of independent functions necessary to com- 
pletely describe the state variables of the system. Such a 
question will be discussed with respect to the current prob- 
lem. 

It is further assumed that there is a perfect thermal 
contact between the two phases and the system is free from 
external surface or body forces. Furthermore, the subscripts 
1 and 2 are used to denote quantities associated with the 
matrix and inclusion, respectively. 

Two-Phase Potentials 

1 The Heat Conduction Problem. The temperature and 
heat flow continuity across the interface can be expressed in 
terms of the following complex potentials: 

Fl( t  ) + Fl( t  ) = F2(t ) + Fz( t ) ,  (10) 

Vl(t  ) - Fl ( t  ) = k [ F z ( t  ) - F2( t ) ] ,  (11) 

where t denotes a point on the interface C z and k = kz /k  1. 
Expressions (10) and (11) can be reduced to a single equiva- 
lent equation in which the complex potential of one phase is 
expressed in terms of the other• In the (-plane, this equation 
takes the form 

l + k  l - k _ [  / 1 ) )  
F l ( m ( ~ r ) )  = - - - ~ F 2 ( m ( o ' ) )  + - - - - ~ F 2 ( ~ [ ~  , (12) 

where ~ is a point on C¢. Based on (12), the general 
representation of the thermal potentials of the two phases 
can be constructed so that the thermal continuity is ensured. 
However, functional quantities associated with the inclusion 
should not be defined in terms of the variable (,  as is 
suggested by (12), since the region Rz is not represented by 
means of conformal mapping in the (-plane. Hence, func- 
tions referring to the inclusion will be expressed in terms of 
the variable z of the physical region, while those of the 
matrix will be expressed in terms of the variable ff of the 
(-plane. Thus, a general form of the thermal potentials of the 
two phases can be defined as 

F,( m (  ( ) ) = Fo( m (  ( ) ) + -]---~ F o ~ , ( in L~, 

(13) 

2 
F2(z) = - i - ~ F o ( z ) ,  z in nz, (14) 

where F 0 is a holomorphic function. This function is defined 
in the region R z of the physical plane and in the entire 
(-plane, except, maybe, in a number of points where it 
exhibits a singular behavior. F 0 depends on the thermal 
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loading and the geometrical shape of the interface, and its 
determination defines the temperature fields of both phases 
completely. This function will be denoted as the two-phase 
potential of the system. 

A series technique can be applied to determine the two- 
phase potential Fo. Assuming a form of F o, that is consistent 
with the singular conditions of the problem, its complete 
determination will depend upon the known behavior of the 
thermal potentials at the singular points. 

2 The Thermoelastic Problem. The traction and dis. 
placement continuity along the interface imply that 

F[ Ki"Wi(t ) --tWl(t ) - " ~ / ' )  + /31,'Xttl(/)] 

= K2"W2(I ) - t W 2 ( t  ) - ~r~?2(/) +/32t"q2'2(t), (15) 

"Wl(t ) + tWl(t ) + " ~  = "W2(t ) + tW2(t ) + "'Wz(t ) 

(16) 

where F = p~2//xl. Equations (15) and (16) can equivalently 
be replaced by the following set of equations: 

1 -- OL-- /3 
/3 "W2(m(cr))  + 

% 

W,(m((r)) = 1 +---'-'a 1 + a 

y 
+ - i - T g  "*o (m(o - ) ) ,  (17) 

i + /3  " W ~ ( ~ ( o - ) )  
" ~ l ( m ( o ' ) )  1 + 

a + /3, m + ~t W2(m(~r)) 
+ l + a  

~ ¥ ~ m'(o-) Zg m(o.)w~ ~ 

(1) 1 ~' "~o ~ + ~  ~ * o ( m ( ~ ) )  , (18) 
l + a  

where ~r represents a point on the circumference C~, and 

~ o (  Z ) = a2tXlt2( z ) -- altatr l( Z ) .  (19) 
for plane stress conditions. In Eqs. (17) and (18), a and 13 
are the Dundurs parameters (Dundurs, 1970) 

r (1  + ~,) - (1 + ~z) r(~, - 1) - (~2 - 1) 
'~ = r ( i  + ~ )  + (1 + K2)' /3 = F(1 + ~ , )  + (1 + ~ )  

and 
8/z~ ~2 

,y = /Zl( 1 + K2) + /Z2(1 + Xl)" 

Based on Eqs. (17) and (18), the general representation of 
the thermoelastic potentials can be constructed so that the 
required continuity along the interface is satisfied. This leads 
to the following expressions: 

"Wa(m(~r)) 

4 ~  
+ ~ ' * o ( m ( ~ ) ) ,  ~ in L~, (20) 

I + K  1 

Journal of Applied Mechanics 

+(A + f~)m( { )Wo(m( r, )) 

d ~ 1 

, _ _  1 1 

in L~, (21) 

for the matrix, and 

W2(z ) = (1 + A)Wo(z),  

"Wz(z ) = (1 + III)"Wo(Z ), 

z in Lz, (22) 

z in Lz, (23) 

for the inclusion, where A, II, and 12 are auxiliary two-phase 
parameters given by (Gao, !990) 

,~+/3 oL-/3 o~-/3 
A = ~  H = ~  D, 

1 - / 3 '  1 + / 3 '  1-/3' 
In Eqs. (20)-(23), W 0 and 'Wo are two holomorphic func- 
tions, which represent the two-phase potentials of the system. 
These functions are defined in the region L z and in the 
entire ,i-plane, except at a certain number of points where 
they exhibit a singular behavior. These points can be deter- 
mined by means of (20)-(23) taking into account the singular 
behavior of functions ~0 and m(~). If the temperature terms 
of (20) and (21) are absent, the expressions reduce to the 
general representations proposed by Sendeckyj (1970). 

When the temperature state and the geometry of the 
system are defined, the two-phase potentials W 0 and 'W 0 are 
determined such that the stress field vanishes at infinity. This 
means that the complex potentials of the matrix W 1 and 'W~ 
should converge to zero at infinity. A series technique can be 
used for the determination of Wo and 'W o as in the case of 
Fo. 

3 Special Cases. For the extreme case of a rigid inclu- 
sion with an insulated boundary (/.~2 ~ 0% ,t, 2 = 0) the com- 
plex potentials of the matrix take the form 

F ] ( ~ ) = F o ( ~ )  + F  o ~ , ~ i n L ~ ,  (24) 

• 1 ,  ( 1 )  4/zaalt, (~.) ' 
wl(;) ='Wo(~) + ~ "% -~ 1 + ~1 

• 
"q~71(~" ) = nCCo(m,~) + K l Wo 

in L¢, (25) 

m'(~) d~ W°(~) + --K1 0 "~ 

4~lalt [ ( 1 )  , __ (1 ) ]  + ~  XI/i(~')~ "-~ + 'tit 1 "~ , ~" in L~, (26) 

where in the above express,ions "Fl(rn(~r)) was written as 
"Fi(~') and "Wl(m(~')) as Wl(~r), etc. Introducing now a 
new holomorphic function W such that 

]W( ~" )d~" = W0( ~" ) + - -  (27) 

and substituting (27) in (25) and (26), after differentiation 
expressions (25) and (26) become 

41xl alt 
- WI(~) ,  ~ i n L , ,  (28) m'(~)W,(~)  = W(~)  1 + K, 
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d 
m ' (~ ' ) "W(~ ' )= -KIW(-~)£ '2  ' _~[N(1/~ ')_~_W(~.)]  

+ l+K14/xlal------L[d~(~(-~)~l(~'))- ~ 2 ~ 1 ( - ~ ) N ' ( ~ ) 1 .  (29) 

The thermoelastic potentials of the matrix for a rigid inclu- 
sion are now expressed by (28) and (29) in terms of a single 
potential W. Equations (24), (28), and (29) can represent the 
complex potentials for a curvilinear hole with an insulated 
boundary, if the plus sign of the right-hand side of (24) is 
substituted by minus and K 1 of (29) by - 1. In this last case, 
if W( ~" ) is replaced by m'( ff )W(ff ) and xlq = 0 in (28) and 
(29), the well-known result of the continuation method is 
obtained (Milne-Thomson, 1968, p. 144). 

For a circular inclusion, the complex potentials of the 
matrix can be written in terms of the variable z of the region 
L~ of the physical plane (Eqs. (A1)-(A3) in the Appendix). In 
this case, Eqs. (A1) and (14) constitute the well-known rela- 
tionships of the extended circle theorem of Smith (1975). 

A p p l i c a t i o n s  

The previously developed analysis will now be applied to 
some particular cases of perfectly bonded inclusions. Specifi- 
cally, the circular and elliptic elastic inclusions, and the rigid 
hypotrochoidal inclusion with an insulated boundary, are 
considered subjected to a uniform heat flow at infinity. 

1 Circular Elas t i c  I n c l u s i o n ,  Consider now that an 
elastic circular inclusion occupies the region Izl < R of the 
physical plane and that the matrix is subjected to a tempera- 
ture change 

qo 
r = - -  + r c (30) 

kit y 

at infinity, where q0 represent a uniform heat flow along the 
y-axis and T c is a uniform temperature change. Expression 
(30) provides the following expansion of Fl(Z) at infinity: 

qo, 
Fi(z ) = - - z  + ~ Z  c + 0 , Z = m (31) 

ku  

which imposes a pole of the first order on F 0 at infinity. 
Assuming that F o has a linear form, its unknown coefficients 
are calculated by comparing (31) and (46) at infinity. It is 
found that 

qo i 1 + k 
Fo( z ) = -~11 z + ---M--re. (32) 

The temperature terms of (20) and (21) impose a pole of 
the first order at infinity on W o and 'W o. Assuming that Wo 
and 'W 0 have a linear form, the unknown coefficients are 
determined from the condition of convergence of the com- 
plex potentials W~ and 'W~ at infinity. It is obtained that 

I a ]  
Wo(z  ) ~ + - ~  ~ 1 l + k z +  l _ ~ r c  , (33) 

~¢¢0(z) = o, (34) 

where a = a2t/alr The stress and displacement fields ob- 
tained with respect to a polar coordinate system (r, ~b) are 
given by Eqs. (A4)-(A19) in the Appendix for each of the 
terms of Eq. (30). For the case of a rigid inclusion or a hole 
with an insulated boundary (A = 1/H = K 1 or - 1 and a2t = 
0, k2t = 0), Eqs. (A10)-(A19) are reduced to the known 
results of Lee and Choi (1989) and Florence and Goodier 
(1960). 

If the matrix is subjected to a heat source of strength Q at 

the point z 0 ([z0] > R), the following expansion of the com- 
plex potential F 1 at z = z 0 is valid: 

O 
Fl ( z  ) 47rk------71og(z - z 0 )  + O(Iz - Zol°), z =z0.  

(35) 

The two-phase potentials satisfying the holomorphy condi- 
tion in R z can be assumed in the form 

Fo(z  ) = ( A  o + A l z ) l o g ( z  - Zo) + a o + a,z  + . . . .  (36) 

Wo(z  ) = ( B  o + B l z ) l o g ( z  - Zo) + b o + blz  + . . . .  (37) 

"'Wo(Z ) = (C O + C , z ) l o g ( z  - Zo) + c o + c,z  + . . . .  (38) 

The complex constants A0, Ai, a0 , . . . ,  B 0, Ba, b0, . . .  and 
C 0, Ct, Co, . . .  are calculated so that the convergence condi- 
tion of the complex potentials at infinity are ensured and the 
single-valuedness condition of the temperature and displace- 
ments are satisfied. It is found that 

Wo( z ) 

Q 
Fo(z  ) - -  log(z - z0), (39) 

4rrklt 

2~la l tQ  

(1 + K1)kltTr 

× l + k  

2tzlaltQ 

(1 + K1)klt~ 

and 

R 2 l - k ]  
- - -  1 ( z - z 0 )  + - -  - -  l o g ( z - z 0 )  

z 0 l + k  

[(2a 1)+ 1 1 + k  1 l~lzo[ 2 1 T k  z, 

(40) 

"'Wo(Z) = 0. (41) 

2 Elliptic E l a s t i c  I n c l u s i o n .  The mapping function for 
an elliptic inclusion with semi-major and semi-minor axes a 1 
and a2, respectively, is given by (m) 

z = m ( z ) = R  ~ + 7  ( e > 0 , 0 _ < m z l )  (42) 

where 

a,  = R ( 1  + m ) ,  a 2 = R ( 1 - m ) .  (43) 

For a temperature change of the form provided by Eq. (30) at 
infinity, the two-phase potentials are calculated using the 
procedure described above, viz, 

qoikm 1 + k 
Fo(Z ) = ~ z  + - - - ~ T c ,  (44) 

4/*1a1' [ - - q ° i k m ~  Tc] (45) 
W ° ( z )  ( 1 +  K,) k , te  z +  ( 1 - a ) - ~  , 

4/a, lalt [ qoik m (B T c ] 
'W°(z)  (1 + K1) [ - - - ~ - - z  - m(1 - a)(1 + 1FI)-~ J '  

(46) 

where ~, (B, e ,  if), and k m are given by (A26)-(A30) in the 
Appendix. Equations (45) and (46) provide a linear stress 
distribution within the inclusion, as given by (A20)-(A25) in 
the Appendix for the two terms of (30). This conclusion is 
consistent with that of Mindlin and Cooper (1950) for the 
case of uniform temperature change. When T,, = 0, the com- 
plex potential W~ of the matrix takes the form 
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41.ZlaltqoiR2km [ 1 -- m 2 

m ' ( f ) W , ( ~ )  = k i t (  1 + Kt ) [ 

(1 + Ill)m2~(1/rn) + (1 - I IA)m2a/e]  
- #3 ] . (47) 

Putting /x 2 = ~ (A = 1/II = Kl, ~ = - 1) and a = 0 in (40), 
the equation obtained coincides with the complex potential 
of a rigid inclusion with an insulated boundary (Kattis, 1991a). 

3 Hypotrochoidal Rigid Inclusion With an Insulated 
Boundary. The mapping function for a hypotrochoidal in- 
clusion inscribed in a circle of radius R is 

(5 )  z = m ( ~ ) = R  ~+ ( p > 2  0 < m < l ) .  (48) 

For a temperature change given in the form -Re(Yl=z)/klt at 
infinity, with q~ being a uniform heat flow, the thermal 
potential F 0 is calculated as 

q~R 
Fo( ~" ) - -  ~'. (49) 

2kit 

Equations (28) and (29) show that W should have a pole of 
the first order at infinity and a pole of p + 2 order at zero, 
since W a and 'W 1 should converge to zero at infinity• Thus, 
assuming that W has the form 

A - i  A - ( p + 2 )  
W ( f ) = A l ( + A o +  ~ +. . . - t  (p+2 (50) 

the constants A 1, A o . . . .  A (-+2) are calculated from the 
• • - , o  , 

condmon of convergence of the complex potentials W 1 and 
'W1 at infinity. It is obtained that 

41~laltq=R 2 
w(:) 

kltKl(1 + K1) 

m(2p 1) e -2i'~ + (51) X Ki e -2 i 7  ~ + P~P 

where 3' is the angle between the direction of the heat flow 
and the x-axis. Substituting (50) in (28), it can be deduced 
that 

4l,~lauq~R 2 
m'(C)Wt(~) 

K l k l t  

X 1 + K t K 1 + p(1 ~ K1) ~P #7~2 (52) 

which coincides with the result obtained by the continuation 
method (Kattis, 1991a). 

Concluding Remarks  
The general representation of the complex potentials of 

both heat conduction and thermoelastic problems of a curvi- 
linear elastic inclusion embedded in a plane elastic matrix 
was established. The proposed complex potentials of the two 
phases were expressed in terms of two holomorphic functions 
for the thermoelastic problem and one holomorphic function 
for the heat conduction problem. A number of specific exam- 
ples were considered to demonstrate the general character of 
the resulting expressions. It was shown that a uniform heat 
flow at infinity induces a linear stress distribution within an 
elastic elliptical inclusion. 
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A P P E N D I X  

Complex Potentials of the Matrix for the Circular 
Inclusion Problem 

1 - k _  [R 2 ) 
Fi(z ) = Fo(z ) + - i - ~ F o l -  ~- (A1) 

~ - -  R 2 

" - -  ( R 2 )  4~1 "~0(Z) (12 )  
+ n  T + 1+ 

'Wl(z ) 'W0(z ) + A" W 0 + (A + D.)--Wo(z ) 
Z 

+TTz[aZW° T) -if%, ,,V 

4~t "~o T + 1 + K1 -T%(Z ) (13) 
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T h e r m a l  S t r e s s e s  and  D i s p l a c e m e n t s  for  an  E l a s t i c  
C i r c u l a r  I n c l u s i o n  

For a uniform temperature change T~: 

4/*l(alt - a2t)(1 + A)Tc R 2 
°h~ = -°'166 = (1 + tq)(1 - 1)) r2 (A4) 

4/ , , (a l t  - a2,)(1 + A)T~ 
(A5)  O'2r = O'24) = (1 + Ki)(1 -- ~~) 

O'lr ¢ = O'2r~b = 0 

2(a2t - al,)(1 + A)T~ R 2 
= + altTcr Ulr (1 + K1)(1 - f~) r 

2(a2/ - air)(1 + A)T c 
u2~ = (1 + K1)(1 - a )  r + a,tTcr 

(A6) 

(A7) 

(AS) 

Ul$ = U25 = 0. (A9) 
where 

For a temperature change -qoY/klt at infinity, 

41~laltqoR [1 ~ A (  2a ) R3 
°h~ (1 + Ka)kl, ~ 1 + k  1 7 

l-k( 
+ ' i ' - ~  1 - ' ~ ) 7 ] s l n ~ b  (A10) 

4 ,a,,q0e 
oq~ = (1 + Kl)kl ,  1 + k 1 r3 

l - k (  R 2 ] R ]  . 
l + k  l+ -TT)7 ] s ln~b  (All)  

4  a ,qo.[l a(2a 
°h'¢ (1+  K1)k u - -  l + k  1 -75- 

1_ (1 - = + - T g  7 cos ~ o'~, 

2/.~laltqo(1 + A) [ 2a °'2xy 

o'2~ = (1 + gl)klt ~ 1 + k 

6/,laltq0(1 + A) [ 2a 
0"24' = (1 + K1)klt ~ 1 + k 

(A12) 

- -  - 1)rsin ~b (A13) 

- -  - 1)rsin ~b (A14) 

21xlaltq°(l + A) ( 2a ) 
O'2r4' = - -  (1 + K1)klt 1 + k 1 rcos ~b (A15) 

2altqo R2 1 K 1 

Ulr (1 + K1)klt ~ ~ + 1 + K'-------- 7 

( 2a ) R  2 ] 1 - k  ( R 2 ) 
X l + k  1 "~ T + 2 ~ + 7 c ) 1 - - 7  

+ ' i - ~ l ° g R  + 1 + k  1 e sin~b (A16) 

2altqo R2 { .1__~_~. [ r 2 I + A  
u,¢ (1 + K1)k,, ~ + 1 + K----- 7 

( 2a )R  2 ] 1 - k  ( R 2 ) 
X l + k  1 7 + 2( i71c)  1 -  7 

X - k l ° g ~ - - ~ (  2a ) } 
1 ~ k 1 + k 1 e cos ~b (A17) 

[ t] u2r (1 + K1)klt 1 + 1 + K----------~ 1 +--"-k - 1 

+ 2  1 + k  1 e s ine  (A18) 

2a,,qorZ (~_~_~L[ I + A (  2a )] 
u2e° (1 + K1)kl, 1 + ]-7-77 1 + k 1 

2 l + k  1 e cos~b (A19) 

E =  1 + A +  ( 1 +  K1)fl ,  

T h e r m a l  S t r e s s e s  W i t h i n  an E l a s t i c  E l l ip t i c  I n c l u s i o n  

For a uniform temperature change To, 

2/xl(alt a2t ) Zc [ 2 ( 1 + A )  +m(1 +III) 2 ] (120) °'2x = (1 + ~ ; ~  

2/Zz(al' -- azt)Tc [2(1 + II)2], (121) Cr2y = (-]'+ ~11) ~ A) - m(1 + 

O'2xy = 0. (A22) 

For a temperature change -qoy/klt at infinity, 

2 txlqoaukm 
[ 3 ( 1 + A ) ~ +  ( l + I I ) ( g ] y  (A23) 

O ' 2 x  (1 + K 1 ) k . e  

2txlqoaltkm 
K1)klte [(1 + A ) ~  - (1 + l-I) ~ ]y  (A24) (1 + 

2txlq°a"km [3(1 + A) ~ - (1 + II) (glx. 
(1 + K1)kl,e 

(125) 

In (65)-(70), Ixl _~ tea, lyl -~ e¢2, and 

6(m) + m41](5 ( ~  - ) (A26) e t=  

(g = [2m(1 + A + 1)) - m2A] 3(m) 

- ( 1 +  2f~m)m26(1)  (A27) 

e = 1 - 2 f lm(m 2 - 1) - m4IIA (A28) 

if) = 1 - f~ + m2(f~ - HA) (A29) 
l + k  

km= l + k - m ( 1 - k )  (A30) 

2a l + k  
3(m) 1 + k 1 + m 1 - - - -~ '  (A31) 
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Dynamic Buckling of Laminated 
Anisotropic Spherical Caps 
The dynamic axisymmetric behavior of clamped laminated composite spherical caps 
subjected to suddenly applied loads is investigated using an eight-noded quadrilateral 
doubly curved shear flexible shell element based on the field-consistency approach. 
Geometric nonlinearity is considered using yon Karman's strain-displacement relations. 
The solution is obtained using the Wilson- 0 numerical integration scheme. The pressure 
corresponding to a sudden jump in the maximum average deflection in the time history 
of the shell structure is taken as dynamic buckling pressure. A detailed parametric study 
is carried out to bring out the effects of shell geometries and material properties, number 
of layers, lamination schemes, and type of loading on a dynamic buckling load. 

I Introduction 
In general, a structure designed for static loading condi- 

tion may fail in a dynamic situation for the same loads. 
Hence, the study of the dynamic response of structures is 
important in assessing the structural failure and has consti- 
tuted a major field of research in structural mechanics. 
Specifically, such studies in spherical shell structures have 
wide applications in the area of aerospace and mechanical 
engineering. 

The study of axisymmetric dynamic snap-through buckling 
of pressure-loaded isotropic shallow spherical shells has re- 
ceived considerable attention over the past few decades. 
Important contributions are cited here. The analysis of ax- 
isymmetric dynamic instability of isotropic shallow spherical 
shells has been carried out by Budiansky and Roth (1962), 
Simitses (1967), Haung (1969), Stephens and Fulton (1969), 
Ball and Burt (1973), Stricklin and Martinez (1969), and 
Saigal et al. (1987) . Budianskky and Roth (1962) employed 
the Galerkin method and the Ritz-Galerkin procedure was 
adopted .by Simitses (1967). A finite difference scheme was 
incorporated in the method of solution by Haung (1969), Ball 
and Burt (1973), Stephens and Fulton (1969), and Kao and 
Perrone (1978) while the more powerful finite element 
method was employed by Stricklin and Martinez (1969) and 
Saigal et al. (1987). Experimental results have been reported 
by Lock et al. (1968). 

Composite materials are playing an increasing role nowa- 
days in aerospace and other engineering applications where 
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high strength-to-weight ratios are desired. Hence, there is a 
strong need for predicting the structural behavior of compo- 
nents constructed of such materials. However, due to the 
complexity of the analysis due to the inherent directional 
properties of the materials, the study of dynamic buckling 
behavior of composite spherical shells has been rather lim- 
ited (Alwar and Shekhar Reddy, 1979; Dumir et al., 1984; 
Chao and Lin, 1990). The above references in the field of 
composites considered the dynamic buckling of single-layered 
orthotropic shallow spherical shells. Aiwar and Shekhar 
Reddy (1979) solved the problem by making use of the 
Chebyshev series. Collocation method was utilized by Dumir 
et al. (1984). In all these investigations, analysis has been 
carried out using the classical shell theory based on the 
Love-Kirchhoff hypotheses. 

Due to the low transverse shear moduli of modern ad- 
vanced composite materials relative to their in-plane tensile 
moduli, transverse shear deformation effects may be signifi- 
cant, even in thin composite structures compared to homoge- 
neous isotropic materials. Hence, it is more appropriate to 
analyze the dynamic response of composite structures by 
including shear deformation and rotary inertia. To the au- 
thors' knowledge, there seems to be no work available in the 
literature on the dynamic snap-through buckling of single- 
layered and laminated anisotropic shallow spherical shells. 
An attempt is made here to study the axisymmetric dynamic 
buckling behavior of laminated orthotropic/anisotropic shal- 
low spherical shells using a shear-flexible theory and the 
finite element method. 

Here, an eight-noded shear flexible quadrilateral doubly 
curved shell element, based on the field-consistency principle 
(Somashekar and Prathap, 1987; Prathap et al., 1988), is 
extended for the first time to analyze the dynamic buckling of 
laminated anisotropic shallow spherical shells under exter- 
nally applied pressure loads. Field consistency is a systematic 
approach to eliminate spurious constraints causing shear and 
membrane locking when the shear-flexible theory is applied 
to thin shells. The formulation described here is general and 
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can be applied to various geometries and loadings, and can 
take care of asymmetric deformations also. Geometric non- 
linearity is considered using von Karman's strain-displace- 
ment relations. In addition, the formulation includes in-plane 
and rotary inertia effects. The nonlinear governing equations 
are solved using the Wilson-0 numerical integration tech- 
nique coupled with the modified Newton-Raphson iteration 
scheme. The pressure corresponding to a sudden jump in 
the maximum average deflection in the time history of the 
shell structure is taken as dynamic buckling pressure 
(Budiansky and Roth, 1962; Simitses, 1989). Numerical re- 
sults are presented for isotropic, orthotropic, and laminated 
anisotropic shallow spherical shells and are compared with 
results wherever available. Different loading conditions such 
as a step pressure load of finite and infinite durations, and a 
right angle triangular pulse of various time durations are 
considered. A detailed investigation is carried out to bring 
out the influence of the number of layers, ply-angle, and 
geometric parameters on the dynamic buckling load. 

2 Formulation 

A doubly curved laminated composite shell is considered 
with the coordinates x, y along the in-plane directions and z 
along the radial/thickness direction• Using Mindlin formula- 
tion, the displacements u, v, w at a point (x, y, z) from the 
median surface are expressed as functions of midplane dis- 
placements u0, v0, and w, and independent rotations 0 x and 
Oy of the normal in the xz and yz-planes, respectively, as 

u(x,y,z,t) =Uo(X,y,t ) + zOx(x,y,t ) 
v(x,y,z, t)  =Vo(x,y,t ) + zOy(x,y,t) 
w(x,y,z,t) =w(x,y, t) .  (1) 

von Karman's assumptions for moderately large deforma- 
tion analysis allow Green's strains to be written in terms of 
midplane deformation of Eq. (1) for a shell as 

{e) = {E L) + {E NL} (2) 

where 

{EL' = {~PO) + [Zebland{ENL}= { es J 0 I. (3a) 

The midplane strains {eft}, bending strain {eb}, and shear 
strains {e,} in Eq. (3a) are written by 

fuo,  + } 
{Ep 0} = ~UO, y + ( w / R y )  (3b) 

[Uo.y + Vo.x + (2w/Rxy) 

{'fib} = -  C Y  ( 3 c )  

Ox y @ Oy,x -- (blO, y/Rx)  -- (VO, x/Ry ) 

{Ox-W,x+(uo/Rx)+(vo/Rxy) } (3d ) 
{Es} = Oy W,y @ (Uo/Ry) + (uo/Rxy) 

where Rx, R , and R x, are the usual radii of curvature .Y  Y . 
The nonlinear components of m-plane strains are 

I 
{EpNL}= { ( 1 / 2 )  W,~?. (3e) 

w,xw,y j 

If {N} represents the membrane stress resultants (Nxx, 
Nyy, N~y) and {M} the bending stress resultants (Mxx, Myy, 
M~y), one can relate these to membrane strains {ep} (i.e., 

{E °} + {E,NL}) and bending strains {%} through the constitu- , P  r 
tlve relations as 

{U} = [Aij]{ep} + [Bq]{Eo}and 

{M} = [Bij]{Ep} -b [Dij]{Eb} (4) 

where [Aq], [Dq] and [Bij] (i,j = 1,2,3) are extensional, 
bending and bending-extensional coupling stiffness coeffi- 
cients of the composite laminate. Similarly, the transverse 
shear force {Q} representing the quantities {Qxz, Qyz} are 
related to the transverse shear strains{E,} through the consti- 
tutive relations as 

{o) = [Ei ] (e,} ( 5 )  

where [Ei~] (i, j = 4, 5) are the transverse shear stiffness • . J 
coefficients of the laminate. 

For a composite laminate of thickness h, consisting of N 
layers with stacking angles q~i(i = 1, N )  and layers thickness 
h i ( i  = 1, N ) ,  the necessary expressions to compute the 
stiffness coefficients, available in the literature (Jones, 1975) 
are used here. The potential energy functional U is given by 

1 
fA[{ep)T[Aql{ep} + {ep}T[nql{e,,) = 

+{eb}T[Bq] {Ep} + {%}r[Dq]  {'fib} + {es}W[Eq] {es}]dA 

- fA q wdA (6) 

where 6 and q are the vectors of degrees-of-freedom and 
applied loads, respectively. 

Following the procedure given in the work of Rajasekaran 
et al. (1973), the potential energy functional is rewritten as 

U(6) = {8} r [ (1 /2 ) [XL]  + (1 /6) [N1]  + (1/12)[N2]]{6 } 
+{6}r[(1/2)[U3]{6} + {6}r{F}] (7) 

where [K L] is a linear stiffness matrix, and IN1], IN 2] are 
nonlinear stiffness matrices. [N3] and iF} are the shear 
stiffness matrix and load vector, respectively. 

The kinetic energy of the shell is given by 

Vo'2 w2) I(O  + T ( 8 )  = (1 /2 )  + + + 02)]dA (s) 

f0 h f0 h where p = P dz, I = z2 P dz and p is mass density. 

Substituting Eqs. (7) and (8) in Lagrange's equation of 
motion, one obtains the governing equations for the forced 
flexural vibration of the shell as 

[M]{6} + [[KL] + (1 /2) [N1]  + (1 /3) [N2]  

+[N3]]{6  } = {F} (9) 
where [M] is the mass matrix. 

Equations (9) is solved using the implicit method, as men- 
tioned by Subbaraj and Dokainish (1989). In this method, 
equilibrium conditions are considered at the same time step 
for which solution is sought. If the solution is known at time t 
and one wishes to obtain the displacements, etc., at time 
t + At, then equilibrium equations at time t + At are given 
a s  

[m]{~}t+At q- [[X(6)]{6}],+at = {r},+a t (10) 

where {6}t+ at and {6}t + at are the vectors of nodal displace- 
ments and accelerations at time t + At, respectively. 
[[N(6)]{6}]t+ at is the internal force vector at time t + At 
and is given as 

[[n(6)]{6}]t+at = {[[KL] + (1 /2) [N1]  + (1 /3) [N2]  

( 1 1 )  

In developing equations for the implicit integration, the 
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Geometry of a laminated curved shell element 

internal force vector [[N(6)]{3}] at time t + At are written in 
terms of internal forces at time t using tangent stiffness 
approach as 

[ [ N ( 6 ) ] { 6 } ] , + A , =  [ [ N ( 6 ) 1 { 6 } ] , +  [KT(B)] ,{A6} (12) 

where [Kr(6)]  = [[KL] + [N1] + [N2] + [N3]] is the tangen- 
tial stiffness matrix and {A6} = {6}t+ at - {3}t. 

Substituting Eq. (12) into Eq. (10), one obtains the govern- 
ing equations at t + At as 

[M]{6},+a,  + [ K T ( 6 ) ] , { A 6 }  = {F}t+z, - [ [ N ( 6 ) ] { 6 } ] , .  

(13) 
To improve the solution accuracy and to avoid the numeri- 

cal instabilities, it is necessary to employ iteration within 
each time-step, thus maintaining equilibrium. 

The nonlinear equations obtained by the above procedure 
are solved by the Wilson-0 numerical integration method. 
Equilibrium is achieved for each time-step through the modi- 
fied Newton-Raphson iteration scheme until the convergence 
criteria given by Bergan and Clough (1972) are satisfied 
within the specific tolerance limit of less than one percent. 

3 Dynamic Buckling Criteria 
Criteria for static buckling of axisymmetric shallow spheri- 

cal shell are well defined, whereas it is not so far the dynamic 
case. The dynamic buckling criterion suggested by Budiansky 
and Roth (1962) is generally accepted because the results 
obtained by various investigators by different numerical 
methods using this criterion are in reasonable agreement 
with each other. This criterion is based on the plot of the 
peak nondimensional average displacement in the time his- 
tory of the structure with respect to the amplitude of the 
load. The average displacement A is defined as the ratio of 
volume generated by the shell deformation and the constant 
volume under the spherical cap. 

The load corresponding to a sudden jump in peak average 
displacement is taken as dynamic snap-through load. This 
buckling load is checked with another criterion where, in- 
stead of maximum average deflection, maximum deflection 
occurring at the apex is used. 

4 Element Description 
The laminated shell element used here is a C O continuous 

shear flexible element and has five nodal degrees-of-free- 
dom, uo, v0, w, 0~, and 0y at eight nodes in a QUAD-8 
element, as shown in Fig. 

If the interpolation functions for QUAD-8 are used di- 
rectly to interpolate the five field variables u 0 to Oy in 
deriving the shear strains and membrane strains, the element 
will lock and show oscillations in the shear and membrane 
stresses. Field consistency requires that the transverse shear 
strains and membrane strains must be interpolated in a 
consistent manner. Thus u o, v o, 0 x, and Oy terms in the 
expressions for {E~} given in Eq. (3d) have to be consistent 

with field functions w,~ and w,. as shown in the works of 
Somashekar and Prathap (1987) ~ and Prathap et al. (1988). 
Similarly, the w term in the expressions of {E~} given in Eqs. 
(3b) has to be consistent with the field functions (u 0 ~, v 0 y) 
and (u0 y, v0 ~). This is achieved by using field-redistributed 
substitute shape functions to interpolate those specific terms 
which must be consistent as described by Prathap et al. 
(1988) and Somashekar and Prathap (1987). 

5 Results and Discussion 
An eight-noded quadrilateral isoparamctric field-con- 

sistent doubly curved shell element is employed. Since the 
element is derived from the field-consistency approach, exact 
integration is used to evaluate all the strain energy terms. 
The shear correction factor which is required in a first-order 
theory to account for the variation of transverse shear stresses 
through the thickness, is taken as 5/6.  The initial conditions 
for obtaining the nonlinear dynamic response are assumed as 
zero values for the displacements, velocities, and accelera- 
tions. The value of 0 in Wilson-0 method is assumed as 1.4 
which corresponds to an unconditionally stable scheme in 
linear analysis. 

Since no estimate on the time-step for the nonlinear 
analysis is available in the literature, the critical time-step of 
a conditionally stable finite difference schemes (Leech, 1965; 
Tsui and tong, 1971) is used as a guide and a convergence 
study is conducted to select a time-step which yields a stable 
and accurate solution. The critical steps given in Leech 
(1965) and Tsui and Tong (1971) for thin and moderately 
thick plates, respectively, with suitable modifications for the 
case of orthotropy are taken as 

(ph/1  
A t _ < 0 . 2 5  D H ]  Ax 

At [ { p ( 1  = + (1 - 1"12)( 2/12) 

×(1  + 1 . 5 ( A x / h ) 2 ) } ]  1/2Ax (14) 

where Ax, Et are the minimum distance between the elment 
node points and Young's modulus along the longitudinal 
direction of the fiber. 1"12 is the major Poisson's ratio and 
D11 is defined as E l h 3 / 1 2  (1 - 1"12 / ' 21  )" 

Due to coupling effects in composite plates/shells, one 
has to be careful in assuming biaxial symmetry even when the 
geometry and loading are symmetric about the axes. Hence, 
the results of quarter plate/shell idealization have been 
verified here with full plate/shell idealization initially before 
proceeding to detailed numerical studies. 

Laminated cross-ply and angle-ply spherical shells clamped 
all along the edges are considered for the numerical analysis. 
The details of the boundary conditions are the following: 

u o = v o = w = 0 x = Oy = 0 along the clamped boundary. 
Cross-ply: 

v 0 =  0 ~ = 0 o n  y = 0 ,  and u 0 =  0 ~ = 0 o n  x = 0 ( l i n e o f  
symmetry). 
Angle-ply: 

Uo= 0 ~ = 0 o n  y = 0 a n d  V o =  Ox=O,  on x = 0 ( l i n e o f  
symmetry). (15) 

The material properties are assumed as the 
Orthotropic case: 

( a )  E 1 / E  2 = 2, G12/Ez  = G13/E2 = 0.5, 

Gz3/E2 = 0.2, 1"12 = 0.3, 

(b)  E l /E  2 = 2 0 ,  Glz/E2 = Gi3/E 2 = 0 . 5 ,  

G23/E 2 = 0 . 2 ,  1'12 = 0 . 3 ,  

and 
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Fig. 2 Dynamic response of a spherical shell 

Table 1 Dynamic buckling pressure (P) for various value8 of 
Isotroplc spherical cap parameter (A) 

A 4 5 5 7 . 5  lO 

P r e s e n t  0 . 4 5 5  0 . 4 6  0 . 5 0 5  0 . 4 5  0 . 4 9 5  

Huang e t a l .  ( 1 9 6 9 )  0 . 4 5 0  0 . 4 9  - - -  0 . 5 0  0 . 4 2 0  

S t e p h e n s  etal. ( 1 9 6 9 )  - - -  0 . 4 5  0 . 6 2 0  0 . 4 4  0 . 3 7 0  

Strlcklln e t a l .  ( 1 9 5 9 )  0 . 4 4 0  0 . 4 8  0 . 6 5 0  0 . 5 0  0 . 4 3 0  

Be . l l  e t a l .  ( 1 9 7 3 )  - - -  0 . 4 8  0 . 5 1 0  0 . 5 4  O. 500 

Kao et al. (1980) --- 0.46 --- 0,44 0.490 

A l w a r  et a l .  ( 1 9 7 9 )  0 . 4 4 0  0 . 4 8  0 . 5 8 0  - - -  0 . 5 3 0  

L a m i n a t e d  case:  

E1/E 2 = 20, G12/E 2 = G13/E2 = 0.5, 

G23/E2 = 0.2, 1'12 = 0.3, (16) 

where E~ and E 2 are Young's moduli along the directions 
parallel and perpendicular, respectively, to the fibers. Gij are 
the relevant shear moduli. 

All the computations are carried out using the Cyber 
180/840A processor with double precision arithmetic. 

To determine the number of elements required for the 
evaluation of response history, dynamic analysis is carried out 
by varying the number of elements for the following geome- 
try and loading: 
R = 56.57cm, a = 25.4 cm, h = 1.04 cm, E = 0.739 

× 106 kgf /cm 2, v = 0.3, q = 7.042kgf/cm 2 (17) 

where a, q are the base radius of the spherical cap and the 
externally applied pressure load. Results are shown in Fig. 2 
and on this basis, the five-element idealization is chosen for 
further analysis. 

Results of nondimensional dynamic pressure, P~, are pre- 
sented for isotropic, orthotropic, cross-ply, and angle-ply 
laminates for different values of the geometric parameter ~. 
P~ and ~ are given by 

Pc~ = (81-)[3( 1 _ 1~12 1~21)]1/2 ~ ( )2 4Eq~ 4 

//41 H ) 1/2" 
= 2 1 3 ( 1 -  v12v21)] ~ -  (17) 

Here H is the central shell rise. E is the reference stiffness 
of the material under consideration. It is Young's modulus 
for an isotropic material and [(3/8)E 1 + (5 /8)E  2] for or- 
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5 h # l l  g e o m e t r y  p o t o m e t e r  A 

Fig. 3 Nondlmenslonal applied load versus shell geometry param- 
eter for an orthotroplc spherical cap 

thotropic materials, as given by Tsai and Pagano (1968). For 
a chosen shell parameter and lamination scheme, the dy- 
namic buckling study is carried out for step loading/right 
triangular pulse with different time durations. The length of 

response calculation time ~- = t carried out in com- 

puter runs is varied between 40 to 60 with the criterion that 
m the neighborhood of the buckling load, z is large enough 
to allow deflection-time curves to fully develop. The time-step 
selected, based on the convergence study, is ~ - =  0.1. It is 
mentioned in the experimental works of Lock et al. (1968) 
that axisymmetric buckling occurs shortly after the applica- 
tion of load. The value selected for ~- and 8T is of the same 
order as that of Ball and Burt (1973), Kao and Perrone 
(1978), and Chao and Lin (1990). 

The formulation developed here is validated in Table 1 for 
isotropic material for different values of shell parameters by 
comparing with the available results (Huang, 1969; Stephens 
and Fulton, 1969; Stricklin and Martinez, 1969; Ball and Burt 
1973; Kao and Perrone, 1978). 

In Fig. 3, for two different orthotropic material properties, 
the variations of dynamic buckling load with geometric pa- 
rameter are plotted for a single layered shallow spherical 
shell subjected to uniform pressure of infinite duration and 
these are compared with the results based on classical shell 
theory (Chao and Lin, 1990). The figure shows that the 
present shear flexible theory predicts a higher buckling pres- 
sure compared to the classical theory. This behavior of a 
spherical shell is in contrast with that of a flat plate or 
cylindrical shell panel and has been reported earlier in con- 
nection with studies on bending (Alwar and Narasimhan, 
1990, 1991), vibrations (Tene and Sheinman, 1978), and 
static buckling (Chao et al., 1988). It can further be noted 
from Fig. 3 that the discrepancy between the classical and 
shear deformation theories increases as the degree of or- 
thotropy increases. That is, for the low shear stiffnesses 
(G12/E1), the behavior of the spherical cap approaches mem- 
brane response. Consequently, this leads to decrease in the 
lateral deflection w and in turn increases the load-carrying 
capacity, 

The dynamic response at different load levels for h = 6 is 
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shown in Fig. 4. From these results, the plot between the 
average displacement and applied pressure load is drawn in 
Fig. 5 for A = 6. It can be seen that there is a sudden jump in 
the value of average displacement when the external pressure 
reaches the value P = 0.378 and hence this value corre- 
sponds to the dynamic buckling load, Per. 

A parametric study of a laminated anisotropic shallow 
spherical cap is now carried out for the following combina- 
tion of ply-angles and number of layers: 

Cross-ply: (0 deg/90 deg), (0 deg/90 deg/0 deg), (0 deg/90 
deg/0  deg/90 deg)s 

Angle-ply: (45 d e g / -  45 deg), (45 d e g / -  45 deg/45 deg), 
(45 d e g / -  45 deg/45 d e g / -  45 deg)s.For (0 deg/90 deg) 
and (45 d e g / -  45 deg) laminates B i,  v ~ 0 and the existence 
o f  B U is equivalent to having an imperfection. For the other 
laminates considered above, B i j  = O. 

The critical nondimensional buckling pressure is shown in 
Fig. 6 for the cross-ply laminates for different values 3.. For 
3. = 6, the dynamic snap-through behavior can be observed 
to occur at Per -- 0.265 from the plot of the variation of 
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f 

J I I I 
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Non d i m e n s i o n o [  a p p l i e d  toad  P 

Fig. 7 Average maximum displacement versus nondimensional 
app l i ed  load fo r  two-layered spherical cap (0 deg /90  deg,  A = 6) 

maximum average displacement with the applied load as 
given in Fig. 7. Similar results for angle-ply laminates are 
plotted in Fig. 8. For A < 4.5, snap buckling does not occur 
for a three and eight-layered shell. For cross-ply and angle-ply 
laminates, it is noticed from Figs. 6 and 8 that the dynamic 
buckling pressure increases with the increase in the number 
of layers. However, this increase is considerable for the 
cross-ply shell compared to the angle-ply shell. It can be 
noted that the coupling rigidities, B u, in general reduce the 
stiffness of the laminated shells and these coupling effects 
get weakened when the number of layers are increased. 

The influence of the different pulses on dynamic buckling 
characteristics is brought out in Fig. 9 for the three-layered 
(cross-ply and angle-ply) shell with A = 6. It can be seen that 
the buckling load decreases as pulse duration increases. It 
can be noticed that the dynamic buckling load increases 
rapidly as ~- decreases, and is in fact infinitely large for an 
ideal impulse (T o = 0). As % increases, the buckling load 
approaches asymptotically the value corresponding to a pulse 
of infinite duration. Further, the triangular pulse shown in 
the subset of Fig. 9 results always in a higher buckling load 
compared to the rectangular pulses, as can be expected. 
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6 Conclusions 
Dynamic buckling analysis of clamped spherical caps, made 

up of isotropic, orthotropic, and laminated anisotropic mate- 
rials, subjected to externally applied loading, has been inves- 
tigated here. An eight-noded quadrilateral doubly curved 
shear flexible shell element based on the field-consistency 
principle has been used for the first time for this purpose. 
Numerical results obtained here for an isotropic material are 
found to be fairly in agreement with previous findings. De- 
tailed parametric studies reveal the following observations: 

(i) As the degree of orthotropy increases, there is a signifi- 
cant difference in the value of the buckling load as predicted 
by the classical and shear deformation theories. 

(ii) Different coupling effects that arise in anisotropic 
laminates reduce the buckling load. This reduction is more 
pronounced for a two-layered shell. 

(iii) Increase in number of layers, either cross-ply or an- 
gle-ply, results in the increase of buckling load. 

(iv) In all the cases considered here, dynamic snap-through 
buckling does not occur for A less than 4, when subjected to a 
pulse of infinite duration. 

(v) With the increase in the number of layers from three 
to eight, there is a considerable increase in the critical 
dynamic pressure. This effect is more for the cross-ply lami- 
nate compared to the angle-ply laminate. 

(vi) The dynamic critical peak load for a triangular pulse 
considered here is more than that for a rectangular pulse. 
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Finite Element Analysis of 
Repeated Indentation of an Elastic- 
Plastic Layered Medium by a Rigid 
Sphere, Part I: Surface Results 
A comprehensive elastic-plasticfinite element analysis is presented for  the axisym- 
metric problem o f  a frictionless rigid sphere indenting a half-space with a harder 
and stiffer layer. The indenter is modeled by contact elements, thereby avoiding a 
priori assumptions for  the pressure profile. Two layer thicknesses are examined, 
with layer elastic modulus and yieM stress both two and four times greater than 
those o f  the substrate. Perfectly plastic and isotropic strain-hardening behavior o f  
the layer and substrate media are investigated. A t  least three complete load-unload 
cycles are applied to a peak load o f  300 times the load necessary to initiate yielding 
in a half-space o f  the substrate material. The effect o f  hardening properties on the 
loaded and residual stresses is presented and the consequences for  crack initiation 
at the surface are discussed. Results for  the contact pressure and surface stresses 
and deformations are presented, and the influence o f  residual displacements and 
load cycles on the contact pressure and the loaded and resMual surface stresses is 
investigated. 

1 Introduction 
Improvements in the fatigue and tribological properties of 

contacting surfaces are commonly achieved through the ap- 
plication of hard and tough layers exhibiting low friction coef- 
ficients. Applications of wear-resistant layers range from 
cutting tools coated with 1 to 10-/zm thick ceramic layers to 
thin-film magnetic rigid disks coated with only 20 to 30 nm 
of sputtered carbon. In addition, softer surface layers are often 
applied for reasons of performance, as in electrical contact 
applications where gold is often used as a surface layer to 
improve electrical conductivity and decrease noise. In recent 
years, analyses of both elastic and elastic-plastic indentations 
of layered media have been presented by several investigators. 
The formulation for the elastic indentation of a single layer 
on a half-space under axisymmetric surface loading has been 
given by Burmister (1945). Chen (1971) extended this work to 
axisymmetric and nonaxisymmetric surface loadings applied 
to single- and double-layered elastic media. Gupta and Walowit 
(1974) used a Green's function approach to develop a plane- 
strain elastic theory for arbitrary surface loadings applied to 
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a single layer on a half-space. More recently, King and O'Sul- 
livan (1987) presented plane-strain elastic solutions for a rigid 
cylinder sliding over a layered medium, and O'Sullivan and 
King (1988) extended this analysis to study the three-dimen- 
sional elastic problem of a sphere sliding on a single-layered 
half-space. Komvopoulos (1988) used the finite element tech- 
nique to analyze the plane-strain problem of an elastic half- 
space with a harder elastic layer indented by a rigid cylinder 
and found that the maximum contact pressure increased con- 
siderably with the layer thickness and only marginally with 
friction at the contact interface. 

The elastic-plastic indentation of a layered medium having 
a substrate stiffer than the layer has been analyzed by Kennedy 
and Ling (1974) using the finite element method. It was found 
that plastic deformation had a large effect on the contact 
pressure, and that the surface displacements, particularly the 
pile-up of material at the contact edge, depended significantly 
on the mechanical properties of the layer and substrate and 
the frictional characteristics at the layer/substrate interface. 
Bhattacharya and Nix (1988) used the finite element method 
to study the axisymmetric indentation of  an elastic-perfectly 
plastic layered medium by a rigid cone. Load versus indentation 
depth curves and hardness calculations were given for both 
relatively hard and soft layers and were used to derive rela- 
tionships for the effective hardness in terms of the layer thick- 
ness, the elastic and plastic properties of the layer and substrate, 
and the indentation depth. Laursen and Simo (1992) performed 
a similar study and presented results for load versus indentation 
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depth, surface displacement profiles, and hardness values for 
laminated aluminum/silicon media exhibiting linear isotropic 
strain hardening. 

Komvopoulos (1989) used the finite element method to in- 
vestigate the plane-strain problem of a rigid cylinder indenting 
an elastic-plastic layered medium with a layer harder and stiffer 
than the substrate. Significant flattening of the contact pressure 
profile was found, especially with increasing plastic defor- 
mation, and the maximum pressure was found to move out- 
ward toward the contact edge. Tian and Saka (1991) investigated 
the plane-strain elastic-plastic indentation of a multilayered 
half-space consisting of a gold top layer, a nickel interlayer, 
and a copper substrate, all exhibiting linear isotropic strain 
hardening. Elastic indentations produced contact pressures 
bounded by parabolic and elliptical distributions, while elastic- 
plastic indentations produced relatively uniform pressure dis- 
tributions with a slightly higher pressure near the contact edge 
for sufficiently deep indentations or a sufficiently thin inter- 
layer. Recently, Montmitonnet et al. (1993) performed a finite 
element analysis of elastic-plastic indentation of a steel sub- 
strate and a thin chromium layer by a ruby sphere. Results 
were given for stresses on the surface and the axis of symmetry 
of the layered medium. High tensile stresses were observed 
under both loaded and residual conditions, with the highest 
stresses occurring at the surface of the medium. Kral et al. 
(1993) studied the repeated indentation of a half-space by a 
rigid sphere, performing up to four complete load and unload 
cycles on half-spaces possessing different elastic and plastic 
properties. It was found that the surface stresses depended 
primarily on the strain-hardening parameters and only sec- 
ondarily on the elastic properties, and that reyielding occurred 
upon unloading in a small surface region near the edge of the 
contact at maximum load. 

Although the aforementioned studies have yielded valuable 
insight into contact mechanics of layered media, detailed in- 
formation about the significance of the layer thickness, elastic- 
plastic properties of the layer and substrate materials, and 
loading cycles on the surface stresses and deformations of 
repeatedly indented layered media is relatively sparse. The 
objective of the present investigation, therefore, is to provide 
a comprehensive finite element analysis of the surface stress 
and deformation fields resulting from the repeated frictionless 
indentation of an elastic-plastic layered medium by a rigid 
sphere. The sphere was modeled by contact elements, and loads 
up to 300 times the initial yield load of a half-space of the 
substrate material were applied. To examine the effects of the 
layer thickness and the elastic and plastic properties on the 
contact pressure and surface stresses and deformations, two 
layer thicknesses and layers two and four times stiffer and 
harder than the substrate were considered. The significance of 
the plastic flow behavior was studied by assuming elastic-per- 
fectly plastic and isotropic strain-hardening behavior for both 
the layer and substrate media. Results revealing the effects of 
the layer thickness and material properties of the layer and 
substrate on the contact pressure distribution, surface dis- 
placements, and the surface stress field will be presented for 
repeated elastic-plastic indentations. In addition, the signifi- 
cance of material properties on the residual displacements and 
surface stresses will be examined in light of the finite element 
solutions. In a subsequent paper (Kral et al., 1995), the effect 
of layer thickness and material properties on the subsurface 
stresses and plastic deformation will be examined. 

2 Modeling Procedures 

2.1 Finite Element Mesh. To investigate the deformation 
arising in microhardness indentation testing and to enhance 
the convergence, a smooth, rigid spherical indenter of radius, 
R, equal to 1500 nm was modeled. Since the indentation depths 

ay, contact radius at initial indentation 
yi~d for substrate material direction 

~ r  

.,~ r/R=0.64 

Fig. 1 

~ z/R=0.64 
z 

Finite element discretlzation of the layered medium 

and contact radii considered were relatively small, the solutions 
are also representative of an elastic-plastic layered medium 
indented by a blunt indenter. The analysis was performed with 
the multipurpose finite element code ABAQUS. The sphere 
was modeled by a total of 44 three-node rigid-surface contact 
(interface) elements. Two nodes of each contact element cor- 
responded to surface nodes of the layered medium from r / R  
= 0.0 to r / R  = 0.04, which was sufficient for modeling the 
anticipated contact radius. The third node was a common 
master node assigned to the indenter, which was constrained 
against rotation and radial displacement. Indentation was 
modeled by incrementally applying normal loads to the master 
node. The penetration of the indenter into the layered medium 
and the relative displacement at the interface were determined 
by the contact elements. This information was used in surface 
constitutive models (contact and surface friction) in the pro- 
gram to determine the surface traction. The traction was then 
decomposed into normal and tangential components based on 
the outward normal vector of the rigid surface. In view of the 
marginal effect of friction in normal contact (Komvopoulos, 
1988), only frictionless indentations were considered. Hard 
contact was modeled, in which normal traction was applied 
only when the clearance between the surface nodes of the 
layered medium and the indenter surface reached zero. 

The finite element mesh, shown in Fig. 1, consisted of 2721 
four-node quadrilateral axisymmetric elements comprising 2848 
nodes. A linear 2 × 2 integration scheme was used. The r- and 
z-dimensions of the mesh were set equal to 960 nm, i.e., r / R  
= z / R  = 0.64. The vertical boundaries of the mesh at r / R  
= 0.0 and 0.64 were constrained against displacement in the 
r-direction, and the bottom boundary, z / R  = 0.64, against 
displacement in the z-direction. The mesh is appropriate for 
modeling up to six layers of 5-nm thickness each. The region 
of the mesh bounded by r / R  = 0.033 are z / R  = 0.033 was 
refined, as shown in the inset of Fig. 1, to account for the 
high stress gradients at the edge of the contact region. Mesh 
refinement was accomplished by using trapezoidal elements 
near the contact region and by imposing linear constraints 
farther away. The smallest elements were 1.25 nm square. 
Favorable comparisons between finite element and analytical 
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results for elastic indentations, in conjunction with results for 
repeated elastic-plastic indentations of a homogeneous half- 
space based on the present mesh configuration, have been 
presented in a previous publication (Kral et al., 1993). 

2.2 Material Properties and Plasticity Models. According 
to the von Mises yield criterion adopted in this study, the yield 
condition is 

f =  J z - k 2 = 0 ,  

where k is a material constant and J2 is the second invariant 
of the deviatoric stress tensor, given by 

J2=~ SijSu, where Su=oi j -  ~ 6oo,k. 

In terms of the uniaxial yield stress, the yield criterion reduces 
to 

where aM is the yon Mises equivalent stress and a ° is the yield 
stress. The material model used for plastic deformation was 
based on the flow rule 

d  =aXsi , 
where de~ are the components of plastic strain increment and 
dX is a function of the flow stress and the plastic strain rate. 
The usual assumption of negligible plastic volume change was 
maintained. To account for boundary nonlinearities arising 
from the use of contact elements, an updated Lagrangian for- 
mulation was used, 

Since isotropic strain hardening was assumed for both the 
layer and substrate materials, the existence of the multiplicative 
decomposition of the deformation gradient into elastic and 
plastic parts that is used in the finite element code is ensured 
(Kral et al., 1993). Strain hardening was represented by the 
following relationship: 

a ° K 
Oy try eeq, (2) 

where ay is the initial yield stress of the substrate material, K 
is the strength coefficient, n is the strain-hardening exponent, 
and Eeq is the equivalent plastic strain, defined as 

where S is the strain path. The hardening relation and flow 
rule apply only to yielding material for which aM = a °. When 
aM< a °, the usual elastic constitutive equations apply. 

Elastic moduli, stresses, and pressures were normalized by 
the initial yield stress of the substrate, ay. Loads and distances 
were normalized respectively by the load, Py, and the contact 
radius, ay, corresponding to the initial yield condition of a 
homogeneous substrate with an elastic modulus equal to 
684.6ay. Results are presented in terms of the parameter/3,  
which is the ratio of both the layer-to-substrate normalized 
elastic moduli and the layer-to-substrate initial yield stresses. 
The values of ~ assumed in the analysis were equal to 2 and 
4, representing a layer two and four times, respectively, stiffer 
and harder than the substrate. The layer thickness is repre- 
sented by the nondimensional parameter ( ,  which is the ratio 
of the layer thickness to the sphere radius. Two different layer 
thicknesses, 10 nm (~ = 0.0067) and 30 n m ( (  = 0.02), were 
modeled, as shown in Fig. 1. The elastic and plastic material 
properties of the layer and the substrate are listed in Table 1. 
The values of K were calculated from the hardening equation 
at the initial yield stress, i.e., a/ay = 1.0 for the substrate 
m a t e r i a l ,  O/Gy = 2.0 for the layer with 13 = 2, and a/Cry = 
4.0 for the layer with/3 = 4. The same strain-hardening ex- 
ponent was used in both the layer and substrate media. 

Table 1 Elastic and plastic material properties 

~/Oy v 13 K/% n 

1.00 0.0 
Substrate 684.6 0.3 1 7.09 0.3 

26.17 0.5 
2.00 0.0 

Layer 1 1369.2 0.3 2 14.18 0.3 
52.33 0,5 

4.00 0.0 
Layer 2 2738.4 0.3 4 28.36 0.3 

104.66 0.5 

2.3 Nondimensionai Indentation Parameter. To o b t a i n  
generalized solutions for the contact pressure and stresses as 
a function of the layer and substrate properties, a dimensionless 
strain parameter which depends on the indentation depth or 
contact radius was used. This strain parameter, A, is defined 
a s  

A = t l _ v2)a f R(o~/-Oy)eff' (4) 

where E and v are the elastic modulus and Poisson's ratio, 
respectively, R is the sphere radius, a is the contact radius, 
and ay is the initial tensile yield stress of the substrate. A similar 
strain parameter was used in the previous study (Kral et al., 
1993), in which o~ was a representative flow stress correspond- 
ing to a representative strain ER = 0.2a/R, as suggested by 
Johnson (1985) for indentations of a homogeneous half-space. 
For indentation of a layered half-space, however, this param- 
eter must be expressed in terms of the effective stiffness and 
effective representative flow stress to account for the properties 
of  both the layer and the substrate, the indentation depth or 
contact radius, and the layer thickness. These effective values 
are indicated in Eq. (4) above. 

Relations for the elastic compliance of a layered medium as 
a function of the projected area of contact underneath the 
indenter have been derived by King (1987) for flat-ended 
punches of various cross-sections. Based on this analysis, sim- 
plified for a rigid indenter, the effective stiffness in Eq. (4) 
may be defined as 

(E /ay~  _ [ 1 - v t  z _e_Ca/a,/~)+l-vs2e_C~t/a4~] -1, (5) 
i _P2}ef f- LEdoy (1 E, loy 

where the subscripts s and ! refer to substrate and layer prop- 
erties, respectively, t is the layer thickness, and a is a numerical 
factor for the indentation of  a circular fiat-ended rigid punch 
calculated by a sixth-order polynomial fit to selected data points 
obtained from the analysis by King (1987). 

The expression for the effective representative flow stress 
of the layered medium was obtained from finite element results 
given by Bhattacharya and Nix (1988) for the elastic-plastic 
indentation of  a layered half-space by a rigid cone. They ob- 
tained relations for the effective hardness of the layered struc- 
ture as a function of  the indentation depth, layer thickness, 
and material properties of the layer and the substrate. The 
expression given by Bhattacharya and Nix (1988) for the ef- 
fective hardness of a layer on a softer substrate was modified 
by replacing the layer-to-substrate hardness ratio by the ap- 
propriate tensile yield stress ratio and the indentation depth 
with the contact radius. The latter change was motivated by 
the expectation that for similar sizes of the plastic zone under 
a sharp conical or a spherical indenter, much greater inden- 
tation depths will be observed for the cone than for the sphere, 
whereas the contact radii will be similar. This assumption was 
qualitatively verified by comparing the plastic zone size un- 
derneath a conical indenter presented by Bhattacharya and Nix 
(1991) with that underneath a spherical indenter given in the 
previous work (Kral et al., 1993). Bhattacharya and Nix (1991) 
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have shown that for indentations of  bulk silicon and aluminum 
the plastic zone depth is typically about 1.5 and 3.0 times the 
contact radius, respectively. Results from Kral et al. (1993) 
indicate that for the range of materials investigated, the depth 
of the plastic zone is typically about twice the contact radius. 
However, given the same contact radius, the indentation depth 
for the cone is approximately 24 nm, whereas that for the 
sphere is only 1.15 nm. Thus, the size of the plastic zone, and 
the extent of plastic deformation, is best correlated between 
spherical and conical indenters on the basis of the contact 
radius rather than the indentation depth. 

Using the above modifications, the expression relating the 
effective hardness to indentation parameters for a hard layer 
on a softer substrate given by Bhattacharya and Nix (1988) 
becomes 

a Et (6) 

\Gy/ef r ~y \~= / 

where the subscripts and variables are the same as those defined 
previously. The representative flow stresses for the layer and 
the substrate, at and o=, respectively, are calculated from Eq. 
(2) using the representative strain ee = 0.2a/R, i.e., 

al= Ki e~, 

and 

O's=Ks e~. 
Equations (5) and (6) yield expressions corresponding to the 
substrate material for contact radii much larger than the layer 
thickness and expressions corresponding to the layer material 
for contact radii much smaller than the layer thickness. 

To verify the validity of Eqs. (4)-(6), results for the inden- 
tation of a half-space with substrate material properties (Kral 
et al., 1993) were compared with results for the indentation 
of the thinner, more compliant, and softer layer (~ = 0.0067, 
/3 = 2). In this case, the layer thickness is less than 20 percent 
of the final contact radius and the layer is relatively compliant 
and soft. Thus, it is expected that the plastic deformation in 
the substrate will be similar to that in the half-space with 
substrate properties for equivalent A values. Comparable A 
values occurred at P/Py = 300 for the layered half-space (A 
= 27.04) and P/Py = 275 for the homogeneous half-space (A 
= 27.68). For these load conditions, the maximum equivalent 
plastic strain was 0.021 for both cases, and the depth of the 
plastic zone was approximately 23ay for the half-space and 
23.6ay for the layered medium. Thus, the degree of plastic 
deformation is very similar in the two cases having similar A 
parameters. 

2.4 Modeling of Repeated Indentations. For each set of 
material properties, interaction between the indenter and the 
layered medium was simulated by incrementally increasing the 
indentation load in 20 steps to a maximum of 300 times the 
initial yield load of a half-space made of substrate material, 
Py. The layered medium was then unloaded incrementally back 
to zero following the same path. The convergence tolerance 
for establishing nodal force equilibrium was equal to 10 -9 ay. 
The load in each step was applied linearly in 10 increments, 
and a maximum of 15 iterations was allowed in each increment 
to reach equilibrium within the specified tolerance. Repeated 
indentations were simulated by applying identical load-unload 
cycles. 

Software was developed to analyze the results and generate 
plots of user-defined variables. For preprocessing, several 
FORTRAN subroutines were written to convert the finite ele- 
ment mesh data generated with the MENTAT preprocessor to 
input data files in the ABAQUS format. CAEDS was used to 
read ABAQUS results and generate contour plots of  the data. 
The finite element calculations and post-processing were per- 

1 p , l I (a) 
n=O.O 
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Fig. 2 Contact pressure distribution at the peak load P/Py = 300 of the 
first load half.cycle 

formed on an IBM RS6000 Model 540 workstation. The typical 
CPU time for an elastic-plastic indentation from zero load to 
maximum load was about 9.5 hours. 

3 Results and Discussion 
Finite element results demonstrating the significance of the 

thickness and elastic-plastic properties of the layer, the inden- 
tation load, and the number of load cycles on the resulting 
surface stress and deformation fields are presented in the fol- 
lowing sections. The incremental increase of the load to its 
maximum value and the subsequent incremental unloading to 
zero load will be termed a " load  cycle." Either the loading or 
unloading portion of this entire cycle will be known hereafter 
as a "half-cycle." In the subsequent discussion, it will be 
understood that e i ther"  stiffer" o r "  harder"  refers to the layer 
with the larger elastic modulus and yield strength (or hardness) 
ratio (i.e.,/3 = 4), while "sof ter"  or "more  compliant" refers 
to the layer with the smaller elastic modulus and yield strength 
ratio (i.e.,/3 = 2). 

3.1 Contact Pressure Distribution. Figure 2 shows the 
variation of the contact pressure at the peak load P/Py = 300 
of the first load half-cycle in terms of the layer thickness and 
elastic-plastic material properties. The contact pressure cor- 
responding to a homogeneous elastic-perfectly plastic half- 
space having the substrate material properties is also shown 
in Fig. 2(a) for comparison. While the homogeneous half-space 
develops an approximately uniform contact pressure over the 
entire contact radius, Fig. 2(a) shows that the presence of a 
hard and stiff layer intensifies the pressure distribution sig- 
nificantly, producing a higher pressure peak near the contact 
edge and a correspondingly smaller contact radius. Similar 
results have been reported for indentation of half-spaces coated 
with harder and softer surface layers (Komvopoulos, 1989; 
Montmitonnet et al., 1993; Kennedy and Ling, 1974). Although 
the pressure peak increases with both layer thickness and stiff- 
ness, the localization of  a high maximum pressure to a small 
region near the contact edge is particularly pronounced with 
relatively thin layers. The final contact radius decreases by 
increasing either the thickness or the stiffness of the layer. 
Figure 2(b) shows that increasing the layer and substrate strain- 
hardening exponent also increases the maximum contact pres- 
sure and decreases the final contact radius. Although the pres- 
sure peak again occurs near the contact edge, the pressure 
profiles shown in Fig. 2(b) are relatively more uniform than 
those shown in Fig. 2(a) for the same layer thickness. 
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Fig. 3 Variation of contact pressure with indentation load during the 
first load half.cycle 

' I ' I ' 

~=0.0067 . ~ . . _ ~ . _ . . . . . . - - . - - - -  (a)! 

2 - ~"...."~ ~ n=O.O 
~f~ - - -  ~oo A 

/ 7  ....... E~ t /  
- I /  p=4  

0 ' I J . . . . .  I n=0.5, 

3 - ~ 
(b) ~=0.02 

1 

0 , I , I 

0 10 20 30 
Normalized Strain (A) 

Fig. 4 Variation of mean contact pressure with normalized strain during 
the first load half-cycle 

Figure 3 demonstrates the development of the contact pres- 
sure during the first load half-cycle for two nonhardening 
cases. Figure 3(a) shows the contact pressure as a function of 
load for the thinner and harder layer (~ = 0.0067, ~ = 4), 
while Fig. 3(b) shows similar results for the thicker and softer 
layer (~ = 0.02, ~ = 2). In both cases, the contact pressure 
profile lies between elliptical and parabolic distributions at a 
load P/Py = 1, i.e., the load at which yielding commences in 
a homogeneous half-space with substrate properties (/3 = 1). 
Elastic contact pressures bounded by elliptical and parabolic 
distributions were also observed by Tian and Saka (1991) for 
the indentation of a two-layer half-space. For loads P/Py ~_ 
10 (Fig. 3(a)) or P/Py >_ 39.8 (Fig. 3(b)), the maximum pressure 
decreases and the contact radius increases significantly. Com- 
parison of Figs. 3(a) and 3(b) indicates that higher pressures 
are generated with the relatively thinner and stiffer layer, sug- 
gesting a lower yield limit. In all the nonhardening cases, the 
central pressure begins to decrease and the maximum pressure 
begins to move toward the contact edge when both the layer 
and the substrate yield along the axis of symmetry. The de- 
velopment of a maximum pressure at the contact edge becomes 
more pronounced at heavy loads, when plasticity effects be- 
come dominant. Thus, the decrease in the maximum pressure 
at the center of contact followed by an outward movement of 
the maximum pressure toward the contact edge may be at- 
tributed to plastification of the underlying material. As a con- 
sequence, the increasing load is accommodated by the expansion 
of the contact area and the increased pressure near the outer 
elastic-plastic boundary. In general, there seems to be no re- 
lationship between the maximum central pressure and yielding 
at the interface for the hardening cases. This may be due to 
the material underneath the indenter continuing to support the 
increasing load through strain hardening, as well as the ex- 
pansion of the contact area and the increased pressure near 
the contact edge that also occurs in the nonhardening cases. 

Figure 4 shows the mean pressure normalized by the effective 
representative flow stress, given by Eq. (6), as a function of 
the strain parameter A for all material cases. Figures 4(a) and 
4(b) show results for the thinner and thicker layers, respec- 
tively. In all cases examined, the maximum value of A is less 
than 30, which corresponds to the threshold value for fully 
plastic deformation of  a homogeneous half-space indented by 
a spherical indenter (Johnson, 1985); hence, all indentations 
are in the elastic-plastic regime. The cases exhibiting the most 
advanced plastic deformation, as indicated by the largest A 
values, approach a maximum mean pressure of about 2.8 ~o. 
This is in good agreement with the value of  2.85 o~ given by 
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the slip-line solution for a rigid circular punch on a homo- 
geneous rigid-plastic medium (Johnson, 1985), and also with 
the empirical value of 2.8 o~ given by Tabor 0970) for fully 
plastic indentation of an elastic-plastic half-space by a sphere. 
Thus, the normalized mean pressure for indented layered media 
approaching fully plastic deformation correlates well with that 
for indented half.spaces in the fully plastic region. 

3.2 Load Versus Indentation Depth. The significance of  
the layer thickness and material properties on the relationship 
between the sphere load and indentation depth can be inter- 
preted in light of the results shown in Fig. 5. Results for 
nonhardening layered media and a half-space with substrate 
properties are shown in Fig. 5(a), while Fig. 5(b) demonstrates 
the effect of strain hardening of both the layer and substrate 
on the load versus indentation depth response for the thicker 
layer. According to Fig. 5(a), both the maximum and residual 
indentation depths for the thinner layers decrease slightly with 
increasing elastic modulus and hardness of  the layer. Com- 
parison with the results for the homogeneous half-space shows 
that the effect of the thinner layer on the maximum and residual 
depths is small. However, the thicker layer produces a pro- 
nounced effect on the maximum and residual indentation 
depths, especially with increasing layer stiffness (and hard- 
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Residual surface displacements after the first unload half-cycle 

ness); compared with the homogeneous half-space, the max- 
imum and residual indentation depths for ~ = 2 and 4 are 
smaller by approximately 25 and 50 percent, respectively. Fig- 
ure 5(b) shows that while the maximum indentation depth for 
the case having/~ = 2 and n = 0.3 is slightly lower than that 
of the nonhardening case shown in Fig. 5(a), the corresponding 
residual displacement is significantly smaller. Figure 5(b) dem- 
onstrates that increasing the strain-hardening exponent and/ 
or the layer elastic modulus and hardness leads to smaller 
indentation depths. For the stiffer and harder layer, the re- 
duction in indentation depth due to strain hardening is slightly 
less pronounced than the more compliant and softer layer. As 
anticipated, increasing the thickness, stiffness, and hardness 
of the layer and the strain-hardening exponent of both the 
layer and substrate materials leads to greater deviations from 
the load versus indentation depth relationship of the homo. 
geneous medium. Subsequent load cycles essentially retrace 
the unloading portion of the load versus indentation depth 
curves shown in Fig. 5 with very little deviation. 

All the unloading curves shown in Fig. 5 reveal an initially 
linear response, which is characteristic of elastic-plastic in- 
dentations. This behavior is due to the elastic recovery of the 
material and the small changes in the contact width and pres- 
sure profile occurring during the initial stages of unloading. 
While the different slopes of the loading curves reveal a sig- 
nificant effect of the layer thickness and material properties, 
the similar slopes of the linear portions of the unloading curves 
indicate that the linear elastic behavior during unloading is not 
significantly affected by the presence of the layer. Thus, the 
linear portion of the unloading curve is primarily influenced 
by the relaxation of the substrate material. 

3.3 Residual Displacements. Figure 6 shows the effect of 
the layer thickness and material properties on the residual 
vertical displacement of the surface, w/ay, after the first load 
cycle. Results for the indentation of both layered media and 
a half-space of the substrate material are shown in Fig. 6(a) 
for comparison. The substrate material shows a pronounced 
region of pileup at the maximum contact radius that is absent 
in the layered cases. The layer causes a gradual rise of displaced 
material above the original flat surface outside the maximum 
contact radius. The amount of material rising above the orig- 
inal surface and the depth of the residual indentation decrease 
with increasing layer thickness and/or stiffness and hardness. 
The pronounced pile-up of displaced material at the contact 
edge in the case of homogeneous media is associated with 
yielding of a surface region at this location during the unload 
half-cycle (Kral et al., 1993). It has been found that this par- 
ticular reyielding behavior does not occur with layered media 
(Kral etal.,  1995). 
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Fig. 7 Effect of layer thickness, stiffness, and hardness on the surface 
stresses for the first load half.cycle 
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Fig. 8 Effect o! layer stiffness and hardness and strain hardening of 
the layer and substrate on the surface stresses for the first load hal t -  
cyc le  

Strain hardening of both the layer and the substrate also 
decreases the depth of the residual indentation, as shown for 
the thicker layer in Fig. 6(b). This is expected, since the max- 
imum indentation depth also decreases with hardening, as ev- 
ident in Fig. 5(b). Comparison of Figs. 6(a) and 6(b) reveals 
that strain hardening virtually eliminates the rise of displaced 
material beyond the maximum contact radius. 

3.4 Surface Stresses. Stress distributions for the surface 
nodes at the maximum load of the first load half-cycle are 
shown in Figs. 7 and 8. The effect of thickness, stiffness, and 
hardness of the layer on the radial and hoop stresses, Orr and 
us0, is shown in Figs. 7(a) and 7(b), respectively. For all cases 
shown in Fig. 7(a), the radial stress is compressive inside the 
contact region and becomes tensile at the free surface after 
passing through zero approximately at the contact edge. The 
tensile radial stress increases with layer stiffness and hardness 
but decreases with layer thickness. Figure 7(b) indicates that 
the surface hoop stress is also compressive inside the contact 
region. However, the thinner layers exhibit a tensile hoop stress 
at the contact edge, while the hoop stress in the thicker layers 
remains compressive. The appearance of a tensile hoop stress 
at the contact edge may be attributed to the development of 
a band of tensile hoop stress surrounding and constraining the 
plastic zone (Kral et al., 1995). The tensile hoop stress for the 
thinner layer increases slightly with layer stiffness and hard- 
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ness, indicating that radial cracking may occur in the case of 
a harder and stiffer surface layer under relatively heavy loads. 
However, the significantly larger tensile radial stress makes 
the formation of ring cracks more likely in thinner layers with 
randomly oriented microdefects. These results may be com- 
pared with those obtained for indentation of a half-space of  
the substrate material (Kral et al., 1993), in which the non- 
hardening material exhibited an entirely compressive radial 
stress at the surface, while the hoop stress reached a tensile 
peak at the contact edge. Thus, surface radial crack formation 
is dominant in homogeneous media due to the tensile hoop 
stress. Indeed, from the radial stress results shown in Fig. 7(a), 
it follows that as the layer stiffness and hardness decrease, 
approaching the properties of the substrate, the tensile radial 
stress peak also decreases. For the hoop stress in the thicker 
layer shown in Fig. 7(b), the stress at the contact edge increases 
significantly as the layer stiffness and hardness decrease, re- 
vealing a trend toward the tensile hoop stress at the contact 
edge encountered in the indentation of  a homogeneous half- 
space. The thinner layer already exhibits a tensile hoop stress 
which decreases slightly with decreasing layer stiffness. How- 
ever, since this decrease is very small for a 50 percent reduction 
in stiffness and hardness, it is considered that the hoop stress 
will asymptotically approach a tensile value as the layer stiff- 
ness is further reduced. In addition, the results for surface 
radial stresses are consistent with those of Montmitonnet et 
al. (1993), who also observed a tensile radial stress beyond the 
contact edge. However, for a ~ ratio equal to 0.0069, their 
results showed compressive hoop stresses throughout the sur- 
face. This may be attributed to the smaller applied load (P/ 
Py = 32) used in that study. At the lower load, the tensile 
hoop stress surrounding the plastic zone (Kral et al., 1995) 
may not have reached the surface. 

The effect of strain hardening on the surface stresses during 
the first load half-cycle is shown in Fig. 8 for the thicker layer. 
Results for the nonhardening layer with/3 = 2 are also included 
for comparison. As shown in Fig. 8(a), strain hardening in- 
tensifies the compressive radial stress in the central region of 
the contact and increases the tensile radial stress just outside 
the contact edge, compared with the stress in the nonhardening 
medium; however, the difference between the maximum tensile 
radial stresses among the hardening cases is very small. As 
shown in Fig. 8(b), the hoop stress remains entirely compres- 
sive, becoming slightly more compressive at the contact edge 
with increasing strain hardening. This influence of strain hard- 
ening on the surface stresses is consistent with results for the 
indentation of a homogeneous half-space, where the com- 
pressive radial stress at the contact edge increased with hard- 
ening, becoming tensile for pronounced strain hardening, while 
the tensile hoop stress decreased with hardening, becoming 
entirely compressive for severe strain hardening (Kral et al., 
1993). Thus, for a homogeneous half-space, the tendency for 
cracking at the contact edge changes from radial cracks to ring 
cracks as the maximum principal stress on the surface changes 
from the hoop to the radial direction as a consequence of the 
increasing strain hardening. In contrast, for a layered half- 
space, strain hardening in the layer and the substrate promotes 
only the formation of ring cracks at the contact edge, since 
the maximum principal stress at the surface remains in the 
radial direction and increases with strain hardening. 

3.5 R e s i d u a l  S u r f a c e  S t r e s s e s .  Figure 9 shows the effect 
of the thickness and material properties of the layer on the 
residual surface stresses for the nonhardening cases after the 
first unload half-cycle. Both the residual and hoop stresses 
exhibit maximum tensile values near the maximum contact 
radius which increase with layer stiffness and hardness and 
decrease with layer thickness. Comparison of the results shown 
in Figs. 7 and 9 demonstrates that the maximum residual tensile 
radial stress is less than that under maximum load, while the 
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maximum residual tensile hoop stress is greater than the cor- 
responding stress under maximum load. Thus, the greatest 
tendency to initiate ring cracks occurs during the load half- 
cycle, while initiation of radial cracks is favored at the end of 
the unload half-cycle. 

The effect of strain hardening of the layer and substrate 
media on the residual surface stresses is shown in Fig. 10 for 
the thicker layer. All hardening cases exhibit compressive re- 
sidual radial and hoop stresses within the contact region and 
tensile stresses outside the contact region that reach a maximum 
at roughly the maximum contact radius of  the previous load 
half-cycle. The maximum stress actually decreases as the hard- 
ening exponent increases from 0.3 to 0.5. The maximum re- 
sidual surface stresses after the first unload half cycle for all 
the material cases analyzed are listed in Table 2. The peak 
residual radial stress is always greatest when n = 0.3. For the 
more compliant layers, both ~ = 0.0067 and 0.02, the maxi- 
mum residual radial stress for n = 0.5 is less than that for n 
= 0.3, but greater than that for n = 0.0. For the stiffer layers, 
the maximum residual radial stress for n = 0.5 is less than 
that for both n = 0.0 and 0.3. The maximum residual hoop 
stress for the stiffer layers exhibits a monotonic decrease with 
increasing hardening exponent, while for the more compliant 
layers it exhibits a maximum for n = 0.3. Thus the initiation 
of surface cracks, both ring and radial, will be more likely for 
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Table 2 Maximum residual surface stress at the end o! the first unload 
half-cycle 

= 0.0067 

stress 

n=O.O 

max ffrr/6y 0.8561 

max ffoo/ffy 1.3972 

!3=2 13=4 

n=0.3 n=0 .5  n = 0 . 0  n=0.3  n=0 .5  

1.4827 1.2715 2.7756 3.2391 2.6779 

1.5606 1.1423 2.3626 2.0604 1.4843 

= 0.02 

stress 

n = 0 . 0  

max arr/ay 0.3475 

max oeo/6y 0.8556 

[3=2 [3=4 

n=O.3 n=O.5 n=O.O n=O.3 n=0.5 
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Fig. 11 Variation of contact pressure with Indentation load during the 
second load half.cycle 

most of the hardening cases with n = 0.3 than for the non- 
hardening cases, but may be higher or lower for n = 0.5. As 
in the nonhardening cases, the maximum residual radial stress 
is less than that under the maximum load, while the maximum 
residual hoop stress is greater (see Fig. 8). The layered case 
may be contrasted with indentations performed on a half-space 
of the substrate material, in which the residual radial and hoop 
stresses were tensile throughout the contact region, with the 
radial stress becoming compressive and the tensile hoop stress 
asymptotically approaching zero beyond the contact edge. 
However, in almost all cases, the maximum residual tensile 
radial and hoop stresses are higher in the layered cases than 
in the homogeneous cases, the only exception being the radial 
stress for the case having ~ = 0.02, ~ = 2, and n = 0.0. 

3.6 Effect of Repeated Indentation on the Contact Pres- 
sure Distribution. Subsequent load cycles produced only neg- 
ligible changes in the final (fully loaded) contact pressure 
profiles compared with those shown in Fig. 2. However, the 
evolution of  the pressure distribution to the fully loaded profile 
shows substantial differences between the first and subsequent 
load half-cycles. The development of the contact pressure dur- 
ing the second load half-cycle for two nonhardening material 
cases is shown in Fig. 11. Figure 1 l(a) shows the contact pres- 
sure for the stiffer and harder thin layer. This case exhibits 
multiple contact regions in the beginning of the reloading half- 
cycle, indicating that the residual surface profile has a radius 
of curvature slightly smaller than the indenting sphere. Figure 
1 l(b) shows the variation of  the contact pressure for the more 
compliant and softer thick layer during the second load half- 
cycle. This case exhibits a noncentral contact in the first re- 

loading step, rather than the multiple contact shown in Fig. 
1 l(a). The cases shown here are the only ones exhibiting either 
multiple or noncentral contact upon reloading. Both cases 
shown in Fig. 11 exhibit a progression of broader, less intense, 
and almost self-similar pressure distributions up to the final 
distribution at a load P/Py = 300. The high peak pressures 
on the axis of symmetry that were evident in the first load half- 
cycle (Fig. 3) have disappeared. This trend is characteristic of 
all the reloading cases. Thus, the second and subsequent re- 
loading half-cycles are mainly characterized by the growth of 
a broader but less intense pressure profile up to the final pres- 
sure distribution. Such behavior, also found with the reloading 
pressures during the indentation of a homogeneous half-space 
(Kral et al., 1993), stems from the increased conformity be- 
tween the plastically deformed layered medium and the spher- 
ical indenter due to the residual displacement of the surface 
occurring after the first load cycle. 

The surface stresses in the subsequent load and unload half- 
cycles show relatively small differences from the results already 
presented. The variation of stress with load cycle is most pro- 
nounced for the nonhardening material cases, while the hard- 
ening cases exhibit virtually no difference in the surface stresses 
for subsequent load and unload half-cycles. Even for the non- 
hardening cases, the loaded and residual surface stresses are 
virtually identical to those shown in Figs. 7 and 9 for all 
subsequent load cycles. Results for the subsurface stresses, 
accumulation of  plastic strain, and shakedown under repeated 
loading are presented in the companion paper (Krai et al., 
1994). 

4 Conc lus ions  

The surface deformation characteristics resulting from re- 
peated elastic-plastic indentation of a half-space covered with 
a harder and stiffer layer were investigated with the finite 
element method. Indentations were performed up to loads of 
300 times the load necessary to initiate yielding in a homo- 
geneous half-space consisting of the substrate material. The 
contact pressure exhibited a higher pressure peak at the contact 
edge, rather than a relatively uniform contact pressure char- 
acteristic of the indentation of a homogeneous half-space ap- 
proaching full plasticity. The high pressure at the contact edge 
was promoted by thinner, stiffer, and harder layers. Broader 
and less intense pressure distributions arose in subsequent load 
cycles due to the increased conformity between the sphere and 
the layer surface. Some material cases exhibited multiple con- 
tact regions at the beginning of subsequent load half-cycles 
due to the residual displacement of the deformed surface. 

A nondimensional strain parameter corresponding to that 
used in the half-space indentations (Kral et al., 1993) was 
introduced, and expressions for the effective modulus and 
representative flow stress of a layered medium were obtained. 

Journal of Appl ied Mechanics  MARCH 1995, Vol. 62 1 27 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The mean pressure normalized by the effective representative 
flow stress was shown to asymptotically approach a maximum 
value of 2.8 for indentations approaching fully plastic defor- 
mation, which is consistent with half-space indentations. This 
confirmed that the newly introduced indentation parameter is 
suitable for comparing results from indentation experiments. 

A significant tensile radial stress occurred at the surface near 
the contact edge under the maximum load. This surface tensile 
stress increased for thinner, stiffer, and harder layers and with 
strain hardening of the layer and substrate. For the thinner 
layers, a tensile hoop stress also arose at the surface near the 
contact edge which decreased with increasing strain hardening. 
The tensile radial and hoop stresses are critical to the suscep- 
tibility of the layer surface to ring and radial cracking, re- 
spectively. 

Tensile residual radial and hoop stresses also occurred at 
the surface after the first unload half-cycle. The maximum 
residual radial stress was less than that at the end of the first 
load half-cycle, while the maximum residual hoop stress was 
greater. Thus, a greater tendency for the formation of surface 
ring cracks existed during loading and for surface radial cracks 
during unloading. The surface stresses showed only very slight 
changes with subsequent load cycles for the nonhardening ma- 
terials and virtually no change for the hardening materials. 
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Finite Element Analysis 
of Repeated Indentation of an 
Elastic-Plastic Layered Medium 
by a Rigid Sphere, Part I1: 
Subsurface Results 
Finite element solutions are presented for the subsurface stress and deformation fields in 
a layered elastic-plastic half-space subjected to repeated frictionless indentation by a 
rigid sphere. A perfectly adhering layer is modeled using two different thicknesses and 
elastic modulus and yield stress two and four times greater than those of the substrate. 
The significance of strain hardening during plastic deformation is investigated by 
assuming elastic-perfectly plastic and isotropically strain-hardening constitutive laws for 
both the layer and substrate materials. At  least three load-unload cycles are applied to a 
peak load of 300 times the load necessary to initiate yielding in a homogeneous 
half-space with substrate properties. The effects of the layer thickness and material 
properties of the layer and substrate on the loaded and residual stresses are interpreted, 
and the consequences for subsurface crack initiation are discussed. The maximum 
principal and interfacial shear stresses are given as a function of a nondimensional 
strain parameter. The effect of subsequent load cycles on the loaded, residual, and 
maximum tensile and interfacial shear stresses and the protection provided by the 
harder and stiffer layer are analyzed. Reyielding during unloading and the possibility of 
elastic shakedown are discussed, and the accumulation of plastic strain in the yielding 
regions is tracked through subsequent load cycles. 

1 Introduction 
Fundamental understanding of the stresses and deforma- 

tions involved in contact of layered media is of paramount 
importance in engineering practice. Both analytical and nu- 
merical contact mechanics analyses of layered elastic media 
have been presented by several investigators. Burmister 
(1945a, b) presented an axisymmetric formulation for speci- 
fied surface loads applied to an elastic single-layered medium 
with both frictionless and perfectly adhering layer interface 
conditions and for an elastic double-layered medium with 
perfectly adhering interfaces. Chen (1971) extended Burmis- 
ter's work to nonaxisymmetric surface loadings applied to 
single- and double-layered elastic media. The plane-strain 
contact problem of an elastic layered medium subjected to 
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normal and tangential surface tractions has been studied by 
Gupta et al. (1973) and King and O'Sullivan (1987), and 
results for the three-dimensional elastic problem of a sphere 
sliding on a single-layered half-space have been presented by 
O'Sullivan and King (1988). Kennedy and Ling (1974) investi- 
gated the elastic-plastic indentation of a half-space with a 
softer and more compliant layer, considering both frictionless 
and perfectly adhering layer interface conditions. The me- 
chanical properties of the layer and substrate and the interra- 
cial friction characteristics were found to have a significant 
effect on the stresses and deformations in the layered 
medium. Tangena and Hurkx (1985) investigated the axisym- 
metric indentation by a rigid sphere on a nickel half-space 
covered with a gold layer and reported that the von Mises 
equivalent stress in the gold layer increased with the layer '  
thickness. Komvopoulos et al. (1987, 1988) presented finite 
element results for the plane-strain problem of an elastic 
half-space with a harder elastic layer indented by a rigid 
cylinder and qualitatively addressed the issues of subsurface 
plastic deformation and fracture. Montmitonnet et al. (1993) 
used the finite element method to analyze the indentation of 
an elastic-plastic layered medium by an elastic indenter and 
discussed the effect of the layer thickness on the stress field 
and the significance of tensile stresses to fracture and delam- 
ination of the layer. 
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The plane-strain problem of a rigid cylinder indenting an 
elastic-plastic layered medium with a layer harder and stiffer 
than the substrate was investigated by Komvopoulos (1989). 
In this study, plastic flow initiated at the layer/substrate 
interface, and the plastic zone remained restricted to the 
bottom of the hard layer and the substrate. In addition, it 
was found that the thinnest layer promoted yielding at a 
pressure lower than that of a homogeneous half-space of the 
substrate material. Tian and Saka (1991) investigated the 
plane-strain elastic-plastic indentation of a two-layer half- 
space and reported a significant effect of the interlayer 
thickness on both the location of initial yielding and the 
stresses at the interlayer/substrate interface. Kral et al. (1993) 
studied the repeated elastic-plastic indentation of a half-space 
possessing different elastic properties and strain-hardening 
characteristics by a rigid spherical indenter. It was demon- 
strated that the surface and subsurface stresses depended 
strongly on strain hardening and relatively less on elastic 
properties, and that reyielding occurred upon unloading in a 
small surface region near the edge of the contact at maxi- 
mum load. Moreover, elastic-perfectly plastic materials con- 
tinued to accumulate plastic strain during subsequent load 
cycles, eventually approaching a steady-state elastic cycle. 

Although previous studies have provided valuable insight 
into contact mechanics aspects of layered media, the signifi- 
cance of several important parameters, such as the layer 
thickness and hardness, strain-hardening behavior, and num- 
ber of loading repetitions, on the stress and deformation 
fields of layered media in the elastic-plastic regime has not 
been fully investigated. Of particular interest, for example, is 
the effect of material properties and load cycles on the 
steady-state deformation cycle. The aim of this investigation, 
therefore, is to provide a complete finite element analysis of 
the subsurface stress and deformation fields arising in an 
elastic-plastic layered half-space due to repeated indentation 
by a rigid sphere. Indentation loads are applied incremen- 
tally to 300 times the initial yield load of the substrate 
material, and the contact is assumed to be frictionless. Two 
layer thicknesses and layer elastic moduli and yield stresses 
two and four times greater than those of the substrate 

material are investigated. In addition, the effect of plastic 
deformation is considered by assuming elastic-perfectly plas- 
tic or isotropically strain-hardening constitutive relationships 
for both the layer and substrate media. Results demonstrat- 
ing the effects of the layer thickness and material properties 
of the layer and the substrate on the evolution of the plastic 
zone and the spatial variation of the stresses and strains will 
be presented for repeated elastic-plastic indentations. In 
addition, the significance of material properties on the resid- 
ual stresses and the tendency for reyielding will be inter- 
preted, and the effect of repeated load cycles on the resulting 
stress and plastic deformation fields will be shown. The finite 
element solutions in this publication pertain to the subsur- 
face region, while results for the surface stresses and defor- 
mations in the layered medium under the same loading 
conditions have been presented elsewhere (Kral et al., 1995). 

2 Finite Element Modeling Procedures 

2.1 Contact Model. A smooth, frictionless, and rigid 
spherical indenter of radius, R, equal to 1500 nm was mod- 
eled by a total of 44 three-node interface (contact) elements. 
This eliminated the need to assume a pressure profile a 
priori. In view of the relatively small indentation depths and 
resulting contact radii, the finite element solutions are also 
representative of elastic-plastic indentations by a blunt in- 
denter. The finite element mesh of the layered half-space, 
shown in Fig. 1, consisted of 2721 four-node quadrilateral 
axisymmetric elements comprising 2848 nodes and using a 
linear 2 × 2 integration scheme. The r- and z-dimensions of 
the mesh were set equal to 960 nm, sufficiently isolating the 
boundaries from the contact region. The vertical boundaries 
of the mesh were constrained against displacement in the 
r-direction, and the bottom boundary against displacement in 
the z-direction. The region of the mesh bounded by r /R = 
0.033 and z / R  = 0.033 was refined, as shown in the inset of 
Fig. 1, to account for the high stress gradients at the edge of 
the contact region. The finite element simulations were per- 
formed with the general purpose finite element package 
ABAQUS. Further details about the finite element dis- 
cretization, favorable comparisons between finite element 
and analytical solutions for elastic indentations, and results 
for repeated elastic-plastic indentations of homogeneous and 
layered half-spaces based on the present mesh configuration 
can be found in other publications (Kral et al., 1993, 1995). 

2.2 Material Properties and Plasticity Models. The yield 
condition adopted in this study was based on the yon Mises 
yield criterion, 

f = J2 - k2 = O, 

where k is a material constant and J2 is the second invariant 
of the deviatoric stress tensor, given by 

1 J2=~ SuSij, where S i j = ~ i j - ~  6ij~kk. 

The yield criterion may be expressed in terms of the uniaxial 
yield stress, o-o, as 

aM= -~ SqSij = a °, (1) 

where o- M is the von Mises equivalent stress. An incremental 
plasticity formulation based on the associated flow rule was 
used for material exceeding the yield limit. The usual as- 
sumption of negligible plastic volume change was maintained. 
To account for boundary nonlinearities arising from the use 
of contact elements, an updated Lagrangian formulation was 
used. 
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Both the layer and substrate media were modeled as 
isotropic strain-hardening materials according to the rela- 
tionship 

a ° K n 
_ _  - E e q  ~ ay ay 

where ~ry is the initial yield stress of the substrate material, 
K is the strength coefficient, n is the strain-hardening expo- 
nent, and Eeq is the equivalent plastic strain, defined as 

where S is the strain path. The same strain-hardening expo- 
nent was used in both the layer and the substrate. The 
hardening relation and flow rule apply only to yielding mate- 
rial for which cr M = tr o. When ~r M < ~r o, the usual elastic 
constitutive equations apply. 

Results are presented in terms of the parameter /3, which 
is the ratio of both the layer-to-substrate elastic moduli and 
the layer-to-substrate initial yield stresses. The values of /3 
assumed in the analysis were equal to 2 and 4, representing a 
layer two and four times, respectively, stiffer and harder than 
the substrate. The normalized layer thickness, ~:, is defined 
as the ratio of the layer thickness to the sphere radius. Two 
different layer thicknesses, 10 nm (~ = 0.0067) and 30 nm 
(~ = 0.02), were modeled, as shown in Fig. 1. The strain- 
hardening exponent, n, was varied from zero to 0.5. 

2.3 Nondimensional Indentation Parameter. A dimen- 
sionless strain parameter for indentations of layered media, 
A, was introduced in the previous study (Kral et al., 1995). 
This indentation (strain) parameter was defined as 

{ E/oy ~ ot 
A = ~k I -- P2)eff ~ , (4) R (o'o/Oy)eff 

where E and v are the elastic modulus and Poisson's ratio, 
respectively, R is the sphere radius, a is the contact radius, 
.~y is the initial tensile yield stress of the substrate, and %n 
is a representative flow stress corresponding to a representa- 
tive strain e n = 0.2a/R. The effective elastic compliance was 
given as 

1 2 l - '  e_O~t/or,/~ ) + -- Us 
\ l _ v 2 / e r f - L E ~ a y  ( l -  . E ~ e  -~'/~' / ;  (5) 

where the subscripts s and l refer to substrate and layer 
properties, respectively, t is the layer thickness, and c~ is a 
numerical factor for the indentation of a circular fiat-ended 
punch that can be determined numerically. 

The expression for the effective representative flow stress 
of the layered medium was given as 

at a Et (a~°R~ =°SIl+ (~-l)exp[-  (t) / (-ffs)l/2]l, 
\ OY]eff OYL 

2.4 Simulation of Repeated Indentations. Indentation 
was simulated by incrementally increasing the indentation 
load in 20 steps to a maximum of 300 times the initial yield 
load of the homogeneous substrate material, Py. The layered 
medium was then unloaded incrementally back to zero fol- 

(2) lowing the same path. The convergence tolerance for estab- 
lishing nodal force equilibrium was equal to 10-9cry. The load 
in each step was applied linearly in 10 increments, and a 
maximum of 15 iterations was allowed in each increment to 
reach equilibrium within the specified tolerance. Repeated 
indentations were simulated by applying identical load-un- 
load cycles. Special software was developed to analyze the 
results and generate plots of user-defined variables. The 

(3) finite element calculations and post-processing were per- 
formed on an IBM RS6000 Model 540 workstation. The 
typical CPU time for an elastic-plastic indentation from zero 
load to maximum load was about 9.5 hours. 

(6) 

where the subscripts and variables are the same as those 
defined previously. The representative flow stresses for the 
layer and the substrate, tr l and % respectively, are calcu- 
lated from Eq. (2) using the representative strain E n = 
0.2a/R, i.e., 

at=Kt~, 

as = KsenR. 
and 

3 Results  and Di scuss ion  

Finite element solutions illustrating the effects of the 
thickness and elastic-plastic properties of the layer, the in- 
dentation load, and the number of load cycles on the subsur- 
face stress and deformation fields are presented in the fol- 
lowing sections. Results for the contact pressure and surface 
stresses as a function of the layer thickness and material 
properties have been presented elsewhere (Kral et al., 1995). 
The incremental increase of the load to its maximum value 
and the subsequent incremental unloading to a zero load will 
be termed a "load cycle." Either the loading or unloading 
portion of this entire cycle will be known hereafter as a 
"half-cycle." In the subsequent discussion, it will be under- 
stood that either "stiffer" or "harder" refers to the layer with 
the larger elastic modulus and yield strength (or hardness) 
ratio (i.e., /3 = 4), while "softer" or "more compliant" refers 
to the smaller elastic modulus and yield strength ratio (i.e, 
/3 = 2). 

3.1 Subsurface Stresses, Figure 2 shows the evolution 
of the yon Mises equivalent stress for the thicker and more 
compliant layer (~ = 0.02, /3 = 2) with no strain hardening. 
The results are qualitatively typical of all the nonhardening 
cases. The von Mises stress exhibits a discontinuity at the 
layer interface since the radial and hoop stresses are discon- 
tinuous due to the different layer and substrate material 
properties. The normal and shear stresses, however, are 
required to be continuous across the interface. Consequently, 
subsequent figures showing the radial and hoop stresses 
along the interface will be presented for both the layer and 
the substrate. Contour number 5 represents yielding in the 
layer (~v/~y = 2), while contour number 2 represents yield- 
ing in the substrate (trm/O'y = 1). Figure 2(a) shows that 
yielding commences in the layer at a depth of about one-half 
the contact radius. At a load P/Py = 6.4, the plastic zone is 
surrounded by elastic material. As the load increases, the 
plastic zone in the layer enlarges, eventually reaching both 
the surface and the interface, as shown in Fig. 2(b) for a load 
P/Py = 39.8. At this load, substrate yielding is also encoun- 
tered. In all cases, substrate yielding first occurs at the 
interface on the axis of symmetry. As the load is further 
increased to P/Py = 100.6 (Fig. 2(c)), the yielding region in 
the substrate continues to expand downward and along the 
interface, assuming an approximately elliptical shape. The 
yielding region in the layer forms a nose reaching to the 
surface and moving outward with the contact edge. At the 
maximum load P/Py = 300, Fig. 2(d) shows that the size of 
the elliptical yielding region in the substrate has increased 
significantly, while the yielding region in the layer has re- 
tained the high stress yielding nose from the surface to the 
layer interface, leaving behind a wake of relaxed (but plasti- 
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Fig. 2 Contours of yon Mlses equivalent stress during the first 
load half-Cycle for ~ = 0.02, /3 = 2, n = 0.0, and load P/Py equal to: 
(a)  6.4, (b )  39.8, (c )  100.6, and (d )  300. ((a) and (b)  show the 
region 0 ~ r / a y  ~ 12, 0 ~ z / a y  ~ 12, whi le (c )  and (d )  show the 
region O ~  f l a y s  2 4 , 0  ~ z / a y  ~ 24) 

cally deformed) material in the upper half of the layer below 
the center of contact. 

The other nonhardening cases demonstrated characteris- 
tics similar to those shown in Fig. 2(d) for P / P y  = 300, with a 
high stress yielding nose in the layer at the contact edge 
encompassing the entire thickness of the layer, and only 
approximately half of the layer closest to the interface under- 
going yielding near the axis of symmetry. The substrates 
covered by thinner layers exhibited slightly larger plastic 
zones than that shown in Fig. 2(d), indicating that the thicker 
layers slightly inhibit the development of plasticity in the 
substrate. For the thicker layers, the substrate plastic zone 
was smaller for/3 = 4 than for/3 = 2, suggesting an enhance- 
ment of the resistance of the substrate to plastic deformation 
in the presence of the stiffer and harder layer. For the 
thinner layers, however, the substrate plastic zone for the 
more compliant layer was nearly identical to that of the 
stiffer layer, indicating that the effect of the layer stiffness 
and hardness on the extent of plasticity in the substrate was 
secondary in this case. 

Comparison of the von Mises stress contours for the 
hardening cases, not shown here for the sake of brevity, 
revealed results qualitatively similar to those shown in Fig. 
2(d). The width of the plastic zone in the layer decreased 
only slightly with increasing strain hardening, and the effect 
of strain hardening on the size of the plastic zone in the 
substrate was marginal for a given layer stiffness. The maxi- 
mum von Mises stress in the substrate occurred at the 
interface on the axis of symmetry and increased significantly 
with hardening. This result differs from the indentation of a 
homogeneous hardening half-space, where the maximum von 
Mises equivalent stress was found to move toward the surface 
near the contact edge (Kral et al., 1993)• The maximum yon 
Mises stress in the layer increased significantly with strain 
hardening and the layer stiffness and hardness. 

The maximum von Mises equivalent stress versus the nor- 
malized strain A is shown in Fig. 3 for the thinner layer, 
which exhibits the larger range of A values. The maximum 
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= 0.0067 during the first load half-cycle: (a) layer and (b) sub- 

strata 

£ 

10 

, .. r . ~ . _ . ~  ' ,  ..,/ . . . .  . (a) 

O 0 O / G y  i ~ '1 

P/Py = 300 ~ ,' -t 
r/ay=O . L . - J  I 
n=O.O 
~=o.oo67 
1 3 = 2 ~  
1~=4 . . . . . . .  
~=o.o2 
13=2 . . . .  
1~=4 . . . . .  

Ozz/Gy 

I 

' \  

!, , t , , 

0 2 4 -8  ,.-.6 -4 -2 

Stress (~/Cy) 

' (b) 

15 , I  L I I I , 

-8 ,--6 --4 -2  0 2 4 

Fig. 4 Effect of layer thickness, stiffness, and hardness on the 
stresses along the axis of symmetry at the maximum load of the 
first load half-cycle: (a) radial (hoop) and (b)  normal stress 

von Mises stress in the layer, shown in Fig. 3(a), exhibits a 
significant initial increase but shows only a marginal variation 
for A > 4 when /3 = 4 and for A > 7 when /3 = 2. Figure 
3(b) shows that as the normalized strain increases, the slope 
of the maximum von Mises stress in the substrate approaches 
a value dependent only on the strain-hardening exponent. 
This is most apparent for n = 0.3. A similar trend was 
observed for the thicker layers; however, the smaller range of 
A values for these cases makes this trend less obvious. For 
indentation of a homogeneous half-space, the maximum von 
Mises stress has been shown to be a function of only the 
strain-hardening exponent when the indentation approaches 
the fully plastic regime, i.e., A = 30 (Kxal et al., 1993). Thus, 
for a given layer and sufficiently advanced plastic deforma- 
tion, the maximum von Mises stress in the substrate exhibits 
a behavior similar to that of a half-space with substrate  
material properties. 

Figures 4 and 5 show the effect of the layer thickness and 
material properties on the stresses along the axis of symmetry 
at the peak load P / P .  = 300 of the first load half-cycle The • y • 

radial (hoop) stress for the nonhardening cases, shown in Fig. 
4(a), exhibits a region where it is relatively uniform with 

32  1 Vo l .  62,  M A R C H  1 9 9 5  T r a n s a c t i o n s  o f  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tel 
10 

,L x i . \ t ~  

Orr /~y""  ~.-:. 
oogoy ~ 

P / P y  = 3 0 0  
r/a, = 0 

='0.02 
13=2 
n=O.O - -  
n=0.3 - -  
n=0.5 . . . . . . .  
13=4 
n=0.3 . . . .  
n=0.5 . . . . .  

16  ~ i i 
- 2 0 - 1 5 - 1 0  -5  0 

' (a l  ' i', ",,, ', I ! '  I ,"':, "~' 

.! 

5 10 - 2 0 - 1 5 - 1 0  -5 

Stress (~/6y) 

' ' (b  

6zz/Oy 

i 

0 5 10 

F i g .  5 Effect of layer stiffness and strain-hardening exponent on 
the stresses along the axis of symmetry at the maximum load of the 
first load half-cycle: (a) radial (hoop) and (b)  normal stress 

depth. This region corresponds to the yielding region in the 
layer, as shown in Fig. 2(d) for ~ = 0.02 and /3 = 2. This 
uniform radial (hoop) stress occurs in the perfectly plastic 
material since the radial, hoop, and normal stresses are the 
principal stresses along the axis of symmetry and the normal 
stress, shown in Fig. 4(b), is also relatively uniform. Due to 
the higher tensile radial stress, the stiffer and harder layers 
will be more vulnerable to the initiation of median cracks. 
The radial stress in the substrate is essentially the same for 
all material combinations. The normal stress along the axis of 
symmetry is remarkably similar for all cases, except for the 
thicker and harder layer, where the compressive normal 
stress near the surface is almost twice that of the other cases. 
This is consistent with the contact pressure for ~: = 0.02 and 
/3 = 4, which does not exhibit a uniform distribution near the 
axis of symmetry at the maximum load (Kral et al., 1995). 
Since the thicker, stiffer, and harder layer possesses a higher 
resistance to plastic deformation, a larger load is required to 
achieve the relatively uniform contact pressure near the axis 
of symmetry shown by other material cases. At _greater depths, 
i.e., z / a y  = 22, the radial (hoop) stress on the axis of symme- 
try becomes slightly positive, as in the case of indentation of 
a homogeneous half-space (Kral et al., 1993). 

Figure 5 shows the effect of strain hardening in the layer 
and substrate on the radial (hoop) and normal stresses along 
the axis of symmetry for the thicker layer. The nonhardening 
curve for/3 = 2 is also shown for comparison. In the harden- 
ing cases shown in Fig. 5(a), the radial (hoop) stress in the 
layer is no longer uniform, but increases toward the interface 
with a slope depending upon the layer stiffness and hardness 
and the strain-hardening exponent. This indicates that mate- 
rial hardening occurs near the interface, which is consistent 
with the location of the maximum von Mises equivalent stress 
at the layer interface on the axis of symmetry, as mentioned 
for the hardening cases in the discussion pertaining to Fig. 2. 
The significantly higher tensile radial (hoop) stress at the 
layer interface indicates that hardening promotes the suscep- 
tibility for initiation of median cracks at the interface. The 
radial stress in the substrate is essentially the same for all the 
hardening material combinations. The normal stress is again 
everywhere compressive, with the peak compressive stress at 
the surface intensifying with increasing layer stiffness and 
strain hardening, consistent with the results for the contact 
pressure profiles (Kral et al., 1995). 

Stress distributions at the layer interface for the nonhard- 
ening materials at the peak load of the first load half-cycle 
are shown in Fig. 6. The stresses were obtained at the 
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Fig. 6 Effect of layer thickness, stiffness, and hardness on the 
stresses at the layer interface ( z /ay  = 2 for ~ = 0.0067 and z /ay  
= 6 - for ~ = 0.02) at the maximum load of the first load half-cycle: 
(a) radial and (b)  hoop stress 

interface nodes by extrapolating from the integration point 
data in the layer. Figure 6(a) shows that the variation of the 
radial stress is similar for all the material combinations, with 
the largest stress occurring from the axis of symmetry to a 
distance approximately equal to the contact radius, followed 
by a rapid decrease to a maximum compressive stress and an 
asymptotic approach to zero as the radial distance increases. 
The maximum compressive radial stress occurs approximately 
below the contact edge. The radial stress in the region from 
the axis of symmetry to the contact radius depends strongly 
on the layer stiffness. While a high tensile radial stress arises 
in the stiffer and harder layers, the more compliant and 
softer layers are subjected to a purely compressive radial 
stress. The effect of layer thickness on the peak radial stress 
in this region is marginal. Similar behavior is observed for the 
hoop stress, as shown in Fig. 6(b), which is also tensile within 
the contact radius for stiffer and harder layers. In addition, 
the hoop stress develops a local peak just before the contact 
edge. As shown in Figs. 4 and 6, the radial and hoop stresses 
in the layer may reach tensile values within the contact 
radius, depending on the layer properties, thus increasing the 
susceptibility to subsurface circumferential and radial crack- 
ing in the layer. 

The tensile stresses at the layer interface may be at- 
tributed to the elastic modulus difference between the layer 
and the substrate. The compliant substrate material has less 
resistance to radial and circumferential expansion than the 
stiffer layer. Thus, at the interface, the more compliant 
substrate promotes radial and circumferential deformation of 
the stiffer layer, producing tensile stresses for a sufficiently 
large difference in stiffness, as shown in Fig. 6. The same 
effect may be seen in the results presented in Figs. 4(a) and 
5(a), where the radial (hoop) stress increases from compres- 
sive at the surface to tensile or only slightly compressive at 
the interface as a consequence of the more compliant sub- 
strate. These results contrast with those for the indentation 
of a homogeneous half-space, in which the radial (hoop) 
stress on the axis of symmetry remains entirely compressive 
to a depth z / a y  = 22 (Kral et al., 1993). 

Figure 7 shows the effect of the layer thickness and stiff- 
ness on the substrate interfacial stresses. These results are 
reported at the same nodes as those shown in Fig. 6, but are 
extrapolated from the substrate integration points. The radial 
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Fig. 7 Effect of layer  th ickness,  stiffness, and hardness  on the  
s t resses at the  substrate  inter face (Z/ay = 2 + for ~ = 0 .0067  and 
Z/ay = 6 ÷ for ~ = 0.02)  at the max imum load of the first l o a d  
half -cycle:  (a )  radial ,  (b )  hoop,  ( c )  normal ,  and (d )  shear  stress 

stress, shown in Fig. 7(a), is compressive throughout and 
shows little sensitivity to the layer thickness and material 
properties. The hoop stress, shown in Fig. 7(b), exhibits a 
slightly larger compressive maximum for the thinner layers, 
but varies only marginally with the layer stiffness and hard- 
ness for a given thickness. The hoop stress becomes slightly 
tensile beginning at r/ay--15,  which corresponds to the 
boundary of the substrate plastic zone, as demonstrated by 
the contours of von Mises equivalent stress. The tensile hoop 
stresses shown in Fig. 7(b), in conjunction with the tensile 
hoop stresses on the axis of symmetry at z/ay = 22 (refer to 
the discussion of Fig. 4), indicate the presence of a band of 
tensile hoop stress in the substrate constraining the plastic 
zone, similar to that arising in the indentation of a half-space 
consisting of the substrate material (Kral et al., 1993). Con- 
tours of hoop stress, not shown here, confirmed this predic- 
tion. Figures 7(c) and 7(d) show small variations in the 
normal and shear stresses with layer thickness and only 
marginal variations with layer material properties for a given 
thickness. 

The effect of the elastic and plastic material properties on 
the interfacial stresses in the thicker layer is shown in Fig. 8. 
Also shown for comparison are the results for /3 = 2 and 
n = 0.0 presented in Fig. 6. Figure 8(a) shows that increasing 
the layer stiffness and the strain-hardening exponent pro- 
motes the development of a tensile radial stress within the 
contact radius. For the stiffer layer exhibiting nonhardening 
behavior, a tensile radial stress at the layer interface within 
the contact radius was also obtained (Fig. 6(a)). A similar 
situation exists in the thinner layers, not shown here, with 
respect to the effect of hardening; however, only the stiffer 
layer exhibits tensile radial stresses, while the maximum 
radial stress in the more compliant layer does not differ 
appreciably from that of the nonhardening case (Fig. 6(a)). 
The interfacial hoop stress in the thicker layer, shown in Fig. 
8(b), exhibits a similar strain-hardening effect. A tensile 
hoop stress exists at the interface from the axis of symmetry 
to beyond the contact radius. The maximum tensile stress 
increases with the layer stiffness and hardness and the strain 
hardening of the layer and substrate. Similarly, for the thin- 
ner layers, tensile hoop stresses occur in the same region only 
for the stiffer layer, while for the more compliant layer the 
hoop stress is purely compressive for all the hardening cases. 
Thus, strain hardening increases both the tensile radial and 
tensile hoop stresses at the layer interface, thereby increasing 
the susceptibility to interracial cracking for thicker and stiffer 
layers. The effect of strain hardening on the interfacial 
stresses in the layer becomes less pronounced as the thick- 
ness, stiffness, and hardness of the layer decrease. 
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Fig. 8 Effect of layer  st i f fness and st ra in-hardening exponent  on 
the  s t resses  at the layer  interface (Z/ay = 6 - )  at the m a x i m u m  load 
of the first load half -cycle:  (a )  radial  and (b )  hoop stress 

The interfacial substrate stresses for the hardening cases, 
not presented here for the sake of brevity, are similar to 
those shown in Fig. 7. The radial stresses are compressive 
and vary insignificantly with the layer properties. The hoop 
stresses are also primarily compressive but become slightly 
tensile at r/ay = 15 for n = 0.3. The hoop stress remains 
entirely compressive for n = 0.5, indicating that the band of 
tensile hoop stress which constrains the substrate plastic zone 
in the nonhardening case does not reach the interface for 
this case. This is again quite similar to the effect of hardening 
on the hoop stress arising in the indentation of a homoge- 
neous half-space examined in the previous work, and is due 
to the material supporting greater stresses by strain harden- 
ing rather than entirely through the development of a con- 
straining band of tensile hoop stress surrounding the plastic 
zone. 

The variation of the maximum shear stress at the 
layer/substrate interface as a function of the nondimensional 
strain parameter A is shown in Fig. 9 for different material 
cases. Figure 9(a) shows the effect of the layer thickness and 
stiffness on the maximum interfacial shear stress for nn = 0.0. 
For values of A less than approximately 10, the maximum 
shear stress depends strongly on the layer thickness and 
material properties, increasing with layer stiffness (and hard- 
ness) and decreasing with layer thickness. However, as the 
indentation approaches a fully plastic state, the maximum 
interfacial shear stress approaches a constant value of ap- 
proximately 0.58o-y, which is equal to the shear yield stress of 
the substrate. Figure 9(b) shows the maximum interracial 
shear stress as a function of strain hardening and stiffness of 
the thinner layers, which exhibit the greater range of A 
values. Results for the nonhardening layered medium with 
/~ = 2 are also shown for comparison. Similarly to the sub- 
strate maximum von Mises stress, shown in Fig. 3(b), the 
maximum interfacial shear stress depends only on the strain- 
hardening exponent as the indentation approaches the fully 
plastic state. Thus, according to the results shown in Figs. 
9(a) and 9(b), thinner and harder layers require a greater 
interfacial strength during the initial stages of indentation, 
but as plastic deformation increases, the interracial shear 
strength is controlled solely by the strain-hardening charac- 
teristics of the layer and the substrate for a given layer 
thickness. Similar trends are observed for the thicker layer, 
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r ials 

but in view of the smaller range of A values the trends are 
less obvious. 

In the previous study of indentation of a homogeneous 
half-space (Kral et al., 1993), tensile surface stresses occurred 
at the contact edge under maximum load. These arose in the 
radial direction for the hardening materials and in the hoop 
direction for the nonhardening materials. The interface 
stresses in the substrate and the surface stresses for a half- 
space with substrate properties obtained in the previous work 
are presented in Fig. 10. Figure 10(a) shows radial stress 
distributions for the material cases with n = 0.5, which ex- 
hibited the highest tensile radial stress in the homogeneous 
half-space indentations. As shown in Fig. 10(a), in the pres- 
ence of a hard layer, the substrate is subjected to only 
compressive radial stresses. Thus, the layer protects the sub- 

Table  1 A p p r o x i m a t e  indentat ion loads for initial y ie ld*  

P/Py 
Medium ~=0.0067 

~2 13=4 g=2 
Layer 2.6 10.0 2.6 

Substrate 6.4 6.4 39.8 

*For strain hardening exponents in the range of zero to 0.5. 

~=0.02 

6.4 
39.8 

strate from the high tensile stresses at the contact edge 
produced from direct indentation, thereby enhancing the 
substrate's resistance to crack initiation and subsequent wear. 
In the previous study of indented homogeneous half-spaces, 
a compressive hoop stress at the surface was observed for 
hardening materials. The nonhardening homogeneous half- 
space exhibited entirely compressive radial stresses at the 
surface, but was subjected to a tensile hoop stress at the 
contact edge. Figure lO(b) shows that the intervening hard 
layer significantly reduces the peak tensile stress occurring in 
the nonhardening homogeneous half-space, generating in the 
substrate a much smaller tensile hoop stress at a larger 
radius. Therefore, the hard layer protects the substrate from 
potential damage at the contact edge under direct indenta- 
tion due to either the tensile radial stress encountered in 
hardening materials or the tensile hoop stress arising in 
perfectly plastic materials. 

3.2 Evolution of Plasticity. The loads at which yielding 
is first observed in both the layer and the substrate are given 
in Table 1 for all the material cases investigated. In all cases, 
except for ~ = 0.0067 and /3 = 4, yielding occurs first in the 
layer. Hence, the inception of yielding in the layer is favored, 
except for sufficiently thin, stiff, and hard layers. In the 
presence of the layers, the load for the inception of yielding 
in the substrate is at least six times greater than the load at 
the onset of yielding in a homogeneous half-space with 
substrate properties, i.e., P/Py = 1.0. The yield loads of the 
substrates covered by the thicker layers are significantly 
greater than those with the thinner layers. 

Figure 11 shows the evolution of the equivalent plastic 
strain for the thicker and relatively softer layer. Figure l l ( a )  
demonstrates that the inception of yielding occurs in the 
layer, as indicated in Table 1, on the axis of symmetry. As the 
load increases, the size of the plastic zone in the layer 
increases and an elastic core forms at the center of the 
contact area, as was also the case with the indentation of the 
homogeneous half-space. At a load P/Py = 39.8, yielding 
begins in the substrate at the interface near the axis of 
symmetry (Fig. l l (b)) .  At a heavier load, P/Py = 100.6, the 
elastic core at the surface disappears, and the maximum 
equivalent plastic strain in the layer moves away from the 
axis of symmetry and toward the contact edge near the 
surface (Fig. 11(c)). At the maximum load P/Py = 300, the 
layer exhibits a maximum plastic strain near the surface and 
close to the contact edge, while the substrate maximum 
occurs at the interface at a distance from the axis of symme- 
try of about two-thirds of the contact radius. This is similar to 
the behavior of the homogeneous half-space, where the con- 
straint of the rigid indenter and the outlying elastic material 
caused the maximum plastic strain to move away from the 
axis of symmetry and toward the surface (Kral et al., 1993). 

Contours of equivalent plastic strain for the other non- 
hardening cases at the maximum load P/Py = 300 of the first 
load half-cycle demonstrated similar characteristics. The 
plastic strain in the layer reached a maximum just below the 
contact edge, while the substrate maximum occurred at the 
interface and moved outward with the contact edge. In all 
cases, the maximum equivalent plastic strain occurred in the 
substrate and decreased with both layer thickness and hard- 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  MARCH 1995, Vol.  62 1 3 5  

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Eeq 
1 ... 0.0001 
2 ... 0.0020 
3 ... 0,0045 
4 ... 0,0080 
5 ... 0.0120 
6 ... 0.0150 

(a) (b) 
1 2 

(c) 

2 

)5  6 

(d) 

Fig.  11 Evolution of equivalent plastic strain during the first load 
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ness. The size of the plastic zone in the layer decreased with 
increasing layer stiffness and hardness, the difference being 
more pronounced for the thicker layer. However, the size of 
the plastic zone in the substrate decreased only slightly with 
layer thickness and was only marginally affected by the layer 
material properties. Strain hardening in the thicker layer and 
the substrate caused the maximum plastic strain in the layer 
to remain at the interface, although a local maximum still 
occurred in the layer near the contact edge, similar to that 
shown in Fig. l l (d)  for the nonhardening medium. Since the 
hardening material can support a greater load by increasing 
the resistance to plastic deformation, in addition to expan- 
sion of the plastic zone, the full development of the maxi- 
mum plastic strain near the contact edge will not occur until 
reaching a load heavier than that of the nonhardening cases. 
Similarly, the hardening cases did not exhibit the excursion of 
the maximum plastic strain in the substrate away from the 
axis of symmetry that was apparent in the nonhardening 
cases, as shown in Fig. 11 for example. The maximum plastic 
strain decreased with increasing hardening, again because 
strain hardening allows the material to support a greater 
stress for the same plastic strain. The sizes of the plastic 
zones in the layer and substrate for the hardening cases were 
slightly smaller than the companion nonhardening cases with 
the same material properties, for the same reason discussed 
above. 

3.3 Residual Stresses and Reyielding. Figure 12 shows 
the residual radial and hoop stresses at the layer interface for 
the nonhardening cases as a function of the layer thickness 
and stiffness. The residual radial stress, shown in Fig. 12(a), 
is compressive for the thicker layer, but for the thinner layer 
it reaches high tensile values near the axis of symmetry, with 
the maximum increasing significantly with layer stiffness. The 
minimum radial stress again occurs at about the maximum 
contact radius. A similar trend is shown in Fig. 12(b) for the 
residual hoop stress, with the stress for the thicker layer 
being compressive near the axis of symmetry but reaching 
high tensile values for the thinner layer. All the layers exhibit 
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Fig. 12 Residual stresses at the layer interface (z/ay = 2 -  for 
= 0 . 0 0 6 7  and Z/ay = 6 -  f o r  ~ = 0 .02 )  after the first unload 

h a l f - c y c l e  as  a f u n c t i o n  of layer thickness, stiffness, and hardness: 
( a )  radial and (b) hoop stress 

a tensile residual hoop stress for r/at, >_ 12. The tensile 
maximum in that region decreases with increasing layer 
thickness and/or decreasing layer stiffness and hardness. The 
residual stress distributions at the layer interface shown in 
Fig. 12 should be compared with those occurring at the end 
of the first load half-cycle (Fig. 6). The thinner layers exhibit 
greater tensile radial stresses after the first unload half-cycle; 
conversely, the thicker and harder layer exhibits a greater 
tensile radial stress at the interface during the load half-cycle, 
while the thicker and softer layer experiences entirely com- 
pressive loaded and residual radial stress distributions. A 
similar situation exists with the hoop stress. From the axis of 
symmetry to a radial distance fla. = 12, the thinner layers 

• Y 

are subjected to a greater tensile hoop stress after the unload 
half-cycle, while a greater tensile hoop stress occurs in the 
thicker and harder layer during the load half-cycle. The 
thicker and softer layer maintains a compressive hoop stress 
in this region during the entire load cycle. All cases exhibit a 
tensile residual hoop stress for flay > 15 which is higher or 
comparable to the loading stress in the same region. Thus, 
large tensile residual stresses may occur in the nonhardening 
layers, especially as the layer thickness decreases. In particu- 
lar, the thinner layers exhibit tensile residual radial and hoop 
stresses near the axis of symmetry and for r/a > 15 which 

. Y 

are significantly higher than those occurring under load, 
thereby increasing the tendency to initiate cracks during 
unloading. 

Figure 13 shows the interface stresses in the thicker layer 
as a function of the layer stiffness and hardness and the 
strain-hardening properties of the layer and substrate. The 
results presented in Fig. 12 for the softer nonhardening layer 
are also shown for comparison. A tensile residual radial 
stress may develop inside the contact region, depending on 
the layer stiffness and the strain-hardening properties of the 
medium, as shown in Fig. 13(a). The tendency to generate a 
tensile residual radial stress increases with both the layer 
stiffness and strain-hardening exponent. A comparison with 
the results shown in Fig. 8(a) indicates that the tensile 
residual radial stresses are smaller than the tensile stresses at 
the end of the first load half-cycle. Thus, the greatest suscep- 
tibility to circumferential cracks at the interface of the thicker 
layers occurs during the load half-cycle. Results for the 
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Fig. 13 Residual stresses at the layer interface after the first 
unload half-cycle as a function of layer stiffness and strain-harden- 
ing exponent: (a) radial and (b) hoop stress 

thinner layers, not presented here for the sake of brevity, 
also indicated an increase in the tensile residual radial stress 
at the axis of symmetry with hardening, although there was 
little difference in the tensile maximum stress between n = 
0.3 and 0.5• As in the thinner nonhardening layers discussed 
above, the maximum residual interracial radial stress within 
the contact radius in the thinner hardening layers is greater 
than the corresponding radial stress under the maximum 
load. 

For the stiffer layers with greater strain-hardening expo- 
nents, Fig. 13(b) shows that the residual hoop stress at the 
layer interface is also tensile in the region r/a. < 12, similar • . . ,Y . 
to the thinner layers shown an Fig. 12(b). Again, comparison 
with the results shown in Fig. 8(b) indicates that the tensile 
residual stresses in this region are significantly less than 
those at the end of the first load half-cycle. All materials 
exhibit a tensile residual hoop stress in the region r/a. > 13 . . . .  y - -  
which decreases with increasing strata hardening. These 
stresses are comparable to those shown in Fig. 8(b) for the 
end of the load half-cycle. Thus, the greatest tendency to 
initiate radial cracks at the interface of the thicker layers 
again exists during the load half-cycle. For the thinner layers, 
the residual stress at the interface from the axis of symmetry 
to the contact radius is greater than the stress in the loaded 
condition, which is similar to the nonhardening layered 
medium. Thus for the thinner layers, the tendency for inter- 
facial layer cracking is greatest after the completion of the 
entire load cycle. 

Figure 14 shows the residual stresses at the substrate 
interface for the nonhardening layers. Figures 14(a) and 
14(b) illustrate that the residual radial stress is compressive 
in the entire region, while the residual hoop stress is com- 
pressive until roughly the contact radius, where it becomes 
tensile. The tensile hoop stress decreases with increasing 
layer thickness and stiffness. The residual normal stress, 
shown in Fig. 14(e), is tensile on the axis of symmetry and at 
other interracial points for all the material cases shown, 
indicating the possibility of interface delamination. The maxi- 
mum tensile normal stress occurs on the axis of symmetry 
and increases with layer thickness and stiffness. The tensile 
residual normal stress decreases with decreasing layer thick- 
ness since the layer interface is closer to the stress-free 
surface boundary. The residual shear stress at the interface, 

a'°l . . . .  (a)l I . . . .  (b)l 

0 , 0  

~ - 1 . 5  

~°1 . . . .  (c)l I . . . .  (d)l 
-= 05 

'~ o.o 21:..-:~ ~.;,.. ~I'--: " .............. 
L -- ~0.0067, 6=2, z/ay=2 + I 

-0.5 I I i " I I r . . . . . .  ~=0.0067~=4, z/a~,=2 + -] 
L . . . .  ~=0.02, [~=2, Z/ay=6+ J 

-1 o -I I - ~=oo2, 6=4, ~ay=e+ / 
-1.5 I I I p 

0 5 10 15 20 25 0 5 10 15 20 25 
Radial Distance (day) 

Fig. 14 Residual stresses at the substrate interface after the first 
unload half-cycle as a function of layer thickness, stiffness, and 
hardness: (a)  radial, (b)  hoop, (c )  normal, and (d)  shear stress 
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Fig. 15 Residual stresses at the substrate interface after the first 
unload half-cycle as a function of layer stiffness and strain-harden- 
ing exponent: (a)  radial, (b )  hoop, (c )  normal, and (d)  shear stress 

shown in Fig. 14(d), is only marginally influenced by the layer 
thickness and stiffness. 

Figure 15 shows the variation of the residual stresses at 
the substrate interface for the thicker layer as a function of 
strain hardening and layer material properties. Results for 
/3 = 2 and n = 0.0 are also shown for comparison. The 
residual radial stress, shown in Fig. 15(a), is again compres- 
sive over the region shown for all material cases, while the 
hoop stress, shown in Fig. 15(b), becomes slightly tensile for 
r/ay > 14, with the maximum tensile stress decreasing with 
increasing strain hardening and layer stiffness. Figure 15(c) 
shows that tensile normal stresses exist for all the material 
cases, with the peak tensile stress on the axis of symmetry 
increasing primarily with the layer stiffness. The peak tensile 
normal stress also increases with hardening of the layer and 
the substrate, but the increase is significant only when the 
strain-hardening exponent increases from zero to 0.3. There 
is no appreciable difference in the results corresponding to 
n = 0.3 and 0.5. Thus, the layer may be subject to delamina- 
tion upon removal of the load, with the greatest tendency to 
delaminate occurring on the axis of symmetry and increasing 
predominantly with the layer stiffness and hardness and 
secondarily with the amount of strain hardening. Figure 
15(d) shows that the residual shear stress also increases 
slightly with the layer stiffness• However, comparison with 
the shear stresses at the maximum load showed insignificant 
differences in maximum magnitude. Consequently, layer 
debonding due to high interfacial shear stress may occur 
during either loading or unloading. 
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. . . . .  n=05 Figure 17 shows the effect of strain hardening on the 
residual stresses along the axis of symmetry for the thicker 

2o layer. The results for /3 = 2 and n = 0.0 are also shown for 
comparison. The peak tensile radial (hoop) stress in the hayer 
changes insignificantly as the strain-hardening exponent in- 

25 , , , , creases from zero to 0.3. However, as the strain-hardening 
-4 -2 0 2 4 --4 -2 0 

Residual Stress (~/~y) 

Fig. 17 E f f e c t  o f  layer stiffness and strain-hardening exponent on 
the residual stresses along the axis of symmetry: (a) radial (hoop) 
and (b) normal stress 

The results for the residual radial and hoop stresses at the 
substrate interface, shown in Figs. 14 and 15, differ from 
those for the indentation of a homogeneous half-space, in 
which the residual radial and hoop surface stresses were 
tensile throughout the contact region. It was previously shown 
in Fig. 10 that the layer protected the substrate from tensile 
stresses occurring under direct contact during the load half- 
cycle. Thus, the layer protects the substrate from high tensile 
stresses arising due to direct contact with the homogeneous 
half-space during both the load and unload half-cycles. 

The distribution of the residual stresses along the axis of 
symmetry for the nonhardening layered media is shown in 
Fig. 16. Figure 16(a) shows that all the material cases exhibit 
a tensile radial (hoop) stress in the layer at depths z/a. < 2 
for ~: = 0.0067 and Z/ay < 5 for ~ = 0.02. The tensile rYadial 
stress in the layer increases with layer stiffness and hardness 
and decreases with layer thickness. Figure 16(b) shows that 
the residual normal stress along the axis of symmetry also 
exhibits tensile values for all the layers, with the maximum 
tensile stress increasing with layer thickness and stiffness. 
For the thinner layers, ~: = 0.0067, the maximum tensile 
residual normal stress occurs at the layer/substrate interface 
(Z/ay = 2), while for the thicker layers, ~: = 0.02, the maxi- 
mum occurs in the layer prior to the interface (z/a, = 6) at a 
depth z/a v = 4. The residual normal stress is always tensile 
at the layer interface, as was mentioned in the discussion of 

exponent increases to 0.5, the peak tensile radial stress in the 
layer decreases. The radial (hoop) stress is compressive in the 
substrate, with the compressive maximum decreasing with 
strain hardening. Beyond z/ay = 23, there is no discernible 
difference between the residual stresses for the various mate- 
rial properties. Results for the thinner layer, not shown here, 
are somewhat different in that the peak tensile stress in the 
layer increases slightly as the hardening exponent increases 
from zero to 0.3, but then changes little between n = 0.3 and 
0.5. The residual normal stresses, shown in Fig. 17(b), exhibit 
a tensile maximum in the layer above the interface which 
increases between n = 0.0 and 0.3 and decreases between 
n = 0.3 and 0.5. However, at the layer interface (z/ay = 6) 
there is practically no difference between the tensile normal 
stresses for n = 0.3 and 0.5, although both are higher than 
the corresponding value for the nonhardening case. Thus, the 
tendency for delamination of the thicker layer due to a 
tensile residual normal stress at the layer interface (z/a. = 6) 
• , . 2 "  

increases as strain hardening as introduced, but does not 
change appreciably when the strain-hardening exponent is in 
the range of 0.3 to 0.5. Results for the thinner layer, not 
presented here, demonstrated insignificant variations in the 
residual normal stress with strain hardening. All cases re- 
vealed slightly tensile values at the layer interface, but the 
stresses were considerably less than those for the thicker 
layer with the same material properties. 

Figure 18 shows contours of residual stresses for the 
thinner layer, ~: = 0.0067, with properties /3 = 2 and n = 0.0. 
The contours of maximum principal stress, o-1, shown in Fig. 
18(a), demonstrate several regions of tensile residual stress. 
The highest tensile stress occurs in the layer from the inter- 
face up to approximately half the layer thickness. Compari- 
son with the contours shown in Fig. 18(b) indicates that this 
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maximum tensile principal stress is in the radial direction. 
This region of tensile stress produces the tensile residual 
stresses at the layer interface observed in Fig. 12(a). For the 
thicker nonhardening layers, this region of high tensile radial 
stress exists in roughly the middle of the layer, so that the 
tensile stress does not reach the interface. Thus, the stresses 
at the layer interface for the thicker nonhardening layers are 
compressive in the region fla. < 12, as shown in Fig. 12. 

• , y  - -  . . 

Strain hardening produces a thicker region of tensde residual 
radial and hoop stress in the layer, causing the tensile resid- 
ual stress to reach the interface, thus producing the tensile 
residual stresses at the interface shown in Fig. 13. Finally, a 
region of relatively high residual principal stress exists at the 
surface just beyond the final contact radius. Comparison of 
the contours shown in Figs. 18(a) and 18(d) indicates that 
this principal stress is in the hoop direction, as was also 
indicated previously by Kral et al. (1995). The contours of 
normal stress, shown in Fig. 18(c), exhibit slight discontinu- 
ities across the interface, which are due to the necessarily 
incomplete averaging of the integration point data to the 
interface nodes, and very small residual normal stress values 
in the layered medium. 

In contrast to the homogeneous medium, which exhibited 
limited yielding during the unload half-cycle in only a small 
surface region at the contact edge (Kral et al., 1993), Fig. 19 
shows that the nonhardening layered media contain large 
regions of reyielding material in the substrate at the 
layer/substrate interface. Shown in the figure are contours of 
residual von Mises equivalent stress revealing the yielding 
regions after the indentation load is completely removed. 
The substrate yielding regions are given by the contours with 

• r~/=O'y = 1.0, i.e., contour number 3 in Figs. 19(a) and 19(c) 
2) and contour number 2 in Figs. 19(b) and 19(d) 

(/3 = 4). The thinner layers exhibit reyielding in the substrate 
at the interface just inside the maximum contact radius and 
approaching the axis of symmetry (Figs. 19(a) and 19(b)). 
The thicker layers exhibit yielding along the entire interface 

from the axis of symmetry to just inside the maximum contact 
radius in a roughly semi-elliptical region (Figs. 19(c) and 
19(d)). In both cases, the yielding region for the stiffer layer 
is larger than that for the more compliant layer of the same 
thickness. 

Although there were no yielding regions in the layer when 
the contact load was completely removed, the nonhardening 
material cases did exhibit yielding regions in the layer during 
the unload half-cycle. For the thicker layers (£ = 0.02) and 
the thinner and softer layer (£ = 0.0067, /3 = 2), layer yield- 
ing during unloading involved only a few isolated integration 
points, primarily near the surface. The thinner and harder 
layer (£ = 0.0067, /3 = 4) exhibited yielding during the un- 
load half-cycle in a relatively large region, given roughly by 
the area enclosed by contour number 4 in Fig. 19(b). Points 
within this region continued to yield between loads P/P = 

Y 

300 and 25, with the size of the yielding region gradually 
decreasing as the load was reduced. There was no further 
yielding in this region when the load was reduced below 

'P/Py = 25. 
For the hardening layered media, reyielding during the 

unload half-cycle was much more restricted. Only the hard- 
ening case with ~ =  0.02, /3 = 4, and n = 0.3 exhibited 
reyielding in the substrate. This is the most likely hardening 
case to reyield, given the tendency of substrate reyielding to 
be slightly promoted by the thicker layers and substantially 
enhanced by the stiffer layers, as shown in Fig. 19 for the 
nonhardening layered media. However, this reyielding region 
was much smaller than those for the nonhardening cases, 
forming a semi-ellipse extending from the axis of symmetry to 
a distance of only r/ay = 4 and from the interface (Z/ay = 6) 
to a depth of only z/ay = 7. This region still yields at P/Py = 
0. In addition, several of the hardening cases exhibited lim- 
ited regions of reyielding in the layer near the surface, which 
became elastic prior to complete unloading. Only the cases 
with ~ = 0.0067, /3 = 4, and n = 0.3 and 0.5 showed yielding 
in a sizable region, given approximately by the area enclosed 
by contour number 5 in Fig. 19(b), and in both cases the 
unloading became elastic after reaching a load P/Py = 15.5. 
No other significant reyielding occurred in the hardening 
cases. Thus, the large regions of increasing plastic strain that 
existed in the nonhardening materials are significantly re- 
duced or eliminated because of strain hardening. 

3.4 Subsequent Load Cycles. The stresses at the layer 
interface and along the axis of symmetry show relatively little 
change during the subsequent load and unload half-cycles 
from the results already presented for the first half-cycles. 
The variation of stress with load cycle is most pronounced for 
the nonhardening material cases, while the hardening cases 
exhibit virtually no variation in the stresses at the layer 
interface or the axis of symmetry. A similar situation existed 
for the surface stresses (Kral et al., 1995). As a typical case, 
Fig. 20 shows the stresses at the layer interface as a function 
of the load half-cycle. The general characteristics of the 
stress distributions remain the same, except for a slight 
decrease in the radial and hoop stresses near the axis of 
symmetry with repeated loading. Virtually no difference ex- 
ists beyond r/ay = 10. These variations are typical of all the 
nonhardening materials. Therefore, the stress distributions 
remain fairly similar to those presented previously, with only 
relatively minor variations arising in subsequent load cycles• 

Figure 21 shows the dependence of the maximum tensile 
principal stress in both the layer and the substrate on the 
load cycle. Results for the maximum stress in the layer and 
the substrate are shown for the nonhardening cases in Figs. 
21(a) and 21(c) and for the hardening cases in Figs. 21(b) 
and 21(d), respectively. The maximum tensile principal stress 
during the first load half-cycle (load cycle = 0.5) is shown for 
consistency with the stress results presented previously. The 
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values at load cycles equal to 1, 2, and 3 are the maximum 
tensile principal stresses over the entire load cycle. Filled 
symbols indicate that the maximum occurred during the 
loading portion of the cycle, while open symbols indicate that 
the maximum occurred during the unloading portion of the 
cycle or in the completely unloaded (residual) state. If the 
maximum during the first load cycle occurs during loading, 
that point is simply repeated at 0.5 and 1. In most cases, the 
maximum tensile principal stress occurs during the first load 
cycle, and subsequent cycles produce a maximum principal 
stress equal to or slightly less than that of the first cycle. In 
those cases where the maximum stress increases in subse- 
quent cycles, the increase is only a few percent; therefore, to 
a good approximation, the highest principal stress is achieved 
during the first load cycle. For the nonhardening cases, Fig. 
21(a) shows that the maximum principal stress in the layer 
increases with layer stiffness and hardness and decreases 
with layer thickness. For the more compliant layers, the 
maximum tensile stress occurs in the unloaded condition for 
all three cycles• This is also the case for the stiffer layers, 
with the exception of the maximum stress during the first 
load cycle for the case with ~ = 0.02 and /3 = 4. Figure 21(b) 
shows that although strain hardening slightly increases the 
maximum tensile stress in the more compliant layers, signifi- 
cantly higher maximum tensile stresses arise in the stiffer 
layers. In the more compliant hardening layers, the maximum 
principal stress decreases with increasing layer thickness but 
is relatively insensitive to the strain-hardening exponent, and 
all maxima occur during the load half-cycles. The tensile 
stress in the stiffer hardening layers increases significantly 
with hardening and, again, decreases with increasing layer 
thickness• In the thicker layers, the maxima always occur 
during the load half-cycles, while the thinner layers always 
exhibit a maximum during the unload half-cycles. Thus, strain 
hardening increases the maximum tensile stress in the layer, 
while generally the maximum tensile stress is decreased by 
increasing the layer thickness and/or decreasing the layer 
stiffness and hardness. 

According to Fig. 21(c), the maximum tensile principal 
stress in the nonhardening substrates is significantly less than 
that in the layer, with maxima between 0 25o:, and 0 4o: The . ' y " y .  

maxima occur predominantly during the unload half-cycles 
and their location is always at or near the axis of symmetry 
near the maximum depth of the plastic zone. This maximum 
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and hardening, (b)  and (d),  material cases. Filled symbols indicate 
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is due to the tensile hoop stress surrounding the plastic zone, 
as was previously discussed. For the hardening cases, shown 
in Fig. 21(d), the peak of the maximum tensile principal 
stress is always reached during unloading. For substrates with 
the more compliant layers (/3 = 2), the maximum tensile 
stress is relatively independent of the layer thickness and the 
strain-hardening exponent of the media. The maximum ten- 
sile stress is significantly higher in the substrates with the 
stiffer and harder layers (/3 = 4); additionally, the maximum 
tensile stress in these substrates increases significantly with 
the layer thickness and decreases only slightly with strain 
hardening. 

During subsequent load cycles, the maximum von Mises 
equivalent stress oscillates between the same maximum and 
minimum values established in the first load cycle, with the 
maximum over a cycle always occurring during loading. The 
only exception is the case with ~ = 0.02, /3 = 4, and n = 0.3, 
which is the only hardening case to exhibit reyielding of the 
substrate during unloading and appreciable accumulation of 
plastic strain during the subsequent cycles. In this case, the 
maximum yon Mises stress in the substrate increases slightly 
with each half-cycle• During subsequent load cycles, the 
maximum interfacial shear stress for all cases oscillates be- 
tween the negative maximum established during the first load 
half-cycle and a positive maximum at the end of the unload 
half-cycle. The maximum residual shear stress lies between 
approximately 0 4o: and 0 6o:, for most cases, but is always • ' y ,  " y 

less than the mterfaclal shear stress during the load half-cycle. 
The thinner layers exhibit higher maximum interfacial shear 
stresses than the thicker layers. 

The size and shape of the established plastic zones do not 
change during subsequent load and unload half-cycles. All 
the material cases continue to yield and to accumulate plastic 
strain during repeated indentation, although most of the 
hardening cases exhibit almost insignificant increases in plas- 
tic strain, i.e., of the order of 10 - 6  o r  less. Continued 
yielding is identified by those integration points exhibiting an 
increase in equivalent plastic strain during the half-cycle. The 
average increase in equivalent plastic strain, A Eeq , is given by 
the average computed over all these points. Figure 22 shows 

eeq as a function of the number of load and unload half- 
cycles for the various material cases considered. Points la- 
beled 0.0 indicate no increase in plastic strain during the 
particular half-cycle. Results for the thinner layers are shown 
in Figs. 22(a) and 22(c) and for the thicker layers in Figs. 
22(b) and 22(d). Between the first and second load half- 
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cycles, the nonhardening cases exhibit at least an order of 
magnitude decrease in the accumulation of plastic strain. 
The accumulation of plastic strain remains relatively constant 
between the second and third load half-cycles. The case 
having ~ = 0.02, /3 = 4, and n = 0.3 exhibits a decrease in 
the accumulation of plastic strain of about two orders of 
magnitude between the first and second load half-cycles, 
followed by a constant accumulation in the third load half- 
cycle. This is the only hardening case exhibiting reyielding in 
the substrate during the unload half-cycles. The remainder of 
the hardening cases exhibit a decrease of about four orders 
of magnitude between the first and subsequent load half- 
cycles, decreasing to negligible average increases of the order 
o f  10  - 7  . The accumulation of plastic strain during the unload 
half-cycles, shown in Figs. 22(c) and 22(d), shows similar 
trends. The nonhardening cases and the case with £ = 0.02, 
/3 = 4, and n = 0.3 exhibit only a small decrease in ,~ ~eq o v e r  

the unload half-cycles. The remainder of the hardening cases 
show a substantial decrease in the accumulation of plastic 
strain with subsequent unload half-cycles, with all cases 
reaching average increases in equivalent plastic strain of the 
order of 10  - 6  o r  less during subsequent cycles. Accumula- 
tions of the order of 10 - °  or less may be attributed to 
numerical error, and these cases may be considered to have 
reached a steady-state elastic cycle. In addition, the accumu- 
lation of plastic strain in these cases occurs over relatively 
few integration points, and the stress distributions are indis- 
tinguishable from those established during the first load 
cycle. Several cases do reach complete shakedown for the 
unload half-cycles, i.e., they show no further increase in 
plastic strain during the unload half-cycles. The accumulation 
of plastic strain during subsequent load cycles appears to be 
most sensitive to the reyielding of the substrate during the 
unload half-cycle. All the nonhardening cases exhibit sub- 
strate yielding during unloading and appreciable continued 
yielding during subsequent cycles. Only the hardening case 
with £ = 0.02, /3 = 4, and n = 0.3 exhibits significant contin- 
ued yielding; this is the only hardening case in which yielding 
of the substrate occurs during unloading. Even though hard- 
ening in this study is isotropic, reyielding of the substrate for 
this case requires a sufficient adjustment in the equilibrium 
stresses of the subsequent loaded state to produce continued 
plastic deformation. This follows a consistent trend with the 
nonhardening cases, since the thicker and harder layers ex- 
hibit more plastic strain accumulation during unloading and 
also more accumulation of plastic strain during the subse- 
quent load half-cycle. Thus, the thicker and harder layer with 
the least strain hardening would be expected to follow the 
same pattern, which is indeed the case. As pointed out by 

Moyar in the discussion of Merwin and Johnson (1963), a 
material with isotropic hardening would be expected to even- 
tually shake down to an elastic steady-state cycle, although 
this may take several cycles. 

Though the stress state in an elastic-plastic layered medium 
under repeated indentation loading is complex, some predic- 
tions can be made regarding shakedown. According to the 
statical, or lower bound, theorem (Johnson, 1985), if any 
self-equilibrating residual stress field can be found which, in 
combination with the elastic stresses resulting from the re- 
peated load, never exceeds the yield limit, then the material 
will shake down to an elastic steady-state. Conversely, if no 
such residual stress field exists, then the material will not 
achieve a steady-state elastic cycle under repeated loading. 
For the thicker layers, ~ = 0.02, yielding occurs in the sub- 
strate on the axis of symmetry during both the load and 
unload half-cycles, as shown in Figs. 19(c) and 19(d). Along 
the axis of symmetry there is no shear stress and the radial 
and hoop stresses are equal. Thus, the maximum shear stress 
can be directly obtained from the difference of the radial 
(hoop) and normal stresses. Due to symmetry, the maximum 
shear stress and maximum yon Mises equivalent stress on the 
axis of symmetry are the same, i.e., the Tresca and von Mises 
yield conditions are identical. Results from Fig. 7 for the 
radial and normal stresses at the substrate interface indicate 
that the normalized maximum shear stress on the axis of 
symmetry is (~rzz - O'rr)/2 ~ry = -0.5,  the negative shear.yield 
stress. Results from Fig. 14 indicate that the normalized 
maximum residual shear stress at the substrate interface on 
the axis of symmetry is (~rz~ - o',.r)/2O'y = 0.5, the positive 
shear yield stress. Thus, the maximum shear stress alternates 
between the negative and positive shear yield stresses, pass- 
ing through the center of the yield locus. Consequently, it is 
not possible to add a residual stress distribution to prevent 
the material from yielding. Although these are elastic-plastic 
stresses, it is expected that the elastic stresses due to the 
repeated load will be at least of this magnitude, since the 
stress state moves from a yield point through the elastic state 
to another yield point diametrically opposite on the yield 
locus. Indeed, the stress state must move only along the 
diameter of the yield locus due to the symmetries involved. 
Thus, according to the lower bound theorem, the material 
will not shake down to an elastic steady-state. 

The situation for the thinner layers, ~ = 0.0067, is more 
difficult to analyze because the yielding region during both 
the load and unload half-cycles, shown in Figs. 19(a) and 
19(b), includes all four stress components, and thus the stress 
state at these material points may be anywhere inside or on 
the yield locus. In order to assess the likelihood of shake- 
down, the stress state for each integration point inside the 
unload yielding region, shown in Figs. 19(a) and 19(b), was 
transformed to the deviatoric principal stresses (stresses on 
the m--plane) and was compared with the deviatoric principal 
stresses at the end of the previous load half-cycle. The 
distance between the two points on the yield locus was then 
calculated. This distance was considerably smaller than the 
diameter of the yield locus for all integration points. Thus, 
shakedown to an elastic steady-state cannot in principle be 
ruled out, since it may be possible to add a residual stress 
that will shift the stress path entirely inside the yield locus. 
Three additional complete load cycles, for a total of six, were 
performed for the case ~ = 0.0067, /3 = 2, and n = 0.0 in 
order to track the average change in equivalent plastic strain. 
For both the load and unload half-cycles, the average change 
in plastic strain decreased slightly with each cycle, but at a 
decreasing rate, indicating that the system may eventually 
approach a plastically deforming steady-state cycle. 

The foregoing theorem and discussions regarding shake- 
down apply to only elastic-perfectly plastic materials. The 
materials exhibiting strain hardening must always shake down 
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to an elastic cycle by virtue of the isotropic strain hardening, 
though this may take several cycles to occur, as was stated 
above. Three additional complete load cycles were also per- 
formed for the case ~ = 0.02, /3 = 4, and n = 0.3, also for a 
total of six cycles. For  both the load and unload half-cycles, a 
steadily decreasing accumulation of equivalent plastic strain 
was observed. 

4 Conc lus ions  

The deformation characteristics resulting from repeated 
elastic-plastic indentation of a half-space covered with a 
harder and stiffer layer were investigated with the finite 
element method. Indentat ions were performed up to loads of 
300 times the load necessary to initiate yielding in a homoge- 
neous half-space consisting of the substrate material. 

Large tensile radial and hoop stresses occur in the layer at 
the layer/substrate interface under  the maximum load. These 
tensile stresses increase with the layer stiffness and hardness 
and also with the strain-hardening exponent of both the layer 
and the substrate. Such tensile stresses may promote the 
initiation of subsurface circumferential and radial cracks at 
the layer interface and eventually lead to debonding of the 
layer upon subsequent loading. For a given layer thickness, 
the interracial shear stress and the maximum von Mises 
equivalent stress in the substrate are functions of only the 
strain-hardening exponent when the indentation approaches 
fully plastic deformation, which is consistent with indentation 
results for homogeneous half-spaces. 

Thinner  and harder layers promote large tensile residual 
stresses at the layer interface. A tensile residual normal 
stress also occurs at the layer interface after the first load 
cycle. This stress increases with the layer thickness, stiffness, 
and hardness, and could lead to eventual delamination of the 
layer. 

The stresses at the substrate interface remain predomi- 
nantly compressive for both load and unload half-cycles, 
except for small tensile hoop stresses slightly beyond the 
contact edge and on the axis of symmetry just below the 
plastically deformed region. The tensile hoop stress arises as 
a band surrounding the plastic zone in the substrate and 
prevents the expansion of the plastic zone for the nonharden-  
ing materials, similar to the indentation of a homogeneous 
half-space. Since the substrate stresses remain predominantly 
compressive, the substrate is not  subjected to the relatively 
large tensile radial and hoop stresses arising in the indenta- 
tion of a homogeneous half-space with substrate properties. 

Yielding in the nonhardening materials occurs during the 
first unload half-cycle in large substrate regions and, in some 
cases, in the layer. Only the substrate regions continue to 
yield in the residual (completely unloaded) state. Strain hard- 
ening in the layer and the substrate virtually eliminates 
yielding during the unload half-cycle for most cases, except 
for a few isolated integration points. In some hardening 
cases, yielding continues to occur in small regions in the 
layer, and one hardening case exhibits a small yielding region 
in the substrate. 

To a good approximation, the maximum tensile stresses in 
both the layer and the substrate are established during the 
first load cycle, indicating that the greatest propensity for 
crack initiation is during the first cycle. The stresses at the 
layer/substrate interface (both in the layer and the substrate) 
and on the axis of symmetry show only slight changes with 
subsequent load cycles for the nonhardening materials and 
virtually no change for the hardening materials. 

Subsequent load cycles produce continued yielding within 
the established plastic zones. In general, the increase in 

average equivalent plastic strain decreases with subsequent 
load cycles, much more so in the hardening cases than the 
nonhardening cases. With only one exception, all hardening 
cases exhibit a decrease in the average equivalent plastic 
strain accumulation to less than 3 × 10 -7 during each of the 
last load and unload half-cycles, which is considered to be 
indicative of a steady-state elastic cycle. For the elastic-per- 
fectly plastic material cases, the media having the thicker 
layers will not shake down to an elastic steady-state cycle. 
Shakedown to an elastic cycle, however, cannot be ruled out 
for the thinner layers. The cases with strain hardening will 
eventually shake down to an elastic steady-state by virtue of 
the isotropic strain-hardening behavior. 
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Bifurcation of Equilibrium in 
Thick Orthotropic Cylindrical 
Shells Under Axial Compression 
The bifurcation of equilibrium of  an orthotropic thick cylindrical shell under axial 
compression is studied by an appropriate formulation based on the three-dimensional 
theory of  elasticity. The results from this elasticity solution are compared with the 
critical loads predicted by the orthotropic Donnell and Timoshenko nonshallow shell 
formulations. As an example, the cases of an orthotropic material with stiffness 
constants typical of glass/epoxy and the reinforcing direction along the periphery or 
along the cylinder axis are considered. The bifurcation points from the Timoshenko 
formulation are always found to be closer to the elasticity predictions than the ones 
from the Donnell formulation. For both the orthotropic material cases and the isotropic 
one, the Timoshenko bifurcation point is lower than the elasticity one, which means 
that the Timoshenko formulation is conservative. The opposite is true for the Donnell 
shell theory, i.e., it predicts a critical load higher than the elasticity solution and 
therefore it is nonconservative. The degree of  conservatism of  the Timoshenko theory 
generally increases for thicker shells. Likewise, the Donnell theory becomes in general 
more nonconservative with thicker construction. 

Introduction 
The buckling strength of composite structural members is 

an important design parameter because of the large strength- 
to-weight ratio and the lack of extensive plastic yielding in 
these materials. Fiber-reinforced composite materials can be 
used in the form of laminated shells in several important 
structural applications. Although thin plate construction has 
been the thrust of the initial applications, much attention is 
now being paid to configurations classified as moderately 
thick shell structures. Such designs can be used, for example, 
in the marine industry, as well as for components in the 
aircraft and automobile industries. Moreover, composite lam- 
inates have been considered in space vehicles in the form of 
circular cylindrical shells as a primary load-carrying structure. 

Stability equations for cylindrical shells have been avail- 
able in the literature mainly for isotropic material (e.g., 
Fli~gge, 1960; Danielson and Simmonds, 1969) and a number 
of analyses have been performed for the buckling strength, 
based on the application of the cylindrical shell theories (e.g., 
Simitses, Shaw, and Sheinman, 1985). The relatively simple 
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equations suggested by Donnell (1933) have formed the basis 
for stability analyses in the literature more than any other set 
of cylindrical shell equations. Besides the original first set of 
Donnell equations, a second, more accurate set of cylindrical 
shell equations that are not subject to some of the shallow- 
ness limitation of the first set is also well quoted in the 
literature (Brush and Almroth, 1975). The latter one will be 
used in the comparison studies in this paper. Furthermore, in 
presenting a shell theory formulation for isotropic shells, 
Timoshenko and Gere (1961) included an additional term in 
the circumferential displacement part of the second equation 
(these equations are briefly described in Appendix II). Both 
the isotropic "nonshallow" Donnell and Timoshenko and 
Gere formulations can be readily extended for the case of 
orthotropic material. 

In view of possible structural applications of anisotropic 
shells with sizable thickness, it is desirable to conduct a 
comprehensive study of the performance of both the readily 
available Donnell and Timoshenko orthotropic shell theories 
with respect to the shell thickness. An accurate solution for 
the stability characteristics of moderately thick shells is also 
needed in order to enable a future comparison of the accu- 
racy of the predictions from various improved shell theories 
(e.g., Whitney and Sun, 1974; Librescu, 1975; Reddy and Liu, 
1985; see also Noor and Burton, 1990 for a review of shear 
deformation theories). 

Elasticity solutions for the buckling of cylindrical shells 
have been recently presented by Kardomateas (1993a) for the 
case of uniform external pressure and orthotropic material; a 
simplified problem definition was used in this study ("ring" 
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assumption), in that the prebuckling stress and displacement 
field was axisymmetric, and the buckling modes were as- 
sumed two-dimensional, i.e., no z component of the displace- 
ment field, and no z-dependence of the r and 0 displace- 
ment components. It was shown that the critical load for 
external pressure loading, predicted by shell theory can be 
highly nonconservative for moderately thick construction. A 
more thorough investigation of the thickness effects was 
conducted by Kardomateas (1993b) for the case of a trans- 
versely isotropic thick cylindrical shell under axial compres- 
sion. In that work, a full dependence on r, 0, and z of the 
buckling modes was assumed. The reason for restricting the 
material to transversely isotropic was the desire to produce 
closed-form analytical solutions. 

Regarding numerical treatments of this problem, Bradford 
and Dong (1978) performed an analysis of laminated or- 
thotropic cylinders using semianalytical finite elements, with 
the modeling occurring in the thickness direction. Although 
the main focus was on natural vibrations, the case of elastic 
buckling was also discussed. Results for the isotropic and 
transversely isotropic case, based on that finite element 
model, were computed by Dong (1994) and compared with 
these in Kardomateas (1993b), with good agreement. 

In the present work, a generally cylindrically orthotropic 
material under axial compression is considered. Again, the 
nonlinear three-dimensional theory of elasticity is appropri- 
ately formulated, and reduced to a standard eigenvalue prob- 
lem for ordinary linear differential equations in terms of a 
single variable (the radial distance r), with the applied axial 
load P the parameter. The formulation employs the exact 
elasticity solution by Lekhnitskii (1963) for the prebuckling 
state. A full dependence on r, 0, and z of the buckling 
modes is assumed. The work by Kartomateas (1993b) in- 
cluded a comprehensive study of the performance of the 
Donnell (1933), the Fliigge (1960), and the Danielson and 
Simmonds (1969) theories for isotropic material. These theo- 
ries were all found to be nonconservative in predicting bifur- 
cation points, the Donnell theory being the most nonconser- 
vative. In addition to considering general orthotropy for the 
material constitutive behavior, the present work extends the 
latter work by investigating the performance of another clas- 
sical formulation, i.e., the Timoshenko and Gere (1961) shell 
theory. In this paper specific results will be presented for the 
critical load and the buckling modes; these will be compared 
with both the orthotropic "nonshallow" Donnell and Timo- 
shenko shell formulations. As an example, the cases of an 
orthotropic material with stiffness constants typical of 
glass/epoxy and the reinforcing direction along the periphery 
or along the cylinder axis will be considered. 

F o r m u l a t i o n  

Let us consider the equations of equilibrium in terms of 
the second Piola-Kirchhoff stress tensor ~ in the form 

div(~.F T) = 0, ( la)  

where F is the deformation gradient defined by 

F = I + gradV, ( lb )  

where V is the displacement vector and I is the identity 
tensor. 

Notice that the strain tensor is defined by 

E = ~(FT.F - I).  ( l c )  

More specifically, in terms of the linear strains, 

Ou 1 0 v  u 3 w  
err O r '  e°° r 30 + - - '  ezz , (2a)  r 3 z  

1 3u  Ov v Ou Ow 
. . . . . .  , erz = - -  -b - - ,  er° r O0 + Or r Oz Or 

3 v  1 d w  
= - -  + - - -  ( 2 b )  

e°z 3 z  r 30 ' 

and the linear rotations, 

1 Ow do  Ou Ow 
2 w r 2 w o 

r O0 d z  ' Oz Or ' 

3 v  v 1 Ou 
2°)z dr  + ' (2c) r r 00 

the deformation gradient F is 

[ 1 +err  ½ero--O)z ½ e r z + W O ]  

F=1½ero+~,z 1 + % 0  ½eoz--Ogr[ .  (3) 

L ½ % -  % ½% + ~°r l + e z z  J 

At the critical load there are two possible infinitely close 
positions of equilibrium. Denote by Uo, Vo, w o the r, O, and z 
components of the displacement corresponding to the pri- 
mary position. A perturbed position is denoted by 

u = u o +  ceul; v = v o +  a u l ;  w = w o +  a w l ,  (4) 

where a is an infinitesimally small quantity. Here, 
a u l ( r ,  O, z) ,  a v l ( r ,  0, z), a w l ( r ,  O, z )  are the displacements 
to which the points of the body must be subjected to shift 
them from the initial position of equilibrium to the new 
equilibrium position. The functions ul(r ,  O, z) ,  v t ( r ,  O, z) ,  
wl(r, O, Z) are assumed finite and a is an infinitesimally 
small quantity independent of r, 0, z. 

Following Kardomateas (1993a), we obtain the following 
buckling equations: 

0 
~ r  ( , 0 , 0 ,) ~rr - %o Wz + Zrz 0% 

1 O O , 
- ' + o o ; ) °  + T z  -  oz ,z° ' + , 

1 
t 0 P 

+ r ( ° ' ~ r -  %'o + rr°~w; + "o°~W; - 2"rroWz) = 0, (5a) 

d 
_ _  ,Tt 0 t 0 

1 O , o , O , 
O0 ( oO + 'O+ -- 5 7  ( +Oz - ,o, ) -~" 7 - -  0]~! q'oz OJr ) Jv "1- 0 ! 0 ' 

1 
r (  o ,  o ,  o ,  o ,  + 2r'o + ~rrrW~ -- %oWz + ZozW o -- " r ~ % )  = 0, (5b) 

O 
_ _  ,lit 0 t 0 t 

1 O. z '  o , o , O , 

+ r O0 " + ) 

I ~.(, o ,  
+ - + , ° o 4 )  = o ( 5 c )  

In the previous equations, ~ri ° and W ° are the values of ~ij 
and wj at the initial equilibrium position, i.e., for u = u0, 
v = v  0 and w=w°, ,  and ~',j and w} are the values at the 
perturbed position, i.e., for u = ul, v = v I and w = w 1. 
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The boundary conditions associated with (la) can be ex- 
pressed as 

(F .ET) .N = t ( V ) ,  (6) 

where t is the traction vector on the surface which has 
outward unit normal h~ = (1, rh, ~) before any deformation. 
The traction vector t depends on the displacement field 
V =  (u, v, w). Again, following Kardomateas (1993a), we 
obtain for the lateral and end surfaces: 

( O'r' r -- TrOo ojt z -~- TrOz O); ) l -~ -(Trto -- O-o00 £Ot z -~- ,T:z (.O; ) m 

+(T;z - ~'o°zW'z + ~z°zO);)fi = 0, (7a) 

+ - + (%'0 + , go4  - 

0 i 0 ,' ^ +(~-; .  + ~-.o,, - ,~ . ,o , )n  = o, (7b )  

(~;z + ~~. , ' ,  - ~°oo;)f + (~;z + %o°00; - ~ o4),~ 

q"(O'ztz "}- ToOzOOr I -- TrOzg.O;)n = O. (7C) 

Pre-buckling State. The problem under consideration is 
that of an orthotropic cylindrical shell compressed by an axial 
force applied at one end. The stress-strain relations for the 
orthotropic body are 

O'rr ell C12 C13 0 0 0 Err 

O'00 C12 C22 C23 0 0 0 E00 

O'zz = C13 e23 C33 0 0 0 ezz ( 8 )  

"Toz 0 0 0 C44 0 0 YOz 

r~z 0 0 0 0 cs5 0 Y,z 

TrO 0 0 0 0 0 C66 %0 

where c 0. are the stiffness constants (we have used the 
notation 1 -= r, 2 ~ O, 3 -~ z).  

Let R~ be the internal and R 2 the external radius (Fig. 1). 
Lekhnitskii (1963) gave the stress field for an applied com- 
pressive load of absolute value P, in terms of the quantities: 

k = /r.i/a''a33 _ a123 (9a) 

a22a33 -- a223 ' V 

(a23 - -  a13)a33 . (9b) 

= (alt - a22)a33 + (a223 - at23) 

2 ~  
= - R f )  - - -  

a33 

[R:~-  R12 " (R~ +' - Rf+')  2 
X ~------(a13 -..I- a23 ) -- R22k - R~  k a13k+1 + ka23 

( R ~ -  ' - R f  - ' )2( R , R 2 )  2 a13 -- ka23 

R~ ~ - R~ k k - 1 
(9c) 

Notice that the formula quoted in Lekhnitskii (1963) for 
has a slight error in the last term. 

The stress field for orthotropy is as follows: 

Gr ° = P ( C  o + C,r k-1 + C2r-k- ' ) ,  (10a) 

%0 o = P(C o + C,kr k- '  - C 2 k r - k - l ) ,  ( lOb) 

F i g .  1 

1 
h 

I e 
I ! 

]t t 
R2 !~ 

C y l i n d r i c a l  s h e l l  under axial compression 

¢ o  e [ P C a13-~a23 a13 + ka23 
0 a33 + e l  r k -  1 

a33 

+ c 2 a 1 3  - ka23 ) r - k - 1  , (10c) 
a33 

r ~ =  %1 = ~ = 0, (10d) 

where 

R~ +1 -R~,+ l 

C o = - ~ ;  C , =  R2Z~_R2~ f ,  (10e) 

Rzk-1 -- Rlk-a 
C 2 R22k _ R12k (R1R2) k+l ~ .  (10f)  

Notice that for general orthotropy, both %0 and %00 are 
nonzero. For an isotropic or transversely isotropic body, 
these two stress components are zero. 

In the previous equations, aij are  the compliance con- 
stants, i.e., 

Err 

EO0 

{~zz 

Yoz 

Yrz 

%0 

a l l  a12 

a12 a22 

a13 a23 
0 0 

0 0 

0 0 

a13 0 0 

a23 0 0 

a33 0 0 

0 a44 0 0 

0 0 a55 0 

0 0 0 a66 

- - 
0 G~ 

0 %o 

0 O'zz 

r0z 

rrz 

(11) 

The prebuckling solution just described is an exact elastic- 
ity solution based on the assumption that the stresses do not 
vary along the shell axis. Hence, this solution does not take 
into account the end effects. Recent work by Kollfir (1994) 
has focused on including an axial variation. However, any 
end effects, being of local nature, would not affect the 
(global) buckling behavior. 

Perturbed State. Using the constitutive relations (8) for 
the stresses cri~ in terms of the strains e~,, the strain-dis- . / g 
placement relations (2) for the stratus eij and the rotations 
w~ in terms of the displacements Ul, vl, wl, and taking into 
account (10), tbe buckling Eq. (5a) for the problem at band is 
written in terms of the displacements at the perturbed state 
as follows: 
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Ul,O0 
Cll  Ul,rr + -- C 2 2 - ~  -1- C66 Z ,  F 2 

+ C55-F-~] bll'zz'q- C12 "-}" C66 --  - 2  - r 

( ( TjWl, z - -7-+ 
Wl,z 

+(c13 - c23 ) = 0. (12a)  
r 

The second buckling Eq. (5b) gives 

C66 + Ul'rr + r r 2 + 2 + 

22 r 2 + c44 + 2 J Ul'zz + C66 + c12 ?" 

%oo1. ,o o 
+ C66 -{" C22 q- 2 ] r 2 + C23 -{- c44 --  r 

1 d ~  ° [ v 1 ul. o ] 
+ - 2 d r - r  I v ' ' r  + r -r ] = 0. (12b) 

In a similar fashion, the third buckling Eq. (5c) gives 

(c44+ ÷ _ W ,OOr  

( ( +c33w1,~ + c13 + cs5 - --~--]ul,~ + c23 + cs5 - 

( %°]v1'°~ l d ~  ° .  
+ c 2 3 + c 4 4 -  2 ] r +-2--~-r ( w l ' r -  ul'~) = 0 '  (12c) 

In the perturbed position, we seek equilibrium modes in 
the form 

ul(r, 0, z) = U ( r )  cos nO sin Az; 

vl(r, O, z )  = V ( r )  sin nO sin Az, 

wl(r, O, z) = W(r)  cos nO cos Az, (13) 

where the functions U(r), V(r), W(r) are uniquely deter- 
mined for a particular choice of n and h. 

Notice that these modes correspond to the condition of 
"simply supported" ends since u 1 varies as sin Az and 

d 2 U l  
0 at z = 0, e. Ul dz 2 

Denote now u(i)(r), V(°(r) and w( i ) ( r )  the ith derivative 
of U(r), V(r), and W(r), respectively, with the additional 
notation U(°)(r) = U(r), V(°)(r) = V(r) and W(°)(r) = W(r). 

Substituting in (12a), we obtain the following linear 
homogeneous ordinary differential equation: 

U(r)'cll  + U(ry cll 
F 

+U(r)[(boo + bole)r -2 + bozPr k-3 + 

+bo3Pr -k-3 + (b04 + bosP ) + bo6Pr k-1 + bovPr -k- l ]  

1 
+ E v(i)(r)[(dio + di lP) ri-2 

i = o  

+di2Pr k-3+i -F di3Pr -k-3+i] 

1 
+ E W(°(r)[( f io + f i l e )  ri-1 

i=0 

-t-fi2er k-2+i + fi3er -k-2+i] = 0 

R l _ < r _ < R  2. (14a) 

The second differential Eq. (12b) gives 

V(F)[(go4 + g 0 5 e )  .q_ go6er k- , + goTPr-k-1] 

2 
+ E v(i)(r)[(gio + gilP) ri-2 +gi2 erk-3+i +gi3 er-k 3+i ]  

i = 0  

1 

+ E u(i)(r)[(hio + h . P )  ri-2 
i = 0  

-Fhi2er k-3+i + hi3er -k-3+i] 

+W(r)[( too + tolP)r -1 + to2Pr k-2 + to3Pr -k-2] = 0 

R l _ < r _ < R  2. (14b) 

In a similar fashion, (12c) gives 

2 

W(r)qo4 + E w(i)(r)[(qio + qilP) ri-2 
i = 0  

+qi2er k-3+i + qi3er -k-3+i] 

1 
+ E u(i)(r)[(Sio + sitP) ri-1 + si2 Prk-2+i + si3 Pr-k-2+i] 

i = 0  

+V(r ) [ ( /300  + 13olP)r -1 + 13ozPr k-z +/3o3Pr -k -2 ]  = 0 

R l _ < r _ < R  2. (14c) 

All the previous three Eqs. (14) are linear, homogeneous, 
ordinary differential equations of the second order for U(r), 
V(r) and W(r). In these equations, the c o n s t a n t s  bij , dij , fi.i, 
gi', hi' ,  ti', qij, Si', and 13ij are given in Appendix I and J l J J . . . .  
depend on the material stiffness coefficients cij and k as well 
as the buckling mode constants n and A. 

Now we proceed to the boundary conditions on the lateral 
surfaces r = R,, j = 1, 2. These will complete the formula- . J . . 
tion of the exgenvalue problem for the cnncal load. 

From (7), we obtain for 1 = + 1, rh = ~ = 0: 

0 i i 0 t err'r=0; r r ' 0 + O ; r % = 0 ;  r r z - - , S r % = 0 ,  

at r = R  1,R z. (15) 

Substituting in (8), (2), (13), and (10), the boundary condition 
O'rtr = 0 at r = Rj, j = 1, 2 gives 

C12 U'( Rj)Cll + [U( Rj) --I- gV( R j ) ] -~  - Cl3AW( Rj) = 0,  

j =  1,2 (16a)  

The boundary condition z~' o + ar~°oo'z = 0 at r = R j, j = 1, 2 
gives 

[( Co,  
-~.. [ V( Rj) -1- 5U( Rj) ] --C66 'q- T P ) Rj 

cl pR -2 - pR;k- ] + 2 J + 2 , j =  1,2. (16b) 
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0 , In a similar fashion, the condition ~'r~ -- O'rrWO = 0 at r = Rj,  
j = 1,2, gives 

-~ -PR j  - 2 J ] + 

j = 1,2. (16c) 

Equations (14) and (16) constitute an eigenvalue problem 
for differential equations, with the applied compressive load 
P the parameter, which can be solved by standard numerical 
methods (two-point boundary value problem). 

Before discussing the numerical procedure used for solv- 
ing this eigenvalue problem, one final point will be ad- 
dressed. To completely satisfy all the elasticity requirements, 
we should discuss the boundary conditions at the ends. From 
(7), the boundary conditions on the ends are 

0 t , 0 p ~-/~ + O-~zO~ o -- 0; ~0~ - ~rz~W~ = O; ~r/~ = 0, 

at z = 0 ,  17. (17) 
t Since O-z' ~ varies as sin Az, the condition O-~z 0 on both 

the lower end z = 0, and the upper end z = f, is satisfied if 

mTr 
A = --~-.  (18) 

In a cartesian coordinate system (x, y, z), the first two of 
the conditions in (17) can he written as follows: 

Since based on the buckling modes (13) and (18), r%, w~, ~-d~, 
' and hence ' ' ' and ' all h a v e a c o s ( m r r z / e )  and w r r~z, toy, 'Tyz, O)x, 

variation, they become zero at z = f/(2m). Therefore, it is 
concluded that the constant in (21b) is zero. Similar argu- 
ments hold for r;~. 

Moreover, it can also be proved that the system of resul- 
tant stresses (19) would 
deed, 

d 
7; f f [xO. - ) 

produce no torsional moment. In- 

- YO' z 

+  /x,O'3 
OX 

-  x0y 

7; 

0 ! + 

+ O( yy ] 

t 0 , 

} 8y 

Again, using the divergence theorem, and taking into account 
(20), the previous integral becomes 

f~( ' 0 , - + 

+ ( O'yty "~" rffyoo'~) cos (N,  y)]  - y [ ( o ' ~ : -  r:yW'z ) cos ( lV, x ) 

+( ' r :y-O'y%W'z)COS(lQ,  Y ) l ) d s = O  , (22a) 

hence 

ff [ 0,) (, 0o4) ] o , , o , = z °~zWx Y rxz + °'~z ~"z + O-~zWy = 0; ~'yz - °'~zWx O. (19) x - - dA = const, 

It will be proved now that these remaining two conditions are 
satisfied on the average. 

The lateral surface boundary conditions in the cartesian 
coordinate system (analogous to (7)), with N the normal to 
the circular contour are 

( /T ;x  --  'T~yO):) COS ( / ~ ,  X)  + ( ' 7 " : y -  O-y%O)'z)cos (]V, y ) = 0 ,  

(20a) 

+ + + GO;z)eOs( ,y)=0. 
(20b) 

Using the equilibrium equation in cartesian coordinates 
(analogous to (5)), gives 

8 

sl [0 0 : -- 7 x ( O " x x -  TxO, O);) + ~ y ( T S y -  O'yy£O z dA,  

(21a) 

Using now the divergence theorem for transformation of an 
area integral into a contour integral, and the condition (20a) 
on the contour, gives the previous integral as 

+ f[Iox;- xO ,o:)cos( ,x) 

+('r~.y-O'y~OO;)Cos(lV,  y ) ] d s = O ,  

where A denotes the area of the annular cross-section and y 
the corresponding contour. 

Therefore 

f fA (  , o , (21b) 7xz + O'zzwy)dA = const. 

(22b) 

and this constant is again zero since r:~ = r;z = w'x = w~ = 0 
at z = l /(2m).  

As has already been stated, Eqs. (14) and (16) constitute 
an eigenvalue problem for ordinary second-order linear dif- 
ferential equations in the r variable, with the applied com- 
pressive load P the parameter. This is essentially a standard 
two-point boundary value problem. The relaxation method 
was used (Press et al., 1989) which is essentially based on 
replacing the system of ordinary differential equations by a 
set of finite difference equations on a grid of points that 
spans the entire thickness of the shell. For this purpose, an 
equally spaced mesh of 241 points was employed and the 
procedure turned out to be highly efficient with rapid conver- 
gence. As an initial guess for the iteration process, the shell 
theory solution was used. An investigation of the conver- 
gence showed that essentially the same results were pro- 
duced with even three times as many mesh points. Finding 
the critical load involves a minimization step in the sense that 
the eigenvalue is obtained for different combinations of n, 
m, and the critical load is the minimum. These results are 
discussed in the following. 

Discussion of Results. Results for the critical compres- 
sive load, normalized as 

P R2 
P 

- E 3 h '  

were produced for a typical glass/epoxy material with moduli 
in GN/m 2 and Poisson's ratios listed below, where 1 is the 
radial (r), 2 is the circumferential (0), and 3 the axial (z) 
direction: E 1 = 14.0, E 2 = 57.0, E 3 = 14.0, G12 = 5.7, G 2 3  

= 5.7, G31 = 5 .0 ,  l'12 = 0.068, 1)23 = 0.277, v3~ = 0.400. It 
has been assumed that the reinforcing direction is along the 
periphery. 

In the shell theory solutions, the radial displacement is 
constant through the thickness and the axial and circumfer- 
ential ones have a linear variation, i.e., they are in the form 
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Table 1 Comparison with shell theories 

O r t h o t r o p i c  w i t h  circumferential reinforcement, i / R z  = 5 

P Rz 
Critical Loads, 15 = rr( R]  - R~) E z h  

Table 2 Comparison with shell theories 

Isotropic, E =14 GN/m 2, v = 03, t//R2 = 5 

P R2 
Critical Loads, P = v( R] - R~ ) E3h 

Moduli in GN/m~: E2 = 57, E1 = E3 = 14, Gz, = 5.0, G12 = G23 = 5.7 
Poisson's ratios: v12 = 0.068, v23 = 0.277, v31 = 0.400 

R 2 / R ,  Elasticity Donnell Shell'~ Timoshenko Shellt 
(n, m) (n, m) (% Increase) (n, m) (% Increase) 

1.05 0.6764 (2,1) 0.7904 (4,9) (16.9%) 0.6735 (2,1) (-0.4%) 

1.10 0.6641 (2,2) 0.7883 (3,6) (18.7%) 0.6461 (2,2) (-2.7%) 

1.15 0.6284 (2,2) 0.7716 (2,3) (22.8%) 0.6218 (2,3) (-1.1%) 

1.20 0.6134 (2,3) 0.7505 (2,3) (22.4%) 0.5559 (1,1) (-9.4%) 

1.25 0.5186 (1,1) 0.7560 (2,4) (45.8%) 0.4549 (1,1) (-12.3%) 

1.30 0.4429 (1,1) 0.7771 (1,1) (75.5%) 0.3876 (1,1) (-12.5%) 

t See Appendix II 

ul(r, O, z )  = U o cos nO sin hz, 

I ] v l ( r , O , z ) =  Vo +- - -~ - - (Vo  + nUo) sinnOsin hz. 

(23a) 

w,(r,  0, z)  = [W 0 - (r  - R)AU0] cos nO cos hz (23b) 

where U0, V0, W0 are constants (these displacement field 
variations would satisfy the classical assumptions of err = ero 
= erz = 0). 

A distinct eigenvalue corresponds to each pair of the 
positive integers m and n. The pair corresponding to the 
smallest eigenvalue can be determined by trial. It should be 
noted that for isotropic material, some additional shallow- 
ness assumptions lead to the well known direct and simple 
formula: P c r  = E ~ h 2 / ¢ 3 ( 1  - r e ) ;  the performance of this 
formula with moderate thickness in isotropic shells was dis- 
cussed in Kardomateas (1993b). 

As noted in the Introduction, there are two sets of the 
Donnell equations that are most widely used for shell theory 
solutions. The original first set has been referred as the 
"shallow" shell formulation, whereas, a second, more accu- 
rate set of cylindrical shell equations that are not subject to 
some of the shallowness limitations of the first set has been 
referred as the "nonshallow" formulation. The latter has 
been also called the "nonsimplified" Donnel theory in Kardo- 
mateas (1993b). The other benchmark shell theory used in 
this paper is the one described in Timoshenko and Gere 
(1961). In this theory, an additional term in the circumferen- 
tial displacement part of the second equation is included. 
This additional term is the RNfo,~ z = -P°V,zz/2*r where p0 
is the absolute value of the compressive load at the critical 
point. In the comparison studies we have used an extension 
of the original, isotropic Donnell and Timoshenko formula- 
tions for the case of orthotropic material. The linear alge- 
braic equations for the eigenvalues of both the Donnell and 
Timoshenko theories are given in Appendix II. 

Concerning the present elasticity formulation, the critical 
load is obtained by finding the solution P for a range of n 
and m, and keeping the minimum value. Table 1 shows the 
critical load and the corresponding n, m, as predicted by the 
present three-dimensional elasticity formulation, and the crit- 
ical load and the corresponding n, m, as predicted by both 

R2/R1 Elasticity D o n n e l l ~  Timoshenkot Flilggfl Danielson:~ 
(n, m) (n, m) (n, m) (n, rn) & Simmonds 

(n.m) 
% Increase % Increase % Increase % Increase 

1.05 0.4426 (2,1) 0.5474 (2,1) 0.4348 (2,1) 0.4525 (2,1) 0.4559 (2,1) 
23.7% -1.8% 2.2% 3.0% 

1.10 0.3910 (2,1) 0.4871 (2,1) 0.3865 (2,1) 0.4019 (2,1) 0.4088 (2,1) 
24.0% -1.2% 2.8% 4.6% 

1.15 0.4547 (2,1) 0.5488 (2,2) 0.4373 (2,2) 0.4710 (2,1) 0.4814 (2,1) 
20.7% -3.8% 3.0% 5,9% 

1.20 0.4371 (2,2) 0.5272 (2,2) 0.4184 (2,2) 0.4020 (2,2) 0.4705 (2,2) 
20.6% -4.3% 5.7% 7.6% 

1.25 0.4420 (2,2) 0.5403 (2,2) 0.4269 (2,2) 0.4728 (2,2) 0.4837 (2,2) 
22.0% -3.5% 6.8% 9.3% 

1.30 0.4487 (1,1) 0.5709 (2,2) 0.3895 (1,1) 0.4915 (1,1) 0.4987 (1,1) 
27.2% -13.2% 9.5% 11.1% 

'~ See Appendix II 
From equations (24). 

the "nonshallow" Donnell and Timoshenko shell equations. 
A length ratio l /R  2 = 5 has been assumed. A range of 
outside versus inside radius, R2/R 1 from somewhat thin, 
1.05, to thick, 1.30, is examined. 

Tables 1 and 2 give the predictions of the Donnell and 
Timoshenko shell theories for the orthotropic and isotropic 
material, respectively, in comparison with the elasticity one. 
It is clearly seen that 

(1) the bifurcation points from the Timoshenko formula- 
tion are always closer to the elasticity predictions than the 
ones from the Donnell formulation. 

(2) For both the orthotropic material cases and the 
isotropic one, the Timoshenko bifurcation point for the Don- 
nell shell theory, is always higher than the elasticity solution, 
which means that the Donnell formulation is nonconserva- 
tive. Moreover, the Donnell theory becomes in general more 
nonconservative with thicker construction. 

(3) On the contrary, the Timoshenko bifurcation point is 
lower than the elasticity one in all cases considered, i.e., the 
Timoshenko formulation is actually conservative in predicting 
stability loss. The degree of conservatism of the Timoshenko 
theory generally increases for thicker shells. 

Furthermore, the bifurcation load for the isotropic case 
(Table 2) is smaller than the corresponding one for the 
circumferentially reinforced orthotropic case (Table 1), the 
difference becoming increasingly smaller for thicker con- 
struction. This conclusion is true for either the elasticity or 
the shell theory results (with one exception: for R2/R 1 = 1.30 
the Timoshenko prediction is larger for the isotropic case by 
1.3 percent). More specifically, based on the elasticity solu- 
tion, for R2/R 1 = 1.10, the orthotropic case shows a 70 
percent higher bifurcation load than the isotropic material, 
whereas for R2/R 1 = 1.25, the orthotropic material shows 
only a 17 percent higher bifurcation load than the isotropic 
case. Therefore, the effect of the circumferential reinforce- 
ment in raising the critical load relative to the isotropic case 
is diminished with thicker construction. 

For isotropic materials, two other shell theories, namely 
the Fliigge (1960) and the Danielson and Simmonds (1969) 
can easily produce results for the critical loads in shells and 
should, therefore, be compared with the present elasticity 
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QF, DS , (24a) 
p'OF'Ds} = Eff.lz[(rhZ + nZ)2 + n2 ] 

where the numerator for the Fliigge theory is 

T ' h 3  ((~2 + n 2 )  4 - -  2 [  p?~2 + 3 r ~ t 4 n 2  
QF 6R(]- --- p 2 )  

+(4- v)rh2n 4 + .r/6] + 2(2- p)/~2/~2 ..{_ F/4)  + ~ / 4  

(24b) 

and for the Danielson and Simmonds equations, 

Table 3 Comparison with shell theories 

O r t h o t r o p l c  wi th  axial  re inforcement ,  £/R~ = 5 

Critical Loads, p = P R2 ~(n~ - n~) E~h 

Moduli in GN/m2:E3 = 57, E2 = E1 = 14, G31 = G23 = 5.7, Gl~ = 5.0 
Poisson's ratios: v12 = 0.400, v23 = 0.068, ual = 0.277 2. I s o t r o p l c  

R2/Ri Elasticity Donnell Shellt Timoshenko Shellt 
(~, m) (~, m) (~, .~) 

% Increase % Increase 

1.05 0.7666 (4,4) 0.7913 (4,4) (3.2%) 0.7517 (4,4) (-1.9%) 

1.10 0.6794 (2,1) 0.7879 (3,3) (16.0%) 0.6473 (2,1) (-4.7%) 

1.15 0.6575 (2,1) 0.7877 (2,1) (19.8%) 0.6287 (2,1) (-4.4%) 

1.20 0.6686 (2,2) 0.7547 (2,2) (12.9%) 0.6157 (2,2) (-7.9%) 

1.25 0.6646 (2,2) 0.7563 (2,2) (13.8%) 0.6140 (2,2) (-7.6%) 

1.30 0.6801 (2,2) 0.7823 (2,2) (15.0%) 0.5319 (2,2) (-7.1%) 

t See Appendix II 

~ h  3 

QDs 6R(1 - v 2) (fit2 + n2)2(rn2 + n2 - 1)2 + th4' 

(24c) 

where R is the mean radius and h the shell thickness Again, 
a distinct eigenvalue corresponds to each pair of the positive 
integers m and n, the critical load being for the pair that 
renders the lowest eigenvalue. 

A comparison of the data in Table 2 shows that the values 
of n, m at the critical point for the elasticity, as well as the 

Table 4 Results for thin shells 

~ P R2 Critical Loads, P = ~ " R ~ )  E3h 

1. Or tho t rop ic  wi th  c i r c u m f e r e n t i a l  r e i n f o r c e m e n t  

R2/R, Elasticity DonneU Shellt Timoshenko Shell[ 
(n,m) (n,m) (% Increase) (n,m) (% Increase) 

1.04 0.6872 (2,1) 0.8049 (4,8) (17.1%) 0.6811 (2,1) (-0.9%) 

1.02 0.7822 (6,13) 0.7957 (6,13) (1.7%) 0.7786 (6,13) (-0.5%) 

1.01 0.7904 (9,20) 0.7971 (9,20) (0.9%) 0.7895 (9,20) (-0.1%) 

0.5170 (2,1) 
2.7% 

0.5052 (3,1) 
1.1% 

I~2/R1 Elasticity DonnellJ Timoshenkot Flllgge~ Danielson:~ 
(n, m) (n, m) (n, m) (n, m) & Simmonds 

(n,Tn) 
% Increase % Increase % Increase % Increase 

1.~4 0.5034 (2,1) 0.5723 (3,2) 0.4940 (2,1) 0.5143 (2,I) 
13.7% -1.8% 2.2% 

1.02 0.4999 (3,1) 0.5548 (3,1) 0.4983 (3,1) 0.5033 (3,1) 
11.0% -0.3% 0.7% 

1.01 0.5517 (3,1) 0.5977 (7,5) 0.5493 (3,1) 0.5549 (3,1) 
8.3% -0.4% 0.6% 

0.5559 (3,1) 
0.8% 

t See Appendix n 
• ~ From equations (24). 

1.03~ 

1.02 

Elas . ~  Elasticity-Oft hot roplc 

C 

1.01 

1.00 

solution. The expression for the eigenvalues derived from the 
Fli.igge (1960) equations, PF ° and the more simplified but just 
as accurate one by Danielson and Simmonds (1969), PD°S are 

! 
Shell Theory 

0.99 , ! , I , I , 
0 .80  0 .85  0 .90  0 .95  1 .00  

r/R2 
Fig. 2(a)  " Elgenfunction" U(r)  versus normalized radial distance r I R2, for the 
orthotroplc with circumferential reinforcing direction case and the isotroplc one 
(shell theory would have a constant value throughout, U(r)  = 1 for both cases) 
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Fig, 2(b)  " Eigenfunctlon" V(r)  versus normalized radial distance r / R  2 from the 
elasticity solution end the Donnell shell theory, which would show linear variation. 
The results are for the orthotropic with circumferential reinforcing direction case. 

-0.1 

Shell (Donnell) 

El 

k. 

-0.2 

-0.3 

> 

-0 .4  , I , I , I = 

0 .80  0 .85  0 .90  0 . 9 5  1 .00  
r / R 2  

F i g .  2 ( c )  " E l g e n f u n c t i o n "  W(r) versus normalized radial distance r IR2, from the 
elasticity solution and the Donnell shell theory (the latter has a linear variation). The 
results are for the orthotroplc with circumferential reinforcing direction case. 

Fliigge and the Danielson and Simmonds theories show per- 
fect agreement, and that both Fli.igge, and the Danielson and 
Simmonds theories are nonconservative, the degree of non- 
conservatism increasing with thicker shells. We may now 
rank these theories for isotropic materials by concluding that 
the best estimates are provided by the Timoshenko theory, 
followed by the Fli.igge and the Danielson and Simmonds 
theories and finally the Donnell theory. Of these, only the 
Timoshenko theory is conservative. 

Table 3 presents the results for the bifurcation load in the 
case of the same orthotropic material (typical of glass/epoxy), 
which is now positioned so that the reinforcement is axial. To 
be able to perform direct comparisons, the load has now 
been normalized with E2, which is the same as E 3 in the 
other tt~vo cases (Tables 1, 2). It can be seen that the bifurca- 
tion load now is in general higher than both the isotropic and 
the orthotropic with circumferential reinforcement cases. 

Again, based on the elasticity solution, for Rz/R 1 = 1.10, the 
axially reinforced case shows a 74 percent higher bifurcation 
load than the isotropic material, whereas for R2/R ~ = 1.25, 
the axially reinforced material shows a 49 percent higher 
bifurcation load than the isotropic case. Therefore, the effect 
of the axial reinforcement in raising the critical load relative 
to the isotropic case is much less sensitive to the thickness 
than with circumferential reinforcement. Another interesting 
observation is that in all cases, n, m at the critical load for 
the elasticity theory are always less or equal to the corre- 
sponding values of the Donnell shell theory. 

It should also be mentioned that the elasticity results of 
Table 2 for isotropic material that were produced through 
the present formulation, confirm the results from the closed- 
form analytical isotropic solution of Kardomateas (1993b). 
Moreover, this work complements the latter by including a 
comparison with the Timoshenko and Gere shell theory, 
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which is actually found to be the only shell theory that results 
in conservative estimates of the critical load. 

Although the focus of this work is the study of moderately 
thick shells, one would expect buckling to be even more 
important for very thin shell construction. Therefore, Table 4 
shows the bifurcation load from the three-dimensional elas- 
ticity analysis for thin shells in order of decreasing thickness 
(thickness over mean radius, h/R, up to 1/100), in compari- 
son with these shell theories. The results are for the mildly 
orthotropic glass/epoxy material, as well as the isotropic 
case. In all cases, it is seen that the Timoshenko theory 
renders conservative estimates for the critical load, and it is 
again much more closer to the elasticity prediction than the 
Donnell theory. Moreover, the values of (n, m) at the critical 
point for both the elasticity and the Timoshenko theory agree 
perfectly for the thin shells of Table 4, unlike the Donnell 
theory. For the isotropic material, the Fliigge and Danielson 
and Simmonds theories have also been examined and are 
shown to provide much better (although nonconservative) 
estimates than the Donnell theory, with perfect agreement 
with the elasticity results on the values of (n, m) at the 
critical point. 

Finally, to obtain more insight into the displacement field, 
Figs. 2(a,b,c) show the variation of U(r), V(r), and W(r), 
which define the eigenfunctions, for R 2 / R  L = 1.2, as derived 
from the present elasticity solution, and in comparison with 
the Donnell shell theory assumptions of constant U(r), and 
linear V(r) and W(r). These values have been normalized by 
assigning a unit value for U at the outside boundary r = R 2. 
These plots illustrate graphically the deviation of U from 
constant and the deviation of V and W from linearity. 
Although the Donnell shell theory eigenfunction has been 
plotted for V(r) and W(r), the Timoshenko theory line would 
nearly coincide with the latter. 
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A P P E N D I X  I 
For convenience define 

1 coat3 + a23 
Do ~ a33 ' 

at3 + ka23 aa 3 - ka23 
D t = _ C  I , D 2  = _ C  2 

a33 a33 

(A1) 

(A2) 

The coefficients of the first differential Eq. (14a) are 

boo = -@22 + c66n2); b01 = -n2Co/2.0; 

b02 = - C l k n 2 / 2 ;  b03 = Cakrt2/2; 

b04 = - c55A2 ;  b05 = - D 0 h 2 / 2 ;  

606 = -DtA2/2 ;  bo7 = -DaA2/2, (A3) 

dl0 = n ( c l 2  + C66); dll  = -nCo/2; dl z = -nkCl/2; 

d13 = nkC2/2; d00 = --n(C22 "q- ¢66); d01 = -nCo/2; 

do2 = - n k C t / 2 ;  d03 = nkC2/2, (A4) 

fro = - a ( c t 3  + c55); f i t  = ADo/2; fl2 = ADt/2; 

ft3 = AD2/2; foo = A(c23 - c13); fol =f02 =f03 = 0. 

(A5) 

The coefficients of the second differential Eq. (146) are 
given as follows: 

g2o = c66; g21 = Co/2; g22 = Ct/2; g23 = C2/2 

gl0 = c6c,; glt = Co/2; gt2 = C1/2; g13 = C2/2 

goo = --(C22 Ht2 + C66); got = -Co~2; go2 = -Ct/2; 

g03 = - C 2 / 2 ;  go4 = --C44"~'2; go5 = - D o A 2 / 2 ;  

go6 = -D,A2/2; go7 = -D2A2/2, (A6) 

hlo  = - ( c 6 6  -t- c12 )n ;  h l l  = nCo/2; h12 = nCl /2 ;  

hi3 = n C 2 / 2 ;  h00 = - - (C22 q- C66)Ft; hol = -nCo/2; 

h 0 2 = - n C t / 2 ;  h03 = - n C 2 / 2 ,  ( A 7 )  

too = @23 + c44)nA; tm= -nADo/2; 

t 0 2 = - n A D t / 2 ;  t 0 3 = - n A D 2 / 2 .  (A8) 

Finally, the coefficients of the third differential Eq. (14c) 
a r e  

qz0 = C55; q21 = Co/2; q22 = C 1 / 2 ;  q23 = C2/2 

qlo = C55; ql l  = C 0 / 2 ;  q12 = kCI /2;  ql3 = - k C 2 / 2  

qoo = -c44n2; qol = -Con2 /2 ;  qo2 = - k n 2 C l / 2 ;  

qo3 = kn2C2/2; %4 = - c 3 3  ,~-2, ( A 9 )  

s10 = (c55 -.~ c13)~;  si1 = - A C 0 / 2 ;  s12 = - A C i / 2 ;  

sl3 = -AC2/2 ;  Soo = (c23 + css)a;  Sot = - a C o / 2 ;  

So2 = -kaCt/2; So3 = kaC2/2, .(A10) 
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/300 = (c23 + c44)nA; /301 = - n A C o / 2 ;  

/302 = - k n A C 1 / 2 ;  1303 = knAC2/2.  ( A l l )  

A P P E N D I X  I I  

Eigenvalues From Nonshallow Donnell and Timo- 
shenko Shell Theories 

In the shell theory formulation, the displacements are in 
the form 

ul = Uo cos nO sin Az, U 1 = V 0 sin nO sin Az, 

w 1 = W 0 cos nO cos hz, 

where U0, Vo, W o are constants. 
The equations for the nonshallow (or nonsimplified) Don- 

nell shell theory for N ° = N ° = 0, N ° = -P°/(ZTrR) are 
(Brush and Almroth, 1975) 

RN~,~ + N~o,o = 0 

Mo,o 
RNz°'z + N°'° + R + Mzo,~ = O 

Mo,oo 
N o - R N ° u , ~  - R M  . . . .  R 2Mzo,~ o = O. 

The Timoshenko shell theory has the additional term RN° v,~z 
in the second equation. We have denoted by R the mean 
shell radius and by p0 the absolute value of the compressive 
load. 

In terms of the "equivalent property" constants 

C22 = E2h//(1 - 1)231.,32); C33 = E 3 h / ( 1  - P23b,32) 

E3 P23 h h 2 
= ; C44 = G23h , Di] = C i j -~ ,  

C23 1 -- P23P32 

the coefficient terms in the homogeneous equations system 
that gives the eigenvalues are 

0/11 = C23~; 0/12 = (C23 -.I.- C44)n~ ;  

oL13 = _ (C33R)t  2 + C44n2//R), 

[C22 D22 n2 923 ~2 D44A2 ~ 
0/21 = - ~"~-  + ~ + R + - -  2 - - ~ - - )  n,  

C22r/2 D22 n2 D44 A2 
~ = - - ~ -  + c4~ RA: + - ~ r -  + 2 - ~ - ) ,  

0t23 = (C23 + C44)n)t ,  

C22 D22 n4 D23A2n 2 4 D44)t2n 2 
OL31 = ~ -{- T + 2 - - - ~ - - -  + D33A4R + R ' 

C22 D22 n2 D23 A2 . D44 A2 '~ 

0/33 = -- C23 A" 

Notice that in the above formulas we have used the curvature 
expression K~o = (v,z - U,zo)/R for both theories. 

Then the linear homogeneous equations system that gives 
the eigenvalues for the Timoshenko shell formulation is 

O/llU 0 --J- a l 2 V  0 + o~13W 0 = O, (B1) 

0/21Uo + ,~22 + T g P  ° Vo + 0/23wo = 0, (B2) 

c~31 - ~_~pO go + C~3aVo + c~33w0 = 0. (B3)  

For the Donnell shell formulation, the additional term in the 
coefficient of V o in (B2) is omitted, i.e., the coefficient of V o 
is only 0/2z. The eigenvalues are naturally found by equating 
to zero the determinant of the coefficients of Uo, V o, and W o. 
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A Study of Saint-Venant's 
Principle for Composite Materials 
by Means of Internal Stress Fields 
It is well known that end effects in a composite material do not always decay as they do 
in a homogeneous and isotropic material, but there is no unified explanation for this 
difference. We note that the stress field in a composite material can be resolved into two 
kinds: one is the stress distribution in an isotropic and homogeneous reference system 
where Saint-Venant's principle is satisfied and the other is the internal stress field 
induced by the incompatibility. Considering that the incompatibility is proportional to 
the difference between the elastic compliances of the components or to the deviation 
from isotropy, we propose, based on an argument concerning the dislocations associated 
with the incompatibility, a reason why end effects may survive to a long distance in a 
composite material. 

1 Introduction 
Saint-Venant's principle (de Saint-Venant, 1855) for an 

isotropic and homogeneous material is well understood. 
However, it has been pointed out by Horgan (1972 a, b), Choi 
and Horgan (1977, 1978), and Horgan (1982) that end effects 
for an anisotropic or inhomogeneous material survive to a 
long distance from the end. This becomes important in the 
design Or testing of structural composite materials, though it 
is often neglected tacitly in the analysis through the employ- 
ment of simplified boundary conditions. 

For a comprehensive survey on Saint-Venant's principle, 
we refer to the review articles by Horgan and Knowles (1983) 
and Horgan (1989). The early work of Zanaboni (1937) and 
Goodier (1937) formulated the principle using strain energy, 
and yon Mises (1945) and Sternberg (1954) gave another 
formulation (see Fung (1965) for a survey). Motivated by the 
results of Horgan (1972 a, b), Choi and Horgan (1977) 
investigated Saint-Venant's principle for plane anisotropic 
elasticity and semianalytically evaluated the decay of self- 
equilibrated eigenfunctions. A similar analysis for sandwich 
strips was carried out by Choi and Horgan (1978). In these 
papers, the slow decay of end effects due to anisotropy and 
inhomogeneity was established. Saint-Venant's principle for 
composite materials has been discussed by Horgan (1982) for 
plane problems for anisotropic and laminated materials and 
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for cylindrical rods, and by Dong and Goetschel (1982) and 
Okumura et al. (1985) for laminated materials. See Horgan 
(1989) for a discussion of how the foregoing results for 
anisotropic and composite materials play fundamental roles 
in the mechanics of composite materials. 

In the previous papers, the authors proposed the method 
of superposing the stress field of a reference isotropic system 
and the associated internal stress field in obtaining the stress 
field for an inhomogeneous elastic body (Nishioka et at., 
1987) or for an anisotropic one (Arimitsu et al., 1994). In this 
paper, we apply the method to a study of Saint-Venant's 
principle for a composite material. Accepting Saint-Venant's 
principle for a homogeneous and isotropic material, we pro- 
pose an interpretation for the reason why end effects in a 
composite material decay slowly. 

2 Saint-Venant's Principle for Homogeneous and 
Isotropic Materials 

We first illustrate Saint-Venant's principle for plane defor- 
mations of a homogeneous and isotropic material by using a 
finite element method (FEM). The dimensions of the speci- 
men are 100 m m ×  10 mm in size and the domain (50 
m m x  10 ram) is divided into 5364 elements with 2707 nodal 
points (triangular isoparametric element). Since the stress 
profile given in this paper is normalized by the maximum of 
~11, where x 1 is taken as shown in Fig. 1, the stress profile in 
plane stress becomes identical with that in plane strain. The 
effect of a self-equilibrating load acting on the end of a strip 
decreases to about one percent at a distance equal to the 
width of a strip as shown in Fig. 1. From Fig. l(a)  and (b), we 
see that this tendency is almost independent of the distribu- 
tion of the self-equilibrating load. A similar demonstration 
using eigenfunction expansions was provided by Choi and 
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1 

Fig. 1 Stress profile 0"11 under self-equilibrating load; (a) Pl(x2) 
=-3x22 + 25 [MPa], ( b ) P l ( ± 5 ) = - 5 0  [MPa], Pl(O)= 100 [MPa], Pl 
=0  [MPa]on x 2 ~  +_5, x 2~ 0 

Horgan (1977) (see Figs. 2, 3 in that reference). Other finite 
element studies are cited in Horgan (1989). 

For an analytical approach to Saint-Venant's principle, 
Timoshenko and Goodier (1970) introduced the following 
Airy stress function: 

- -  KCOS ..... + - - s i n  (1) ,;b = Cexp_ _ _ c  c c c }'  

where C, 3', and K denote arbitrary constants, 2c the width 
of a strip. This stress function must satisfy the following 
boundary conditions: 

0"22 = 0, 0"12 = 0 on X2 = _+c. (2) 

Boundary condition at the ends perpendicular to the xraxis  
is assumed to be an even function of x z, and the arbitrary 
constants 3' and K are complex numbers. The value of y with 
the smallest positive real part (the lowest decay rate) is 

3' = 2.1061 + 1.1254i. (3) 

The decay rate from the end of a strip is determined by the 
real part of 3', and it agrees with the numerical results in that 
end effects decrease to about one percent at the distance 
equal to 2c from the edge. Since any self-equilibrating load 
can be expressed with the series of eigenfunctions (1) (see 
the discussion of pp. 231-232 of Horgan and Knowles (1983)), 
we see that the decay rate is independent of the distribution 
of the self-equilibrating load and agrees with the numerical 
results shown in Fig. l (a )  and (b). Consequently, when we 
discuss the decay rate from the end of a strip, we can employ 
the stress function expressed in Eq. (1) or the exponential 
factor exp(-2.1061x1/c) to represent end effects in the 
homogeneous and isotropic body. This will be referred to 
later as the reference system. 

(b) 

aal >_ 0.1 

0.1 > all > 0.01 

[ ~ 1  0.01 > crll > -0.01 

~ 0,01 > all > -0.1 

W -0.1 > axl 

Fig. 2 Stress profile of ~rll In longitudinally fiber-reinforced com- 
posite; (a) GFRP (epoxy: Era= 2.93 [GPa], z,= 0.3, glass fiber: 
Ef = 73.5 [GPa]), (b) CFRP (epoxy: Era = 2.93 [GPa], v = 0.3, car- 
bon fiber: Ef = 1 9 6  [ G P a ] )  

3 Saint-Venant's  Principle  for Composi te  Mater ia ls  

Directionally fiber-reinforced composite materials can be 
considered either microscopically inhomogeneous elastic 
bodies consisting of isotropic components or macroscopically 
homogeneous anisotropic elastic bodies. The fibers may fur- 
ther be anisotropic and the following considerations can be 
extended to such a case. Let us consider those two viewpoints 
separately in the following with the same idea of employing a 
reference isotropic system and the associated internal stress 
field induced by the incompatibility. 

3.1 Inhomogeneity. Using a FEM similar to that used in 
Fig. 1, we show numerical results for the hypothetical 
glass/epoxy (Fig. 2(a)) and carbon/epoxy (Fig. 2(b)) inhomo- 
geneous materials containing six longitudinal fibers (volume 
fraction: 50 percent). We assume continuity of displacements 
at interfaces between fiber and matrix. In Fig. 2, E and v 
denote Young's modulus and Poisson's ratio, respectively. 
The subscripts m and f distinguish the matrix and the fiber. 
In the numerical calculation, we employ Pl(x2) = - 3xz 2 + 25 
[MPa] (corresponding to Fig. l(a))  as a self-equilibrating load 
in order to compare the result with that by Okumura et al. 
(1982). We notice that the end effects are transmitted along 
the fibers and that this tendency becomes more pronounced 
as the difference between the elastic constants of the compo- 
nent materials increases. A similar result was found by Choi 
and Horgan (1978) for a sandwich strip. 

To interpret the above results, let us consider a bimaterial 
consisting of isotropic component materials as shown in Fig. 
3, and introduce the internal stress field as follows (Nishioka 
et al., 1987): 

1 Introduce two homogeneous and isotropic reference sys- 
tems represented in Fig. 3, and let them be subjected to the 
same boundary condition as the real system. In these refer- 
ence systems, end effects decay in accordance with Saint-Ve- 
nant's principle. 

2 Cutting along the hypothetical boundaries of the refer- 
ence systems with the reference deformations unchanged, 
two of the segments corresponding to the real system are 
connected at the boundary. In general, neither the continuity 
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, , B ~, + [ . . . .  h ~ ***]  

i i L I i i 
Homogeneous Isotropic 

Real System Reference System Internal Stress 

Fig. 3 Reference system and the internal stress for an Inhomoge- 
neous body 

of displacement nor the action-reaction relation for the stress 
vector is satisfied at the boundary. 

3 We must distribute a body force to nullify the traction 
incompatibility and a surface dislocation to cancel the incom- 
patibility of displacement. The internal stress field is then 
induced due to the body force and the surface dislocation 
distributed along the boundary. However, it is difficult to 
actually get the internal stress field analytically in an inho- 
mogenous body. 

Since the stress distribution for isotropic two-dimensional 
problems under a given traction boundary condition is inde- 
pendent of the elastic constants, the traction incompatibility 
in this case does not arise and only the displacement incom- 
patibility arises along the interphase boundary. The relation 
between the strain field e~ for the reference system A 
shown in Fig. 3 and the stress field o'~j is written by 

s i l l =  A Skujo'ij, (4) 

where S~i .  denotes the elastic compliance (tensor notation 
by Nye (1~67)) for the reference system A and the Einstein 
summation convention is employed. We get also the relation 
for the reference system B, which is similar to Eq. (4). 

Applying Eq. (4) to the isotropic reference system, the 
displacement component u~ for the reference system A 
satisfies the following relations: 

U A = S A A 1,1 11(/}'22 + S12 (/}'11, ( 5 )  

U A A 2,2 = 3 A ~ , 2 2  "1- 811~b,11, (6) 

U A U A ( 1,2 + 2 ,1)  = -2( SA - 3~2) (~ ,12 ,  (7) 

where ~b and the symbol ,i denote the stress function and the 
operator O/Ox i and we have rewritten the elastic compliance 
for isotropic body into that with the matrix notation, Si~ , etc. 

Upon integrating Eqs. (5) and (6), u/A becomes as follows: 

A A X u(  = sdf4,,22axl + s12¢,1 + A  ( 2 ) ,  

U2 A = S]A2~,2 "q- Si~ f{/~,11d3c 2 --~- f 2 A ( X l )  

(~) 

x2 

{ 2~ , -  , = 

(b) 

• f f •  ~rn >_ 0.1 

0.1 > ¢rn > 0.01 

I I 0.01> ~n _> -0.01 

-0.01 > o'11 > -0.1 

W -0.1 >_ o'n 

Fig. 4 Stress profile of ~rll In longi tudinal ly  f iber- re inforced com- 
posite; (a)  GFRP, (b)  CFRP 

displacement 6u i ( x  1) on x 2 = a (interphase boundary) as 
follows: 

8Ul [x2=a = ( S i ~  - - S l ~ ) f ~ , 2 2 d x  1 [x2=a  

+ (S~2 - S~) f4~ , , , dx  1 1,2=~, (11) 

8 u 2  I x 2 = a  = - -  J x =o 

+ (S I - -  Ix2=. .  ( 1 2 )  

When we fix the datum point in connecting the reference 
deformation, we can set the rigid translation and rotation to 
be equal to zero (Nishioka et al., 1987). 

Since the surface dislocation density eli; to cancel the . . . .  J . 
displacement mcompatlblhty on the xixk-plane is defined by 
the following: 

aij = 6uj, k, (13) 

we obtain 

1 2=o = - I x2=o + (s I s - 1 2 ) 4 , , , 1  I 

( 8 )  ff32 [x2=a  = (S~2 - S~2)~ ,12  [x2=a  

(9) + (siAi - S l~ ) f~ /} , l l l dX 2 I x 2 = a ,  

where fla(X2) and f ~ ( x  l) are arbitrary functions. Upon 
substituting Eqs. (8) and (9) into Eq. (7), we get the following 
relation: 

S d [  f{/J,222dx I -.[- f ~ , l l l d X  2 + 2 ~ , 1 2  ] 

A X + f ,  ( 2),2 + f ~ ( x l ) q  = 0. (10) 

Taking account of V2V2~b = 0 and Eq. (10), the arbitrary 
functions fA(x 2) and f2A(Xm) should be linear functions which 
represent the rigid translation and rotation of the reference 
system A. 

Subtracting the displacement for the reference system B 
from Eqs. (8) and (9), we can get the incompatibility of 

x2=a, 

(14) 

(15) 

where we employ the dislocation density and the direction of 
the Burgers vector defined by Mura (1982). The direction of 
dislocation line, the x3-axis, is perpendicular to the x l x  2- 
plane. From Eqs. (14) and (15) where we can choose 
expressed in Eq. (1), we see that the dislocation density is 
proportional to the difference of elastic compliances of the 
components. From the considerations to be given in Section 
4, end effects decay more slowly as the difference between 
the elastic compliances of the component materials increases, 
though it is difficult to evaluate analytically the internal 
stress field from the density of surface dislocations. 

3.2 Anisotropy. We show numerical results for GFRP 
and CFRP which are considered macroscopically as homoge- 
neous and anisotropic bodies (Fig. 4). The examples shown in 

Journal of Applied Mechanics MARCH 1995, Vol. 62/55 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 4(a) and (b) correspond to those shown in Fig. 2(a) and 
(b), respectively, and we employ the macroscopic elastic 
constants obtained by the following rule of mixtures (volume 
fraction of glass or carbon fiber Vi: 50 percent): 

E L = E t . V f +  Era(1 - Vf) ,  (16) 

1 b 
+ - -  (17) 

E T E f  E m ' 

VLT = vfVf  + Urn(1 -- V f ) ,  (18) 

and the reciprocal relation: 

PLT I"TL 
E---~- = E r ' (19) 

where subscripts L denotes the longitudinal direction, T the 
transverse one, L T  the transverse direction in longitudinal 
tension, and TL  the longitudinal direction in transverse ten- 
sion. 

We notice that the end effects are transmitted further into 
the inner domain, and that this tendency becomes more 
pronounced as the degree of anisotropy increases. Hoff (1945) 
showed an example of a framed structure where the stress 
decays slowly, and this may also be interpreted as a homoge- 
neous anisotropic structure reinforced by diagonal beams• 

We can formally express the relation between the stress 
and the strain in an anisotropic body as follows (Arimitsu et 
al., 1994): 

* *  * * *  = + + ) 

* * * *  * * * *  * *  * *  
= SklijO'ij + SklijO'ij + SklijO'ij + SklijO'ij 

* . . . . . .  (20) "~- gkl + "~kl + Ekl + ~kl,  

where S k ,  denotes the isotropic elastic compliance, S k .  the 
• . J . . . .  ) 

dewatmg elastm comphance, O'ij the lsotroplc stress solution, 
and o~* the difference between the stress in the real system 
and ~i~. If the stress field ~ri~ is known and we arbitrarily 

* * and ' can be deter- choose a certain value for Skli j  , 8kl 8kl 
mined uniquely. 

From the following compatibility condition, 

EkpqElmnSqn.pm -~- - -  ~kl = 0 ,  (21) 

Ekpq Elmn gqn,pm ~ - -  3 ~ 1  = O ,  (22) 

Ek pq Elmn ~;n,pm -= - -  'Okl ' (23) 

E k E ~tt pq lmn qn,pm ~ l ,  (24) 

Ekl, q ~,mn g;n,pm -~ -- ~ ,  ( 2 5 )  

where Ek-q denotes the permutation tensor, get the relation 
ff / tt ttt between incompatibilities rlkt, ~kt, and "rlk I as follows: 

r/~t = - (T/~t + "q~}) (k, l = 1,2, 3). (26) 
/ Eliminating 8qn in Eq. (23)with the three-dimensional 

stress function tensor 4,*,kl which corresponds to ~ri~, (defined 
by Kr6ner (1958)), the incompatibility which induces the 
internal stress field is expressed as follows: 

,r/~ t ** = EkijElmnS;nrsErv w * (27) 17-stu ¢~wu, vtim , 

where we must pay attention to the definition and the sign of 
the ordinary Airy's stress function & and 4'3* in the stress 
function tensor (Arimitsu et al., 1994). For two-dimensional 
problems, we can also choose the function expressed in Eq. 
(1) as 4'3*3. 

In general, the relation between the incompatibility and 
the dislocation density akt is given by 

Fig• 5 
body 

Anlsotropy ==¢. Isotropy + ,¢ v a. 

I ~ t l t 1 

Ilomogeneous Isotropic 
ReM System Reference System I n t e r n M  Stress 

Reference system and the internal stress for an anisotroplc 

X 2  

_ L ,  ,, 

X l  

° I 
Fig• 6 Discrete dislocation in a infinite body 

- 1  
' 0 ~ / ( X )  = T [ E k p q O t l q ( X ) , p  "+ ElpqOlkq(X),p] 

( k , l , p , q =  1,2,3)• (28) 

Let us express the stress field in a homogeneous and 
anisotropic material with the following procedure, which is 
schematically summarized in Fig. 5. 

1 Distributing hypothetically the isotropic stress solution 
* + ' arises• ~i~ in an anisotropic body, the total strain ekt ek~ 

The compatibility condition is not satisfied at this stage, i.e., 
the incompatibility ~ l  expressed by Eq. (23) appears• Note 
that Saint-Venant's principle holds for off in spite of the fact 
that it is in the anisotropic body. 

2 Distributing the resultant incompatibility ~ l  + r/,~ from 
Eqs. (24) and (25) to cancel ~;l in the anisotropic body, the 
internal stress is induced by the incompatibility ~ l  + ~ .  
Though we cannot analytically get this internal stress field in 
the anisotropic body, we can see that the dislocation density 
is proportional to the deviating elastic compliance S~ j  from 
Eqs. (27) and (28) and that end effects decay more slowly as 
the degree of anisotropy of a material increases according to 
the consideration given in Section 4. 

3 Superposing o~ and the internal stress field, which is 
denoted as o~.~*, we get the stress field in the real anisotropic 
system. The superposition of an isotropic system and an 
anisotropic system shown in Fig. 5 is not intended for the 
strain but just for the stress. We see that end effects may 
decay slowly due to the stress field induced by incompatibil- 
ity. 

4 Estimation of Internal Stress 
Though the magnitude of dislocation density is propor- 

tional to the difference of the elastic compliance of compo- 
nent materials or to the deviation from isotropy, we see from 
Eqs. (14) and (15) that the damping behavior of dislocation 
density from the end, which may be represented by the 
attenuation constant y included in the stress function, is 
independent of the elastic constants. Hence, it seems that 
Saint-Venant's principle would hold in composite materials 
as in an isotropic and homogeneous body. However, when we 
estimate the internal stress field induced by the incompatibil- 
ity dislocation, we must take account of the following four 
factors (for simplicity we consider, in this section, discrete 
dislocations in a homogeneous and isotropic body). 

1 Stress field of a single dislocation. The stress fields of a 
single dislocation in an infinite body as shown in Fig. 6 are 
given by 
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. :::::::::::::::::::::::::::::::::::: 

~,~]d~' o;; > 0.1 

0.1 > a ~  > 0.01 

0.01 >_ ~; _> -0.01 

- 0 . 0 1  > cr~ > - 0 . 1  

-0.1>_.;; 

Fig. 7 Internal stress field 0-~* in longitudinally glass fiber-rein- 
forced plastics 

x2(3Xl + 
gll 27r(1 - v) (xl2 +x~)  2 ' (29) 

x2(x  - 
= 2 (1 - . )  + 2 ' ( 3 0 )  

where b and p, denote the Burgers vector and the shear 
modulus, respectively. Since the stress field ~rll of a disloca- 
tion decays with xi -2 for any direction of the Burgers vector, 
the range of the internal stress field ~r~* is longer than that 
induced by the external force which decays with exp(-xl) .  
This factor causes the slow decay of end effects in a compos- 
ite material. 

2 Effect of free surface. However high the incompatibil- 
ity dislocation density becomes near the end, the internal 
stress component must satisfy the free boundary condition at 
the end surface (Nishioka et al., 1987; Arimitsu et al., 1994). 
Figure 7 shows the internal stress field which is obtained by 
subtracting the stress field of the isotropic system shown in 
Fig. l(a) from that of the anisotropic one shown in Fig. 4(a). 
We see that the internal stress thus obtained decreases near 
the end of a strip in spite of the high dislocation density. This 
implies that the end effects decay slowly, because the inter- 
nal stress near the end of a strip is smaller than that of the 
inner domain and end effects are represented by the stress 
normalized by the value near the end. 

3 Stress field induced by dislocation dipole. The stress 
fields of dislocation dipoles shown in Fig. 8(a) and (b) are 
obtained by the suitable combination of Eqs. (29) and (30), 
and we notice that the stress field trll of a dislocation dipole 
shown in Fig. 8(a) is intensified but ~rll shown in Fig. 8(b) is 
mutually canceled along the xl-axis. The dislocation dipoles 
shown in Fig. 8(a) and (b) correspond to the longitudinal 
fiber reinforced model and the transverse one, respectively. 
This factor corresponds to the numerical result that end 
effects of a transversely fiber reinforced composite material 
decay at the same rate as those of a homogeneous material 
(see Fig. 9). 

4 Magnitude of Burgers vector. As given by Eqs. (29) and 
(30), the stress field induced by a dislocation is proportional 
to the Burgers vector b, which corresponds to the dislocation 
density in the continuous distribution of dislocations em- 
ployed in the previous section. Since the transverse strain e22 
of the reference system is smaller than the longitudinal one 
811 by Poisson's ratio under the xl-axial loading, the surface 
dislocation density induced by the incompatibility of displace- 
ment due to the transverse strain is also smaller than that 
due to the longitudinal one by the same ratio. The difference 
between the stress profile shown in Fig. 4(a) and that shown 
in Fig. 9 is caused also by this factor, i.e., the magnitude of 

-1.0 

~tt 
L O  

- 1 . 0  

(~) ~ : ~<-o.s 

0 . 0  

0 ,0  

x~ 

. - - . L . _ _ .  . . . .  

X l  

: al j  > 0.5 

O.C 

-1.0 

z21 0,0 

~.b.~ o~ ~,G~ 

-1.0 0.0 

0,0 

1.0 

(b) ~ : ~ < - O . S  [ ~ ]  : a l l  > 0.5 

Fig. 8 Stress profile ~rl~ of a dislocation dipole. (/.~ = 1.0, u = 0.3, 
b = 1.0); (a )  longitudinally fiber-reinforced model ,  (b )  transversely 
fiber-reinforced model 

.,.::::;;;;.:. 

0,1 > a l l  > 0.01 

[ I 0.01 > ~11 > -0.01 

- 0 . 0 1  > a l l  > - 0 . 1  

--0.1 > all 

Fig. 9 Stress profile of o-11 In transversely fiber-reinforced com- 
posite (volume fraction of the transverse glass fiber: 50 percent) 

the Burgers vector of a dislocation dipole shown in Fig. 8(a) 
is larger than that shown in Fig. 8(b) because the incompati- 
bility in Fig. 8(b) is smaller than that in Fig. 8(a) by Poisson's 
ratio. 

5 Discussion and Conclusions 

Decomposing the stress field in a composite material into 
the stress field in the homogeneous and isotropic reference 
system where Saint-Venant's principle holds and the internal 
stress field induced by dislocations distributed continuously, 
we propose that the slow decay of end effects peculiar to 
composite materials is due to the stress field associated with 
the incompatibility dislocation. The dislocation density is 
proportional to the difference in the elastic compliances of 
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component materials for an inhomogeneous material and to 
the deviating elastic compliance (defined in Eq. (20)) for an 
anisotropic material. Consequently, we establish a unified 
and systematic interpretation of the reason why end effects 
in a composite material decay slowly, irrespective of whether 
we consider it inhomogeneous or anisotropic. The distinction 
between those two views can be considered as a matter of the 
pattern size in a composite relative to the size of a specimen. 

It is expected that the present method, through dislocation 
theory, can be qualitatively extended to end effects for a 
composite material under plastic deformation, where Oku- 
mura et al. (1985) have carried out a numerical study. 

In formulating Saint-Venant's principal for a homogeneous 
and isotropic body, the strain plays an important role in spite 
of the fact that the emphasis is on the stress as in the strain 
energy formulation by Zanaboni (1937) or in the astatic 
equilibrium formulation by von Mises (1945). This also sug- 
gests that the incompatibility (a quantity in the "strain" 
space) plays an important role in studying Saint-Venant's 
principle for composite materials. 
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Natural Frequencies of a 
Penny-Shaped Crack With 
Spring Boundary Condition 
Natural frequencies of  a penny-shaped crack are calculated for the three-dimensional 
elastic problem. The crack is imbedded in a homogeneous medium and on the crack 
surface the spring boundary conditions are assumed. Only the symmetric problem is 
considered and the complex frequencies are given as the SEM (singularity expansion 
method) poles of the symmetric part of  the transition (T) matrix. The T matrix is 
calculated with a direct integral equation method leading to integral equations relating 
normal stress and displacement on the crack surface. The location of the poles in the 
complex frequency plane are compared with the scattering cross-section versus 
frequency and with Rayleigh surface waves. 

1 Introduction 
In this paper we study the natural frequencies of a penny- 

shaped crack with spring boundary condition in an elastic 
medium. These frequencies, given as the poles of the transi- 
tion matrix (the T matrix) in the complex frequency plane, 
are the elastic counterparts of the singularity expansion 
method poles in the electromagnetic literature. The singular- 
ity expansion method was originally developed for electro- 
magnetic scattering and radiation (Baum, 1976), and stems 
from the observation that the transient scattered field can be 
modeled in terms of the natural frequencies of the scattering 
body, i.e., as a Prony series of damped sinusoids 

N 

f ( t )  = E An es't (1) 
n = l  

where s, is complex and the real part Re s ,  is negative (note 
that this paper uses the convention e -'°°t for the time 
factor). The Laplace transform of Eq. (1) 

N A n  

F ( s )  = E ' - -  (2) 
n = l  s - -  s n 

is a series of poles s, in the complex frequency plane with 
residues A, .  

An important feature is that these poles, called the singu- 
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larity expansion method poles, are characteristic for each 
scatterer This indicates that, e.g., in ultrasonic NDT, scatter- 
ing objects may be characterized if these frequ.e.ncies can be 
extracted from the scattering echo response. Uberall et al. 
(1983) give a survey of some electromagnetic and acoustic 
problems where the singularity expansion method poles are 
calculated. They discuss the possibility of extracting singular- 
ity expansion method poles from scattering data to predict 
the properties and the shape of an unknown scatterer. In this 
context they introduce the concept of "Acoustic and Radar 
Spectroscopy." Recently, Bj6rkberg (1991) studied a problem 
in electromagnetics similar to the elastodynamic problem 
studied here. He calculated the natural frequencies and the 
corresponding eigencurrents of a perfectly conducting elliptic 
disk. Bollig and Langenberg (1983) extended the singularity 
expansion method to elastodynamic scattering, but, to the 
author's knowledge, not much work has been done in three- 
dimensional elastic problems. Bollig and Langenberg (1983) 
derived singularity patterns for various acoustic, electromag- 
netic, and elastic scatterers in different host media. In partic- 
ular, they gave the singularity pattern for spherical, prolate 
spheroidal and oblate spheroidal cavities in elastic media. In 
this paper we establish some relations between poles of the T 
matrix, resonance peaks of the scattering cross-sections, and 
Rayleigh surface waves on the crack surface. 

2 The T Matrix and its Poles 
To investigate the natural resonance frequencies and sin- 

gularity expansion method poles of the penny-shaped crack 
with spring boundary conditions we use the procedure of 
Bostr6m and Eriksson (1993). They compute the T matrix for 
the crack by suitably modifying the integral equation method 
of Krenk and Schmidt (1982) and use this to consider two 
cracks. Here we employ the same method and therefore 
review some of the pertinent details from Bostr6m and 
Eriksson (1993). 

Journal of Applied Mechanics MARCH 1995, Vol. 62 I 59 

Copyright © 1995 by ASME
Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



%% I i i  I 

_ _ X _ _ - _ ~ , "  

x 

Fig. 1 Geometry of the crack. Cylindrical (p, ~, z) and spherical 
(r, 0, ~) coordinates. 

Briefly, in the T matrix method (Varadan and Varadan, 
1980), the total displacement field is divided into an incoming 
field and a scattered field 

U = U in + U s. (3) 

Both the incoming and the scattered field are expanded in a 
complete set of spherical vector wave functions ~n 

U i n =  E a ,  Re~ , ,  u ~= Efn~n.  (4) 
n n 

Re means "the regular part," so that the incoming wave is 
not singular at the origin inside the scatterer and n is a 
multiple index. The linear relation between the two sets of 
expansion coefficients is given by the T matrix as 

L = E r , , ' a n  '. (5) 
n ! 

This T matrix contains all necessary information about crack 
geometry and boundary conditions, and it is the (SEM) poles 
of this frequency-dependent matrix, i.e., the natural frequen- 
cies of the penny-shaped crack, that we want to calculate. 
However, it is not necessary to fully calculate the T matrix to 
get the natural frequencies as the singularity expansion 
method poles can be extracted from a determinantal condi- 
tion when the integral equation is solved. 

The penny-shaped crack, see Fig. 1, is imbedded in a 
homogeneous, isotropic, linearly elastic medium with density 
p and Lam6 parameters A and /z. A time factor e-i~t, where 
to is the angular frequency, is suppressed in all formulas. The 

2 2 transverse wave number is k~ = pco 7~ and the longitudinal 
2 2 wave number is k~ = poJ y(A + 2/z). The total displacement 

field is governed by the elastodynamic equation of motion 

k/~2VV • u - k~-2V X (V × U) + U = 0. (6) 

On the crack surface, defined by z = 0 and x 2 + y2 < a 2 
in cartesian coordinates (see Fig, 1), the so-called spring 
boundary conditions are assumed: 

-- 22" t+ 2X (2Xt+) (7a) u + - u - =  

t+= t_. (7b) 

A subscript + ( - )  indicates the limit taken from positive 
(negative) z-coordinates. 2 is the unit normal on the crack 
surface, a and /3 are dimensionless and in general complex 
and frequency dependent. By choosing c~ and /3 properly it 
is possible to model, e.g., an open, a partly closed (Bostr6m 
and Wickham, 1991), and a fluid-filled crack (Persson and 
Olsson, 1991). Equation (7b) states that the traction t is 
continuous over the crack surface and Eq. (7a) relates the 
discontinuity of the displacement u to the traction. 

Following Krenk and Schmidt (1982) the scattered field in 
the upper half-space is expanded in series of Fourier-Hankel 

transforms with cylindrical vector wave functions. Since the 
geometry is symmetric with respect to the crack plane (z = 0), 
the problem is divided into a symmetric and an antisymmet- 
tic part. The expansions of the scattered field leads in the 
symmetric case to integral equations relating normal stress 
and displacement on the crack surface and in the antisym- 
metric case to integral equations relating tangential stress 
and displacement on the crack surface. The stress compo- 
nents are due to the incoming displacement field, which is 
assumed to be known. So the remaining unknowns are the 
displacement components on the crack surface, or rather the 
crack-opening displacement, i.e., the discontinuity of the 
displacement field over the crack surface. 

From here on we only consider the symmetric part of the 
problem, but the antisymmetric problem could be solved in 
the same way. The normal crack-opening displacement com- 
ponent Aug in the integral equation is expanded in partial 
waves as 

s.m (COS m~o} 
Au~ = 5o~Uz (s in  m~o (8) 

with cos m~o (sin rasp) when the function is even (odd) with 
respect to ¢. Each partial wave crack-opening displacement, 
Aus'mz , must fulfill the correct edge condition, i.e., Au~ s'm 
must turn to zero at the crack edge as the square root of the 
distance to the crack edge. Thus we expand each partial wave 
in the crack-opening displacement in series of associated 
Legendre functions P/m in the radial direction p 

oo 

Abls'm = E a'~p~(p) m = 0, 1 . . . .  (9) 
j = 0  

where 

p~( p ) = ( -  1)JP,~+ 2j+ ,(1/1 - p2/a2 )/P,~++21j+ 1(0), (10) 

This expansion is inserted into the integral equation and 
then the equation is projected on the same polynomial p~(p) .  
This leads to the following system of equations: 

¢c 

S? = E Q;jm'aj '~ (11) 
j' = 0 

where 

and 

£°( j, = Ol 

where 

1 a P m 

sin = txk s fo °'zizn'm-~ p) ( P)do (12) 

iR(q) ~ dq 
2k~hp ) Jm+2j+l(aq)Jm+2j+l(aq)-q (13) 

R(q) = (2q 2 - kZ~) z + 4h,hpq 2. (14) 

a~' are the unknown expansion coefficients for the crack- 
opening displacement in Eq. (9). jm(aq) is a spherical Bessel 
function of order m. q is the integration variable in the 
Fourier-Hankel transform. The wave numbers along the z- 
axis are 

h~=  ( k ] - q 2 )  1~, Imh s>_0 

he=(kZp-q2)l/2,  Imhu > 0 

for real ks, kp. 
We need not go further in the calculations of the T matrix 

but now the natural frequencies sought for may be character- 
ized as the frequencies at which a scattered field, or rather a 
surface field Au~ 'm, with the expansion coefficients a~, may 
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| 

Fig. 2 The cuts ( ~ )  and the Integration contour of Equation (21) 
in the complex s-plane. 

exist without any incoming field. If the incoming field U in iS 
zero so is the stress O'z~ "'m in Eq. (12). Thus we have 

0 = E Qjj~aj 'n (15) 
j '  = 0 

and the natural frequencies are given by the condition 

de t [Q~]  = 0 (16) 

regarded as an equation in k,a = am/c s (where the shear 
wave speed q2s = ~/p). 

3 

results in 

@ =  a 

where 

and 

N u m e r i c a l  C o n s i d e r a t i o n s  

In troduc ing  the  d i m e n s i o n l e s s  var iable  s = aq in Eq.  (13)  

iR(s) ) ds 
2(ksa)3hpa Jm+2j'+'(S)jm+2j+'(S)- 7- 

(17) 

R(s) = (2s 2 - (ksa)2) 2 + q.hsahpas 2 (18) 

hsa = ¢ ( k s a ) 2 - s  2, hpa = ¢ ( k p a )  2 - s  2. (19) 

The integral is naturally divided into two separate parts 
where the first one may be calculated analytically (Gradshteyn 
and Ryzhik, 1980): 

oo 

IQ~,= fo Otjm+2j,+l(S)jm+2j+l(s)d~f 
a ( - -  1)J+J '+1 

(8( j  _ j , )2  _ 2)(m + j '  + j  + 2)(rn + j '  + j  + 1)" 

(20) 

The second part of the integral is to be calculated numeri- 
cally but to improve the convergence we first subtract off the 
leading term for large s from R(s)/(hpas) in the integrand. 
Thus, the remaining integrand turns to zero as 1/s 4 instead 
of 1/S 2 when s + oo. The remaining integral becomes 

"Q~' 2(/%a) 3 f0 hpa---7 - 

×Jm+2y,+l(S)jm+2j+l(s)ds. (21) 

This integral has branch points located at the complex 
values s = ±ksa and s = ±k°a. When the frequency oo has 
negative imaginary part (as i~ the case for the singularity 
expansion method poles) l ,o~ must be continued analyti- , ,I 
cally a ~  forces us to mr: >due<: new cuts and a new integra- 
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Fig. 3 The trajectories of the natural frequencies for m = 0 for the 
penny-shaped crack, The boundary condition constant a is varied 
f r o m  0 to  100. 
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tion contour. The new cuts and contour are shown in Fig. 2. 
The branches of hsa and hpa are chosen so that for s = 0 
Imhsa < 0 and Imhpa < 0. Then they vary continuously 
along the integration contour. In this way the matrix ele- 
ments are uniquely determined. 

To compensate for the subtraction of the leading term in 
the integral above, Eq. (21), we must add the following 
integral which is calculated analytically (Gradshteyn and 
Ryzhik, 1980): 

( k s a ) 2  - ( k p a )  2 JoJ~;m+ 2j' + l (  S ) j m +  2j+ l(  S ) d s  i i l Q ~  
(k ,a )  3 

( k s . )  2 -  (k~a)  2 ~sjj, 
, 

(k~a) ~ 8 j + 4 m + 6  (22) 

where 6...., is a Kronecker delta Thereby the matrix Q~ is 
j j  " • • J 

fully calculated by adding the contributions from Eqs. ~20), 
(21), and (22) and we may calculate the zeroes of Eq. (16)• 

The zeroes of this complex function, det[Q~,], are calcu- 
lated simply by the secant method and by guessing the initial 
values. Once a first root is found this guessing is easy since 
the roots obey a typical layer structure (of. Figs• 3 and 4). 
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Fig. 5 The scattering cross-sections as a function of frequency 
ksa for an incident plane P-wave with an angle #o = 0 to the z-axis. 
From top to bottom a is 0, 0.1, 0.2, 0.3, 0.5, and 1.0. 

The integrals in Eq. (21) were truncated at s = 400 and 
calculated with an 800-point Gaussian quadrature. The roots, 
equal to the singularity expansion method poles, were calcu- 
lated for m = 0  and rn = 1. For m = 0  and a = 0 ,  the 
upper left pole in Fig. 3 was calculated with four significant 
figures when the Q-matrix was truncated at Jmax = J~nax = 3 
(4 × 4 matrix). Truncation at Jmax = J~nax = 20 gives at least 
three significant figures for all the calculated poles (m = 0, 1 
and 0 < a < 100). 

4 D i s c u s s i o n  

Some of the natural frequencies ~o of the above con- 
sidered symmetric problem, given as the normalized frequen- 
cies ksa = a~o/G, are calculated for m = 0 and m = 1 and 
are plotted in Figs. 3 and 4, respectively. Each pole is 
calculated for values of the boundary condition constant a 
ranging from 0 to 100 except for pole number 4 in layer II 
(see below) with m = 0, which is calculated from 0 to 20. The 
poles are indicated by dots in steps of 0.1 for 0 < a < 1, in 
steps of 1 for 1 < a < 10 and in steps of 10 for 10 < a < 100. 
The Poisson ratio is fixed to 0.25. 

For a given value of a the poles follow the typical layer 
pattern that has been observed earlier (Oberall et al., 1983; 
Bj6rkberg, 1991; Bollig and Langenberg, 1983). We label 
each layer by layer I, layer II, etc., starting from the top. 
Within each layer the poles are numbered 1, 2, 3 . . . .  from 
left to right. If we follow the trajectory of a pole for increas- 
ing a we see that for every increase of a with a factor 10, 
the absolute value of the imaginary part of the root increases 
with roughly equal amounts ( a  = 1000 has been calculated 
but is not shown). In the limit a ~ % all poles will have 
disappeared at infinity, This is natural as the limit a ~ 
corresponds to no crack at all. 

A way to gain further insight into the significance of the 
natural frequencies is to compare their location with some 
scattering data. Therefore, Figs. 5-7 show the total scattering 
cross-section as a function of the normalized frequency ksa 
for those incident plane waves that excite only the symmetric 
crack-opening displacement. The scattering cross-section is 
defined as the total crack scattered energy divided by the 
energy flux in the incoming plane wave and the crack area 
~'a 2. Figures 5 and 6 show results for an incoming plane 
P-wave making an angle 0 o = 0 deg and 90 deg, respectively, 
to the z-axis. In Fig. 7 we have an incoming plane SV-wave 
with 00 = 45 deg. 

We begin with studying the case of an incoming P-wave 
with 0 o = 0 deg and note that since this case is rotationally 
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Fig. 6 Same as Fig. 5, but for an incident plane P-wave with an 
angle 0 o = 90 deg to the z-axis 
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Fig, 7 Same as Fig. 5, but for an incident plane SV-wave with an 
angle 0 o = 45 deg to the z-axis 

symmetric around the z-axis only m = 0 contributes to the 
solution. This explains why the peaks in Fig. 5 are sparse 
compared to the cases shown in Fig. 6 and 7 where all m 
values are included in the solution. Every two neighboring 
peaks in Fig. 5 are separated by approximately 2.8-2.9. For 
the poles in layer I in Fig. 3 we see that, for a = 0, the real 
parts are also separated by approximately 2.8-2.9. But it 
should be noted that the peaks and the real parts of the poles 
do not correspond exactly, each peak being located about 
0.4-0.5 higher than the real part of the closest pole. Thus we 
have established a clear relation between the poles (i.e., the 
natural frequencies of the crack) and the scattered energy. 

For increasing a ,  starting from zero, the peaks of the 
cross-sections decrease in value but they also appear at 
higher values of ksa. This behavior is more apparent for the 
peaks at higher ksa. Also the poles in layer I starts with a 
migration to higher real parts but at a = 0.7-2.0 the real 
part starts to decrease. For a = 0.5 the peaks in Fig. 5 are 
separated by approximately 3.0-3.2, and the same is true for 
the real part of the poles in layer I, Fig. 3. With a priori 
information about the crack, scattering data such as Fig. 5 
can thus give more information. If it is known that if the 
crack is open, the distances between the resonance peaks will 
give the crack radius. On the other hand, if the crack radius 
is known, we can estimate the value of a,  i.e., how much the 
crack is closed. It should be further investigated if this 
increase in the separation of the resonance peaks offers a 
possibility to predict the properties of the crack or if it 
obscures a correct size estimation of the crack. 
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Another physical explanation to the distance between the 
real parts of the poles is offered. As shown by Bollig and 
Langenberg (1983), the resonances of an object are related to 
different kinds of surface waves or creeping waves repeatedly 
circumnavigating it and radiating back to the observer. In this 
case it is a Rayleigh surface wave with the wave speed CR 
that travels over the crack width 2a on the time t R = 2 a / c n  
that gives rise to a diffracted field each time it reaches the 
crack edge. With a Poisson ratio of 0.25 we have the relation 
CR = 0.919 CS and the frequency at which the Rayleigh wave 
hits the crack edge may thus be written as ksa  = a to /c ,  = 
2.887, where w = 27r/tn,  which is indeed very close to the 
observed distances between both the poles and the resonance 
peaks. In Bostr6m and Eriksson (1993) and in Peterson 
(1989) the P back-scattered far-field amplitude by a penny- 
shaped crack is viewed in the time domain. There it is clearly 
seen that for the late-time response (i.e., after the direct 
diffracted echos have passed) clear echos appear at times 
distanced by t R = 2 a / c  n. Thus the natural frequencies are 
clearly related to the Rayleigh wave. 

Since the peaks of the scattering cross-section so clearly 
can be related to the poles in layer I, it is reasonable to 
assume that the poles in the lower layers correspond to 
resonance frequencies with very little influence on the scat- 
tered field. This reasoning is supported if we study the poles 
for higher a. For a = 1.0, the roots in layer I has moved 
down into the complex plane from imaginary values of - 0 . 6  
to values from -1 .5  to -2 .2 .  The corresponding cross-sec- 
tion in Fig. 5 hardly shows any resonance effects at all. 

Finally, we comment on the two cases of incident P-wave 
with 00 = 90 deg and incident SV-wave with 00 = 45 deg, 
shown in Figs. 6 and 7, respectively. Here all values of rn 
contribute to the solution and we have to consider poles for 
other m values than the m = 0 and 1 shown in Figs. 3 and 4. 
For m = 2 and 3 the poles are located as for m = 0 and 1, 
respectively, with the exception that the first pole in layer I is 
missing and the remaining poles have a real part just a tenth 
lower than the poles for m = 0 and 1. For m = 4 and 5 the 
two first poles in layer I are missing, and so on. This means 
that for higher frequencies the poles come closer and closer 
and the influence from a single pole on the scattering cross- 
section is difficult to recover in Figs. 6 and 7. Only the first 
two peaks at approximately ksa  = 1.9 and 3.2 with a = 0 can 
easily be connected with particular poles, namely pole num- 
ber 1 in layer I for m = 0 and 1. For a = 0.1 it is difficult to 
discern more than the first two peaks but as in Fig. 5 they 
appear at slightly higher values of ksa  than they do for 
tl' ~ 0. 

5 Concluding Remarks 
Natural frequencies for a penny-shaped crack with spring 

boundary conditions are calculated. The frequencies are given 
as the singularity expansion method poles of the T matrix of 

the crack by imposing the condition that the crack-opening 
displacement can exist without any incoming displacement 
field. The location of the poles in the complex frequency 
plane are compared with scattering data (scattering cross-sec- 
tion versus normalized frequency) and some correlations 
between poles and scattering data for various values on 
boundary condition constants are pointed out. Also its rela- 
tion to Rayleigh surface waves is discussed. In general, only 
the influence from the lowest resonance frequencies can be 
traced in the cross-sections. It should be further investigated 
if the results can be used in the work of characterizing 
properties of cracks. Future work could include the extrac- 
tion of singularities from time records (cf. Bollig and Langen- 
berg, 1983) which allows the late-time response to be written 
as a superposition of damped exponentials (cf. Eq. (1)-(2)). 
Also, eigenvectors of the eigenvalue problem, Eq. (15), that 
gives the crack-opening displacement contribution related to 
each pole, and effects due to an elliptic crack (cf. Bj6rkberg, 
1991) could be studied. 
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Load Buckling of a Layer Bonded 
to a Half-Space With an Interface 
Crack 
An analytical solution is presented for local buckling of a model of delaminated 
composites, that is, a layer bonded to a half-space with an interface crack. The layered 
system is subjected to compressive load parallel to the free surface. Basic stability 
equations derived from the mathematical theory of elasticity are employed to study this 
local buckling behavior. They are different from the conventional buckling equations 
used in most previous studies and based on the classical structural mechanics of beams 
and plates. A system of homogeneous Cauchy-type singular integral equations of the 
second kind is formulated by means of the Fourier integral transform and is solved 
numerically by utilizing Gauss-Chebyshev integral formulae. Numerical results for the 
buckling load and shape are presented for various delamination geometries and 
material properties of both the layer and half-space. 

1 Introduction 
Embedded delaminations are a kind of damage being 

frequently observed in composite laminates due to either 
manufacturing processes or low-velocity lateral impact. Such 
damage may significantly reduce the load-carrying capacity of 
composite structures under compressive loads even though it 
has little influence on their tensile strength. Once an embed- 
ded delamination is sufficiently large, local buckling of sub- 
laminates may occur at relative small compressive loads. 
Finally, the delamination may grow under post-buckling stage, 
thereby leading to the loss of global stability of the structure. 
Thus a better understanding of the strength reduction due to 
the presence of embedded delaminations is quite important 
to the design of composite structures. 

Many investigations have been performed to clarify the 
influence of delaminations on the compressive strength of 
composite laminates (for example, Chai, Babcock, and 
Knauss, 1981; Whitcomb, 1981; Bottega and Maewal, 1983; 
Yin, Sallam, and Simitses, 1984; Rothschilds, Gillespie, and 
Carlsson, 1988; Peck and Springer, 1991; Kutlu and Chang, 
1992). Most of them have employed the classical structural 
mechanics theory of beams and plates to estimate the buck- 
ling loads. Such approximate analyses greatly simplify the 
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problem and have given a good insight into the phenomenon 
of the delamination buckling. However, because of the limi- 
tations of the classical structural theory, boundary conditions 
at the edges of the delamination and effects of different 
material properties of the sublaminate and the substrative 
laminate cannot be described accurately. Hence, an exact 
analysis based on the precise mathematical theory of elastic- 
ity seems to be necessary. 

Dorris and Nemat-Nasser (1980) and Keer, Nemat-Nasser, 
and Oranratnachai (1982) have utilized exact equilibrium 
equations for the Janmann rate of the Kirchhoff stress to 
estimate the buckling loads of a layer on a half-space and a 
half-space (or a layer) containing an array of equally spaced 
co-planar cracks, respectively. Recently, Madenci and West- 
mann (1991) and Wang et al. (1991) have solved local buck- 
ling problems of a layer containing a circular crack and a 
half-space containing a through-the-width crack by the use of 
the stability equation derived from the mathematical theory 
of elasticity, respectively. These exact analyses with accurate 
boundary conditions could evaluate buckling loads for vari- 
ous size of delaminations. 

Furthermore, the influence of different material proper- 
ties of the sublaminate and substrative laminate on the 
buckling loads is also important because the delaminated 
layer usually has different material properties from those of 
the substrative laminate in practical composite structures..All 
the existing exact analyses are limited to the case in which 
the delaminated layer and substrative layer or half-space 
have the same material properties, to date. 

In the present paper, a layer bonded to a half-space with 
an embedded through-the-width interface crack is investi- 
gated. It is assumed that the material properties of the layer 
are different from those of the half-space, and their effects 
on the local delamination buckling behavior of composite 
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Fig. 1 

E~ Y* E0 

A calculation model of delamination buckling 

laminates are obtained based on the exact boundary and 
equilibrium equations of elasticity. 

2 F o r m u l a t i o n  

A plane-strain problem described in Fig. 1 is considered. 
A layer of thickness h is perfectly bonded to a half-space, 
except for a through-the-width interface crack of length 2a. 
The layered system is subjected to a uniform compressive 
strain, ~o, parallel to the free surface. The ~1 and /~2 denote 
shear moduli, and v I and v 2 denote Poisson's ratios. The 
subscripts, i = 1, 2, denote the layer and half-space. It is 
obvious that the layered system undergoes uniform deforma- 
tion until the compressive load reaches a critical value, which 
is usually called as a buckling load. When the compressive 
load increases and reaches its critical value, an adjacent 
equilibrium state, called as the buckled state, becomes possi- 
ble. Then, the local delaminated layer deflects into a nonflat 
configuration and in addition to the initial uniform deforma- 
tion state, incremental stresses, o~j, strains, Eij, and displace- 
ments along the x and y coordinate, u, and v, are induced. 
These increments are assumed to be infinitesimal quantities. 
Furthermore, we suppose an isotropic and linear relationship 
similar to Hook's law between the incremental stresses and 
strains. That is, the layer and the half-space are not neces- 
sary to be linear elastic materials. 

Based on the mathematical theory of elasticity related to 
elastic stability (Washizu, 1968; Flugge, 1972), equilibrium 
equations for buckling may be expressed in terms of displace- 
ment increments and the compressive load, P/, as 

~21R i 02Ui 
2 ( 1 -  v l )~x  2 + ( 1 -  2vi) eY e 

02Oi Pi(1 - 2vi) ~2u  i 

-[- OxO~y ILl OX 2 O, 

c~2Oi 02ui 
2(1 - vi)- ~ -  + (1 - 2vi) eX 2 

a2b~i Pi(1 -- 2Vi)  02Oi 
-t - -  = O, 

OxOy i~i Ox 2 

where, here is no body force and 

2/,z 1 
P1 - -  eo ,  

1 - v 1 

( i  = 1, 2), (1) 

/£2 1 -- Vl 
P2 - -  P1. (2) 

/z i 1 -  P2 

Equation (1) is reduced to the conventional equilibrium 
equations before buckling if the load Pi are equal to zero. 
H e r e  it should be pointed out that the material constants /*i 
and v i would be the functions of the compressive load Pi 
and the/*i would be the tangent shear modulus (Timoshenko 
and Gere, 1961) if the layer and half-space are not linear 
elastic materials. 

The solution of the above differential Eq. (1) can be 
written (Wang et al., 1991) as 

&oi 
u i OxOy ' 

vi=[2(1-vi)-P~ii(1-2vi)]a2~°-'--~Ox 2 + (1 - 2 v i ) - -  c~y2 ' 

(3) 

by introducing displacement functions, ~Pi, i = 1, 2, and ex- 
pressing them as 

2 
~°l(x'Y) = --fo77" (aletally + Blet~'2Y 

+Cle -'"xly + D1 e-t"12y) cos (tx)dt, 

2 
~02(x,y ) = - - / "  (A  o,~21y + B2e,,22Y)cos(tx)dt, (4) ,w jo i 2 ~ 

where as, , i, j = 1, 2, are four characteristic roots and are 
J 

functions of both the compressive load P/ and material 
constants as follows: 

i Pi(1 - -  2 v i )  

0¢il = 1 2 ~ i ( 1  -- vi) ' 

•S 1" (5) 
Ogi2 = ~ i  

It can be easily demonstrated that the displacement incre- 
ments expressed by Eq. (3) together with Eqs. (4) and (5) 
satisfy the conditions at infinity, that is ~ j  = 0, too. 

Substituting from Eq. (4) into Eq. (3) and using the rela- 
tions between the strain and displacement increments and 
the isotropic one between the stress and strain increments 
lead to the displacement and stress increments correspond- 
ing to the layer (i = 1) and the half-space (i = 2) as follows: 

2 ao 
ui = 7 f 0 t2(Ai°t i l  etaily + Bio~i2 etai2y 

-CiOeil e- tal ly  - Dioei2 e-tai2y ) sin ( tx )dt, 

2 
U i = -- 7 f  0 t2(Ai°li21 etaily + Bi etai2y 

and 

+Cio~i21 e-tal ly  + Di e- ta i2y)  cos  ( t x )d t ,  ( 6 )  

2 
O'ix = 7 f 0 t3( Ai°eia ltaily + BiOQb etcq2y 

-Ciot ia e-tai ly  - DiO~ib e-tai2y ) COS ( tx )d t ,  

2 
O'iy = -Fro t3( Ai°licetailY + Bi°lidetai2Y 

-- C i o~ice -tcqly - DiOtide-t~i2y ) c o s  ( t x ) d t ,  

2 
Wixy = - - t z ' f  t3[2Aioli21e 'ally + Bi(1 + 0~i22)e t~i2y 

"W ~aO 

+ 2Cia~e - ' " ' y  + Di(1 + c~)e  -'~i2y] sin (tx)dt, (7) 
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where 
C 2 = 0, D 2 = 0, (8) 

2txi [ ( l _ v i ) a i l _ v i a 3 ] ,  
ai" 1 - 2v  i 

Otib ~ 2tZiOti2 , 

aic 1 - 2 v~ i 

aid = - aib, (9) 

and the remaining six unknown functions, A1, B~, C1, D~, 
A2, B2, with respect to t are determined by following conti- 
nuity and boundary conditions: 

t 2 [ A l a u  -A2a21  + Bla12 - B2a22 - C l a n  - Dial2] 

= F . ( t ) ,  

t 2 [ A , a ~  - A 2 a ~ ,  + B, - B  2 + C t a  ~ +Dl] =F~( t ) ,  

(14) 

where 

1 a 
F , ( t )  = 7 fo  f , ( ~ ) c o s ( t ~ ) d ~ ,  

1 a 

Fo(t) = Tf0  f~ (~ ) s in  (C)d~,  (15) 

From the first four equations of Eq. (11) and Eq. (14), we can 

O'ly(X , h )  = O, 

ITly(X , O) = O'2y(X , 0) ,  

O'ly(X , O) = O'2y(X , 0) = 0, 

.~(x, o) = us(x, o), 

Obey(X, h)  = O, Ixl < ~, 

O'lxy(X,O ) = O'2xy(X,O ) ,  Ixl < ~, 

O'lxy(X,O ) = O'2xy(X,O ) = O, Ixl < a,  

v~(x, O) = v2(x, 0), Ixl > a. 

(10) 

Substituting from Eqs. (6) and (7) into Eq. (10) yields 

A l  Ollc etallh "k" Bl Ogld etal2h -- Cl Ollce - tal lh 

- - O l  Olld e-tcq2h = O, 

2A1a121 et°qlh + Bi(1 + a122)e tal2h 

+ 2C, a12,e -t'~llh + Di(1 + a122)e -t~12h = 0, 

AlOQc + BlOtld -- ClOglc - DlOttd = A2012c + B20g2d, 

pq[ZAla~21 + B1(1 + a22) + 2Cla21 + D1(1 + a22)] 

= .212A24 + B2(1 +  72)1, 

--2 f ~ t z [ A , a H  - A2a21 + Bloq2 
qrJo 

-B2a22 - C l a  u - Dla l2  ] sin ( tx )d t  = 0, 

2 
"Fro t2[ A l a l 2 1 -  A2a221 + B1 

- B  2 + C1o~21 + D i ]  cos (tx)dt = 0, 

+ cos( ).t = o, 

2 
"~fo t312A2a~' + B2(1 + a ~ 2 ) ] s i n ( t x ) d t = O '  (11) 

From the above equations, we could obtain the six unknown 
functions. Here we will alternatively use the following two 
new unknown functions (Erdogan and Gupta, 1971): 

d 
L(x) = ~ [ u , ( x , 0 )  - ms(x ,0 ) ] ,  

d 
f v ( x )  = --~ [ v , ( x ,  O) - Vz(X, 0)]. (12) 

Referring to Fig. 1, it can be seen that 

L ( x )  = 0, f~(x)  = 0, Ixl > o~. (13) 

Inserting Eq. (6) into Eq. (12) and using Eq. (13) and the 
Fourier transform lead to 

express the six unknown functions in terms of f , (x )  and 
fo(x)  as follows: 

h 1 = C i R l l ( t  ) + D 1 R i 2 ( t  ) ,  

B 1 = CiR21( t  ) + D1R22( t  ) ,  

A 2 = ClR31( t  ) + D i R 3 2 ( t  ) ,  

B 2 = C1R41(t  ) + D1R42( t  ) ,  

1 
C a = t ~ [ F . ( t ) R 6 2 ( t )  - Fo ( t )Rsz ( t ) ]  , 

1 
D, = t ~ [ F v ( t ) R s l ( t )  - Fu ( t )R6 , ( t ) ] ,  (16) 

where, 

= R 5 1 ( t ) R 6 2 ( t  ) - R 6 1 ( t ) R s z ( t ) ,  (17)  

and Rij, (i = 1 . . . . .  6; j = 1, 2), are known functions of 
material constants, compressive loads and parameter t, and 
the details are presented in the Appendix. 

Using the remaining four equations of Eq. (11) and Eqs. 
(14) and (15) and A 2 and B 2 in Eq. (16), and performing 
some routine manipulations, we can obtain a system of 
homogeneous Cauchy-type singular integral equations of the 
second kind as follows: 

1 :a L ( { )  

1 
+ T f  a [ L , ( ¢ ) K l l ( ¢ , x  ) + f v ( ~ ) K 1 2 ( ¢ , x ) ] d ~ =  O, 

1 a f"(~)d~ 
- / 3 2 L ( x )  + - f 77" -a f - x  

1 a 
+ - f  [ f ~ ( ~ ) K 2 , ( ~ , x  ) + f ~ ( ~ ) K 2 2 ( ~ , x ) ] d ~ =  O, 

f "  f . ( q ) d q  = o, Ixl<a, (18) 

where 131 and /32 are two known functions of material 
constants and compressive loads, and the kernels, Kij, are 
also known functions and can be found in the Appendix. 
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It is pointed out that the third integral equation of the 
above Eq. (18) is derived from the fifth equation of Eq. (11) 
together with the first one of Eq. (14), and that the sixth 
equation of Eq. (11) is satisfied by the second equation of Eq. 
(14), and furthermore that the first two integral equations of 
Eq. (18) are derived from the last two equations of Eq. (11), 
which represent the boundary conditions along the interface 
crack. Generally, /31 does not have the same value as fiz, 
which is quite different from the case of usual unbuckled 
interface crack problems with equal constants. Moreover, if 
the layer has the same material properties as the half-space, 
/31 and /32 are equal to zero and the kernels, Kq, can be 
written explicitly (Wang et al., 1991). 

Now, the problem described in Fig. 1 is reduced to a 
system of integral equations of Eq. (18). The buckling load 
Pc,., that is, the critical value of compressive stress Pl, can be 
determined from the condition that the integral equations 
have a nontrival solution. However, because of the complex- 
ity of the above integral equations, a numerical analysis is 
necessary to solve these equations. In the next section, the 
Gauss-Chebyshev integral formula will be employed to re- 
duce the integral equations to a system of homogeneous 
linear algebraic equations, and then the buckling load P~ 
and the buckling shape will be calculated. 

1 
C ( S )  (1 -- 5'2) 1/2 [ g ? ( s )  COS 0 - g~( s )  sin 0] ,  

f,~(s) 
1 

( l - s 2 )  V e [ g ? ( s ) s i n 0 + g ~ ( s ) c ° s 0 ] '  (24) 

where 0 is 

0 = - 3/In (1 - s2). (25) 

Finally, substituting from Eq. (24) into integral equations 
of Eq. (20) and employing the Gauss-Chebyshev integral 
formula, 

d,  1 
= ~ l t ( S i ) s t  ' -1 ¢1  S 2 (S -- t )  -- t k 

- -  i = 1  ' 

[ 2 i - 1 ]  
s, = cos Irr---~-----j, (i = 1, 2 . . . . .  n),  

3 Numer ica l  Analys i s  
First, by changing variables as follows: 

=as ,  x = a t ,  (19) 

the integral equations of Eq. (18) can be rewritten as 

1 f l  f v * ( S )  ds  fllfu* (t)  + 

+ -~ f j [ f , * (s)KF,(s, t )  + L*(s)Krds, t)]ds = o, 

1 [~ f~(s )d  s 
~ ~2 f ~ ~ t ~ + 

7 ,1 -1  s -- t 

+ f : ( s ) K ~ l ( s , t )  + f v * ( s ) K ~ 2 ( s , ' ) ]  ds = O, 

and the following approximation, 

1 
f/*(tk) = ~ [ f /* ( s~)  + f i*(sk+,)] ,  (i = U, V) (27) 

for f ~ ( t )  and f~*(t) in Eq. (20), we can reduce Eq. (20) into a 
system of 2m homogeneous algebraic equations with 2m 
discrete unknowns, g t ( s  i) and g~(si), (i = 1, 2 . . . . .  m). It is 
noted that on account of the symmetry of f,*(t), fo*(t) and 
K~j only half of the discrete equations or half of the discrete 
points will be treated, that is, 

T a b l e  1 Effect of the number, m, of algebraic equations on the 
calculated buckling load Pcr; h/a = 0.1.  / ' 2 / / ' 1  = 10,  w~ = 0.3 ,  and 
v 2 = 0.2.  

m 20 22 24 28 28 30 

Pcr /#  ~ 0, 02279 0. 02263 0,02252 0. 02239 0. 02228 0. 02226 

1 , 
J_fJlft~ ( s ) d s  = O, Itl < 1, (20) 

where the superscript, *, denotes the quantity after transfor- 
mation. And from Eqs. (18), (19), and (20) it is clear that 

f : ( ~ )  = L ( . s ) ,  f?(s) =L(a~)  

K ~ ( s , t )  = aKij(as , at) .  (21) 

Next, based on the Muskhelishvili's theory (1958) related 
to Cauchy-type singular integrals, the general solution of the 
above equations can be assumed in the form of complex 
function as follows: 

gt(s) + e~(s) 
f~(s) +ira(s) = (1 - s 2 )  'a+/~ ' (22) 

3, = In - -  (23) 

Separating the real and imaginary parts leads to (Wang, 
Takao and Suhara, 1988) 

APcr:Pcr-Pcr  ( ! a 2 / ~ : 1 0 )  
0. 0040 , , , ~2/u~ I I 

~L ZQ V1=0 .3  ~ ..... 

3, 0 .0020  - v2:o. 2 .~,,.,,,,,c-~ i 

0 .0000  , I .---,  , - - I  , , , L 
i i r o. 30 

0.25 ' /  / 
"c u2/,,, v~, v2 / / 
z o. o . 3 0 . ,  ................ . 0.3 o. 3 / / ..... 
-~ 0.15 ~--1/10 0.2 0.3 / 

'g 0 .10  ' / / "  J 

o. o5 

o. oo I ~ 
0.0 0.1 0.2 0.3 0.4 0.5 

Geomerical parameter, h/a 
Fig. 2 Small change of buckling load APcr with geometrical pa- 
rameter, h/a, for .u, 1 < /~2 
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0.16 

~ 0 . 1 2  

¢J 

" o  

3 0.08 

C~ 

0.04 

I I I I 

~ I 0  - 

- - -  20 
............................ 30 _- / 
- - 5 0  / / 
- -  70 - / ,/ 

v~=0.2 - / /  .................. ...... ,,,, 
v~:O. 3 - ,  . ~ ,./ .... 

/ .... 

O. O0 
0.0 0.1 0.2 0.3 0.4 0.5 

Geometrical parameter, h/a 
Fig. 3 Variation of buckling load Per with geometrical parameter, 
h/a, fo r  /x~ > #2 

O. 2720 

/ 

O. 2620 / I I I 
O. 2080 

= / h/a=O. 4 
O. 1980 I [ / 

~- O. 1390 

I I I  
2 / h/a=O. 3 

O. 1340 / I 1 I 
= O. 0740 

/ - h/a=O. 2 
o. 0710 I I I 
o. 0228 

 ltl_ 
h/a=O. 1 - -  0.0216 [ _  ?02 T r- i  

0 20 40 6'0 80 1 O0 

Shear modulus ratio, Uz/N~ 
Fig. 4 Variation of buckling load with shear modulus ratio, for 
#'~1 < P '2  

( 2i - 1 t 
s i = c o s  k - - ~ - - - } ,  ( i = 1 , 2  . . . . .  m) ,  

t k = C O S  'rr , ( k = l , 2  . . . . .  m - l ) .  (28) 

The details of the algebraic equations are not shown in this 
paper. 

We can obtain the buckling load ~ from the condition 
that the determinant of the matrix formed by the coefficients 
of the homogeneous algebraic equations must be zero. The 
nontrivial solution of g~(s i) and g~(s i) c a n  be reached, 
although they contain an arbitrary constant. Furthermore, 
when substituting Eq. (24) into the following equation 

& u ( x , O )  = v l ( x , O  ) - v2(x,O ) = - a f  £ (s)ds, (29) 
at 

which is derived from the second equation of Eq. (12), we 
can calculate the deflection difference. This can be regarded 
as the buckling shape at the buckling load P~, because the 
deflection of the half-space is negligible compared to the one 
of the buckled layer. 

O. 20 

~0 .15  
:3. 

o 
0.- 

o 

- 0 . 1 0  

g~ 

0.05 

O. O0 

\ 

\ 

\ \  
\ \  
,,,,,,,, 

I J I  

I I l l  
h/a 
0.5 
0.4 
0.3 
0.2 
0.1 

v~:O. 2 
v2=O. 3 

0 20 40 60 80 100 
Shear modulus rat io,  u~ /p2  

Fig. 5 Variation of buckling load with shear modulus ratio, for 
//-1 > /¢2  

1.0 

0 

Q 
v 

0 

0 " 

t~3 

0 
1.0 

1.0 .,,,4"~ I ~"f,,. ~ i 

" ' 'h/04 
i h/a:0 1 

h/a:O, 3 
J v ~:0.3, v2=O. 2 

0.., , 't  ' ~  j J , ~,. 

h/a:O. 05 ~%, , 
~ r  h/a:O. ] 

h/a=O. 3 ~ , .  
v 1:0. 3, v2:0. 2 

, , , , ~  ' , , ~ ~ \~1 ' /~ :10  
h/a:O. 05 '- I 

. <  ~ "  h/a:O. 1 %'~..,. ~ 
J 1~,,,,,, h/a:& 3 ~ ~.. 

v ~:0, 2, v 2=0. 3 
1 J [ 

J h/a=O. 05 ..... 

. f  ~.," h/a:O. 3 "%..~..~ 
0 r f,.,,,,, v,=O. 2 , i  I v2=O' 31 "'~') 

-1 0 1 

Normalized distance, x/a 
Fig. 6 Buck l ing  shapes for various hla and /,¢1//,¢2 

4 R e s u l t s  a n d  D i s c u s s i o n s  

Numerical rcsults for the buckling load and shape of the 
dclaminatcd layer are presented in Table 1 and Figs. 2 to 6. 
Here the layer and substrative half-space are assumed to be 
linear elastic materials. The influence of the stiffness ratio of 
a delaminated layer to a substrative half-space, /~1/P.2, on 
the buckling loads are specially emphasized, which cannot be 
considered in the previous literature. 

Table 1 exhibits the effect of the number of discrete 
algebraic equations on the calculated buckling load, Per, 
where m, as given in Eq. (28), denotes the number of 
algebraic equations. The geometrical parameter is taken as 
h/a = 0.1 and the material constants arc taken as ~2/P.1 = 
10, v I = 0.3, and v 2 = 0.2. It is seen that a good convcrgcnce 
is achieved with m increasing and a reasonable result is 
obtained with rn = 30, which is employed in the following 
calculation. 
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Buckling loads are shown as a function of geometrical 
parameter,  h/a,  in Figs. 2 and 3 for various shear modulus 
ratios. The Euler 's solution (Timoshenko and Gere, 1961) 
with clamped ends is also presented in Fig. 2 for a compari- 
son and is close to the present results of /x 1 </.62 for small 
h/a, which means large delaminations. It is obvious that the 
dimensionless buckling load, Pcr/lZj, increases with increas- 
ing h/a in both figures. However, the influence of shear 
modulus ratios on the buckling load seems to be quite 
different. In Fig. 2, where the curve of /z2//x t = 10 is again 
presented, an increasing /x 2 (/x 2 > / x  1) has little influence on 
the buckling load, while a decreasing /,2(/,2 < / z  1) greatly 
reduces the load-bearing capacity of the delaminated layer in 
Fig. 3. These phenomena  deserve the careful consideration 
in the design of composite structures. It is pointed out that 
most of conventional metals, plastics, and composites have 
their buckling loads below ten percent of their shear moduli, 
only few hypoelastic materials, such as rubber system materi- 
als, might have their buckling loads beyond ten percent of 
their shear moduli. More detail information about the influ- 
ence of shear modulus ratios can be found in Figs. 4 and 5. 
Figure 4 shows that the buckling loads are almost constant 
for /x2//x 1 > 40 and any h/a.  The buckling loads in Fig. 5 
decrease rapidly with increasing /t£1///Z 2 for /x I > /.62 and 
relatively large h/a.  

Figure 6 describes the dimensionless deflection difference 
between the crack surfaces, 6v(x ,  O) = vl (x  , O) - Vz(x,O), 
which could be the buckling deflection of the delaminated 
layer. These curves are close to the buckling shape with 
clamped ends for small /xl//x 2 or h/a.  
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A P P E N D I X  
In Eqs. (16) and (17), the functions Rij , (i = 1 . . . . .  6; 

j = 1, 2), are related to the material constants, compressive 
loads, and parameter  t as follows: 

R t t ( t )  : ~ t  [a te (1  + ~ 2 )  + 2a ida~ i ]e  -2'~' 'h,  

2 
Ri2( t  ) = ~-~-atd(1 + 0 /122)e - t (a l ,+a12  )h, 

4 
R21(t ) = _ ---~10/lc 0/?le-t(all + Cq2)h ' 

1 
R22(t ) = - - ~ [ a , c ( 1  + 0/22) + 20/,d0/~l]e -2'~'2h, 

1 
n3 l ( t  ) = ~ [ a t l R l l ( t  ) q- a12R21(t ) + a13 ], 

1 
R32(t ) = ~ [ a 2 t R 1 2 ( t  ) + a22R22(t ) + a23 ], 

1 
R4a(t ) = ~-~[a31Rlt( t  ) + a32R21(t ) + a33 ], 

1 
R42(t ) = ~ [ a 4 1 R I 2 ( t  ) + an2R22(t ) + a43], 

R s t ( t )  = [0 / ,1R~t( t )  + , ~ t 2 R 2 1 ( t )  - 0 / 2 t R 3 1 ( t )  

--0/22R41(t) -- 0/11], 

Rs2(t ) = [0/l tR12(t)  + 0/,2R22(t) - 0/2tR32(t) 

- 0 / = R a 2 ( t )  - 0/12], 

Rm(t  ) = [0/~tn l t ( t )  + R21(t ) - 0/22tR3t(t) 

- R 4 l ( t  ) + a121], 

R62(t) = [Ol~lR12(t) + R22(t)  - 0/~lR32(t) - g 4 2 ( t  ) + 1 ] ,  

( 1 1 )  

where 

Z~ i = t ic(1 + oei~ ) - 2OeidOZ~, ( i  = 1, 2), (A2) 

al ,  = 0/lc( 1 + 0/~2) - 20e2d0/~, I'~1 , 
IX2 

a,2 = 0/It(1 + 0/~2) - 0/2a(1 + 0/122) if_L, 
/x2 

2 ~ 1 ]  a13 = - 0/tc(1 + 0/222) "1- 2 0 / 2 d 0 / 1 1 ~ ]  , 

a21 = al1 , 

a22 = a12 , 

a23 = - - [ 0 / l d ( 1  + 0/~2)q-0/2d(1 q-0 /72)~2] ,  

2 /L1 a31 = 20/2c0/11-- -- 20/lc0/221, 
~2 

a32 = ~2~(1 + 0/~22) ff_L _ 2 ,~ ,a0/k ,  
/x2 

2 /zl a33 = 20/2c0/11-- + 2O/lc0/221, 
/x2 
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a41 = a3D 

a42 = a32 ~ 

a43 = a2c(1 + o/72)~12 q- 20tldOt21 . (A3)  

In Eq. (18), the functions of /31 and /32 and the kernels, 
Kij , are expressed as follows: 

Qll  Q~ 22 
= = ~ , ( A 4 )  /3i QT2' /32 Qzl 

1 
KH(~,  x) = ~ 2 f o  [QH(t)  - Q]~] cos ( t~ )  cos ( tx)dt ,  

K12(~, x ) =   fo [0,2(0-Qr2]sin(t )cos(tx) d`, 

1 
K2~ ( ~, x) = - Q~---~ fo [Q2~(t) - Q2~] cos ( t~)  sin ( tx)dt ,  

1 f0~[ K22 ( ~, x )  Q22(t) - Q= ] sin (t~ c ) sin (ix)dr,  
Q21 

(A5) 

where 

1 

e l l ( t )  = ~ [  ~ . l ( t )R62( t )  - Ni2( t )R6, ( t ) ] ,  

1 
Qi2(t) = -~[ Ni2(t)R51(t ) - Ni1(t)R52(t)] , (i = 1,2), 

(A6) 

Q~ = lim Qij( t ) ,  ( i , j  = 1,2), (A7) 

and 

U n ( t )  = cqcR, l ( t )  + a ldR2, ( t )  -- ~,c, 

N l 2 ( t )  = a l c R 1 2 ( t  ) + a l d R 2 2 ( t )  -- a ld  , 

gz1(t ) = 2aZlRH(t)  + (1 + aZ2)R21(t) + 2a21, 

Nzz(t ) = 2a~aR12(t) + (1 + a~z)R22(t ) + (1 + a~2 ). 
(as)  
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Stiffness Evaluation for Solids 
Containing Dilute Distributions 
of Inclusions and Microcracks 
Materials, such as ceramics, intermetallics, and rocks, contain varying amounts of  
inhomogeneities, and the matrix material is vulnerable to microcracking in the 
neighborhood around these inhomogeneities. In an attempt to model the micromechan- 
ical aspects of this type of material, a solid containing dilute inclusions surrounded by 
cracks is investigated in this paper. The dilute-inclusion assumption neglects any 
interactions among different inclusion-crack clusters, but local inclusion-crack and 
crack-crack interactions are taken into account fully. It is shown that additional strain 
due to microcracking in a solid containing inclusions can be represented by an integral 
of crack opening displacements weighted by a nonuniform stress field induced by 
inclusions alone (in the absence of  microcracking). An effective numerical approach is 
then developed to evaluate the effective moduli and additional macroscopic strain due 
to microcracldng in composites. It is found that an increase in the number of hard 
inclusions may not always lead to expected strengthening of the materials, if the matrix 
material is vulnerable to microcracking around inclusions and a relatively large 
microcracking zone develops. The limited calculations show that a quasi-static 
crack-growing process can lead to an actively growing crack being arrested or to a 
stationary crack starting to grow. This suggests that self-similar crack growth may not be 
enough to describe the behavior of mierocracked composites. 

Introduction 
Cracks closely surrounding inhomogeneities exist in poly- 

crystalline and multiphase materials when residual stress of 
sufficient magnitude develops in these materials. The resid- 
ual stress can be due to a number of sources, such as thermal 
mismatch between phases of multiphase materials, thermal 
anisotropy in the single crystals of polyerystalline materials, 
or crystallographic transformation of particles in a ceramic 
matrix (Marshall et al., 1985; Riihle et al., 1986; Tvergaard 
and Hutchinson, 1988). In the neighborhood of a material 
interface, matrix cracking can create a well-developed frac- 
ture zone (e.g., Luh and Evans, 1987). One such situation, a 
two-dimensional solid containing inclusions, with cracks sur- 
rounding each inclusion, is illustrated in Fig. 1. The inclu- 
sions are assumed to be spaced apart from each other so that 
the inclusion alone is dilute. The cracks are assumed to be 
closely situated around the inclusion such that the inclusion- 
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crack and crack-crack interactions are important. Based on 
these assumptions, we neglect the interaction between differ- 
ent inclusion sets, i.e., we accurately account for the interac- 
tions among cracks and the inclusion within each cluster (Fig. 
1), while the interaction between clusters is neglected. The 
geometry shown in Fig. 1 represents a variety of practical 
situations, such as foreign grains in metamorphic rocks, sec- 
ond-phase particles in metals, or intermetallics and zirconia- 
containing ceramics. In the continuum modeling of the con- 
stitutive behavior of materials undergoing microcracking, the 

) \ - ~ \  \"~. \ 

3 

Fig. 1 A schematic diagram of a solid containing a dilute distribu- 
tion of Inclusions, with cracks surrounding the inclusions 
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Fig. 2 A schematic diagram of the fundamental problem--an infi- 
nite solid containing a single inclusion surrounded by matrix cracks 

primary quantities of interest are the effective moduli of 
these microcracked materials and additional strains that show 
up at the macroscopic level due to microcracking. For gen- 
eral stress, Ekt, imposed on the composite, the corresponding 
total macroscopic strain contribution, E~,, due to a volume J 

fraction, p, of particles is simply (e.g., Hutchinson, 1987) 

Eij = Ei~. -{- Oil Eij , (1) 

where E~ is the macroscopic strain corresponding to £kt 
imposed on the uncracked composite, i.e., a matrix contain- 
ing dilute distributions of inclusions only (no cracks); and 
A E  i. represents the additional strain, or strain increase, per 

J . . . .  
unit volume of partmle due to the existence of interacting 
cracks around an inclusion for the same applied stress £kt; 
AE i, is to be obtained by solving the fundamental problem 

J . • 
shown m F~g. 2; i.e., for an infinite body containing a cluster 
(a single inclusion, of unit volume, surrounded by cracks), 

_if z~Eij = 2 A R  { ( u i  - - l l R p ) n j  @ ( u j -  u~)ni}da , (2) 

where A n and n i denote the outer boundary and normal of 
the matrix, respectively; u i denotes the displacement along 
A n due to applied stress £~t in the presence of a particle and 
cracks; and u/° denotes the displacement along A n due to 
the same applied stress £et in the absence of cracks but in 
the presence of a particle. In general, the microcracked 
composites behave anisotropically due to the distribution 
pattern of the microcrack. 

It should be noted that, due to the interaction between the 
inclusion and the cracks, no direct expression, such as that 
presented by Hill (1965) and Kachanov (1987), exists for 
AE~, In the following presentation, we derive a formula for 

J" . . . . .  
the evaluation of addltmnal macroscopic strain due to cracks 
for a solid containing inclusions and cracks. While the for- 
mula for evaluation of additional strain due to cracks is valid 
for the three-dimensional case, numerical results are pre- 
sented only for a two-dimensional solid containing a dilute 
distribution of inclusions surrounded by cracks. 

Numer ica l  Evaluat ion of  Addit ional  Macroscop ic  
Strains,  A E i j  

While the formal definition of AEij in Eq. (2) involves a 
surface integral over the outer surface, An, in Fig. 2, it is 
more feasible for numerical purposes to evaluate AE~j over 
the microcrack surfaces. This reformulation requires that we 
consider two separate elasticity problems of a particle inside 
an infinite matrix, where both particle and matrix are as- 
sumed to possess elastic isotropy. 

Auxiliary Problem. The geometry of this auxiliary prob- 
lem is that given in Fig. 2, except that the cracks are absent. 

Loading is applied via auxiliary uniform remote stresses, 8~. 
The resultant field quantities of stresses, strains, and dis- 
placements everywhere are denoted as .$ij, gi ~, and qt i. They 
are readily available in closed form as gwen b~ Muskhelishvili 
(1953). While this problem has no direct bearing on the 
definition of AE~,, the solution to this problem will allow 
backing-out values of ,SEmi and facilitate evaluation of the 
effective moduli in a manner that will become apparent later. 

Main Problem. Let the resultant field quantities of 
stresses, strains, and displacements everywhere in the solid 
with the inclusion and cracks (Fig. 2) due to remote loading 
£kt (generally different from $k~) be denoted as o~., el', and 

• J J 
u~; determination of these quantities will be addressed later. 
The corresponding quantities in the absence of cracks due to 
the same remote loading £kt are denoted as ~rig, Ei~, and u/° 

. . . .  J 
and may be evaluated m a fashmn similar to that used for the 
auxiliary problem. 

Reformulation of A E  i, begins with premultiplication of 
~¢ J . . 

Eq. (2) with stresses $~, of the auxdxary problem such that 

!f 8ijAEij = 2 An $i'{(ui --up)n,  + (u, uy)ni}dA. (3) 

Keeping in mind that the stresses 8~, are symmetric and in 
. . . .  J . 

equdlbrmm, and making use of the following notation, 

a ?  = + - 

= opening of the kth crack due to remote stress £~t 

A~ + , A~- = top and bottom surfaces of the kth crack, (4) 

it follows directly from successive applications of both the 
reciprocity and divergence theorems that 

~iT~Eij = ~ i j ( ' i j -  E~)dV --}- k~ fAc~+gij6ienjdA, ( 5 )  

where the unit normal vector, nj, in the crack face integral 
points into the matrix. 

A straightforward application of the reciprocity theorem 
for the volume integral similarly gives 

f v~ i j (Ei j -  6i~.)dV= fv~iJ(O'ij - iTiy)dV. (6) 

The volume integral in Eq. (5) can thus be transformed, using 
the divergence theorem, into two surface integrals of the 
form 

fv$iJ( elj - ei~ )dV = fan ( O ' i j  - -  o-ij°. )q.tinjdA 

- ( 7 )  

k 
By keeping in mind the fact that 

o n  AR, o'ij = Ore 0 ( 8 )  

k +  o n A c - ,  o'ijns=O, (~ri°)+=(~ri°) , 'lt+ = ' l t i  - ,  (9) 

the integral over the volume V in Eq. (7) is identically zero. 
Finally, Eq. (3) takes the form 

Si>Eij = E f k+ ~ijt~iknjdA" 
k Ac 

( 1 0 )  

It should be emphasized that Eq. (10) also holds for a solid 
containing nondilute inclusions, since the derivation of Eq. 
(10) does not impose any restrictions on the distribution of 
inclusions. Recently, Fares (1993) presented an approach for 
the decomposition of the overall concentration factor into 
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contributions from the crack opening and those from mate- 
rial inhomogeneities. Alternatively, Eq. (10) may be obtained 
by specializing Fares' finite deformation formulation to the 
case of small strain. For nondilute inclusions, the solution of 
$~j, which is often a difficult and challenging task, would be 
required. The reason for solving the auxiliary problem is now 
clear: by evaluating Eq. (10) using the solutions to the auxil- 
iary problem corresponding to auxiliary loading 

8~ = $~2 = 1, (11) 

the integral expression in Eq. (10) reduces to the two-dimen- 
sional additional macroscopic dilatational strain, AE n + 
AE22 due to applied stress £kt. By evaluating Eq. (10) using 
the solutions to the auxiliary problem where the only nonzero 
component of the auxiliary uniform remote stresses is 8~2 = 
1, the integral expression in Eq. (10) reduces to the addi- 
tional macroscopic uniaxial strain, AE22 , due to the same 
applied stress £kt. Therefore, the aim of the auxiliary prob- 
lem is only to obtain the corresponding component of the 
additional macroscopic strain, and the auxiliary loading 8~ 
and remote stress Ekz imposed on the composite are com- 
pletely independent. 

It is important to note that Eq. (10) is equivalent to that of 
Hill (1965) and Kachanov (1987) when the inclusion and 
matrix share the same material properties such that 8i, = 8~. 

. . . .  . t  ~ , 1  

For mhomogeneous mclusmns, 8i' ~s not the same as 8 i  in 
• • J . . . 

the auxdmry problem. In general, there is no simple analyti- 
cal expression of 8~, for nondilute inclusions in a solid. 

• J . . . . . .  

However, m the case of ddute d~stnbutmns of mclusmns, the 
solution of 8i, for various remote loadings can be found in 
Muskhelishvil~ (1953) for a single inclusion embedded in a 
solid. In what follows, we will focus on the case of a dilute 
distribution of inclusions. 

Evaluation of  the Crack-Opening Displacements  
For a solid containing a single inclusion surrounded by 

cracks, solutions due to remote loading £kl have been ob- 
tained based on a method described by Hu et al. (1993a), 
who give the details of the numerical procedure and investi- 
gate various composite toughening mechanisms. As applied 
in the present context, this method involves formulating the 
singular integral equations governing the traction-free condi- 
tions on the microcrack faces, where the kernel of the singu- 
lar integral equations is associated with the stress field due to 
a unit dislocation outside a circular inclusion embedded in an 
infinite matrix given by Dundurs and Mura (1964) and Erdo- 
gan et al. (1974). Hence, interactions among cracks and the 
inclusion are accounted for accurately. The unknown func- 
tions that arise naturally in this formulation are dislocation 
densities of each crack defined as 

d~/ 
b[ = dt~i ) (12a) 

dSj 
bis = dt~i), (12b) 

where (t 0), s <o) is a local Cartesian coordinate defined such 
0) that t " is aligned along the ith crack, and occupancy of the 

0) < (t) 0) 0) ith crack is - a  t ' < a " [a ' is the half-length of the ith 
crack]; s <° is normal to the ith.crack; ~t i and 6i are th e 

• 0 )  0 )  t opemngs of the ith crack in the t and s directions; and b t 
and b~' are the corresponding dislocation densities of the ith 
crack and are obtained by solving the singular integral equa- 
tions governing the traction-free conditions on the crack 
surface. Then, the stresses and strains in the fractured solid 
can be evaluated through the integration of dislocation densi- 
ties with the Green's function. Stress intensity factors at all 
crack tips can be evaluated according to an extrapolation 

scheme derived by Krenk (1975). The required quantities of 
primary interest, as shown in Eq. (10), are the crack-opening 
displacements, 6ff and 6.~., which are obtainable through the 

Y • • 

direct integration, over each crack, of the dislocation densi- 
ties in Eqs. (12a) and (12b). The macroscopic strain increase 
can then be evaluated according to Eq. (10). Such an ap- 
proach can provide very accurate effective properties. We 
have obtained the crack opening volume for a collinear crack 
system with a relative error of less than four percent, com- 
pared to the closed-form solutions (Erdogan, 1962), using 30 
Gauss points on each crack, with the separation of crack tips 
equal to five percent of the crack length• 

Effective Moduli  of  a Solid Containing a Dilute Distri- 
bution of Inclusions Surrounded by Cracks 

For a solid containing dilute inclusions surrounded by 
cracks, the strain Ely is related to the stress £kt imposed on 
the solid by 

Eij = Sijkl~kl , (13) 

where Si;kl is the effective compliance of the solid to be 
, J 

determined. On the other hand, as in Eq. (1), the strain can 
be evaluated in terms of the strain E,~ in the uncracked solid 
containing dilute inclusions subject to £kt and the additional 
strain, AEij  , due to microcracks surrounding the inclusions 
for the same remote stress Ekt. 

Comparing Eqs. (1) and (13), we have 

Sijkt£~t = Ei~. + PAEij .  (14) 

Equation (14) provides a way of evaluating effective proper- 
ties of the solid containing dilute inclusions surrounded by 
cracks. For example, let the solid be subject to plane-strain 
tension, •22, and note that the left-hand side of Eq. (14) 
becomes £22/E2, where E 2 is the plane-strain Young's mod- 
ulus in the x 2 direction. Equation (14) gives 

1 1 AE22 

Lw2 E0 "¢- P '~22 ' (15) 

where E 0 is the plane-strain Young's modulus of the solid 
containing dilute inclusions with no cracks and AE22 is the 
additional strain due to microcraeking subject to plane-strain 
tension £22. The additional strain, AE=,  can be obtained 
from Eq. (10) by taking the auxiliary loading as 8~2 = 1, 
others = 0. The evaluation of E 0 is given in the Appendix. 

Numerical  Results and Discussion 
The additional strain and effective elastic moduli of micro- 

cracked composites are presented in this section through two 
examples. Figure 3(a) shows an array of radial cracks sur- 
rounding an inclusion• The cracks are of equal length and are 
spaced apart from each other at an angle of 45 deg. A remote 
biaxial loading (~r x = ~ ,  = ~r 0) is applied to the system in 
order to obtain the two-dxmenslonal addmonat macroscopm 
dilatational strain, AE11 + AEza. The Poisson's ratios of the 
inclusions and matrix are taken as 0.3. We consider a particu- 
lar case where the crack length equals the inclusion diame- 
ter, R = a. The ratios of inclusion-to-matrix modulus are 
taken as Ei/E,n = 0.25, 1.0, and 4.0. Shown in Fig. 3(b) is the 
variation of two-dimensional dilatational strain increase 
(AE H + AE22) , with spacing d/R - 2 between the centers 
of the inclusion and crack, where the normalization factor, 
O'o/Em, is on the order of the remote strain. Recall that 
AE n + AE22 is the additional strain per unit volume (area 
for the two-dimensional case) that is attributed to the cracks. 

For a fixed ratio of the inclusion diameter over crack 
length (R/a  = 1) and the present inclusion-crack distribution 
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pattern, the spacing d characterizes how the inclusion and 
cracks are clustered together. For large spacing, i.e., inclu- 
sion and cracks are far apart, the interactions among the 
inclusion and cracks are weak and all three curves are 
asymptotes to the same limit. This asymptotic additional 
dilatational strain tends to approach the stable, noninteract- 
ing solution as spacing d increases. It must be pointed out 
that this limiting value, though not depending on the inclu- 
sion/matrix modulus ratio, E i / E m ,  when the inclusion and 
cracks are far apart, does depend approximately linearly on 
the number of cracks surrounding the inclusion (8 in this 
pattern)• The contribution to AE11 + AE22 from each crack 
in general is 2(1 - V2m)(troa2/EmR2), accounting for the total 
stable value of 16(1 - Vm 2) (which is not fully reached at 
d/R = 6). 

As the inclusion and cracks are clustered together, the 
inclusion-crack and crack-crack interactions become strong. 
In general, the additional strain, ~E11 + z~E22, decreases, 
except for the case of a soft inclusion ( E i / E  m = 0.25)  and a 
small spacing (d/R < 3). The decrease in ~ E l l  + ~E22 for 
homogeneous inclusions, i.e., E i / E  m = 1, indicates that the 
crack-crack interaction tends to resist the average crack 
opening and reduces ~ E l l  + ~ E 2 2 .  

The large deviations in ~ E l l  + ~E22 among three curves 
at small spacings (small ratios of d/R) reflect the inclusion- 
crack interaction. For hard inclusions (e.g., Ei/E m = 4), the 

Y 

Em ~ / 

Fig. 3 ( a )  Schemat ic  d iagram 

additional strain decreases even more than for homogeneous 
inclusions, implying that the inclusion-crack interaction en- 
hances the resistance to average crack openings for hard 
inclusions. For the case of soft inclusions ( E i / E  m = 0.25),  the 
inclusion-crack interaction tends to weaken this resistance by 
producing more additional strain• This is consistent with an 
extreme l imi t - -a  void ( E i / E  m = 0)  interacting with cracks 
(Hu et al., 1993b). For a soft inclusion in the configuration 
considered here, the competition between the crack-crack 
interaction attempting to enhance the resistance to average 
crack openings and the inclusion-crack interaction attempt- 
ing to weaken the resistance yields a minimum value for 
normalized additional strain at d/R = 2.9. 

Figure 4(a) shows an inclusion surrounded by eight equal- 
length parallel cracks. The crack spacings are chosen such 
that the horizontal and vertical crack spacings are the same 
and are fixed at dl/R = d z / R  = 2.1. The Poisson's ratios of 
the inclusion and matrix are chosen as v i = v m = 0.3. 

The modulus reduction for a solid containing dilute inclu- 
sions with the same inclusion-crack pattern (Fig. 4(a)) is 
considered next. The elastic modulus in the direction normal 
to the cracks, E 2 (Eq. (15)), is related to the additional strain 
z~E22, which in turn is determined by Eq. (10) with auxilia~ 
loading 8~2 = 1, others = 0. The variation of modulus E 2 
versus the normalized crack length, a/R, is shown in Figs. 
4(b) and 4(c) for soft (EJE, ,  = 0.25) and hard (Ei/E m = 4) 
inclusions, respectively. For soft inclusions, the effective 
moduli normalized against the plane-strain modulus of the 
matrix, Em[ = Em/(l -- v2)], E22Em, are 0.99, 0.97, and 0.94 
at a / R =  0 for p = 0.01, 0.02, and 0.04, respectively. These 
are the moduli of the solid with dilute inclusions (no microc- 
racks). As crack length increases, the moduli decrease rapidly. 
For example, the normalized modulus assumes the value of 
0.48 at a/R = 1 for p = 0.04. The modulus ratios are larger 
than 1 at small crack length in Fig. 4(c) due to the strength- 
ening effect of hard inclusions. However, as crack length 
increases, the weakening by t h e  cracks overwhelms the 
strengthening effect such that E 2 / E  m c a n  be smaller than 1. 
An increase in the number of hard inclusions may not always 
lead to expected strengthening of the materials, if the matrix 
material is vulnerable to microcracking around inclusions and 
a well-developed microcracking zone exists. It is noted that 

+ 

I ,L l  

~... ; .~C~ ........ ....--;77:77.:7;:: 
7?: ............ 

• E / E  m = 0 . 2 5  

• E / E  m -1,00 . . . . . . . .  

E , / E  m - 4 . 0 0  . . . . . . . . . . . . . .  

| i I i i i 

I 2 3 

Distance, d/R-2, between the inclusion and crack tip 
Fig. 3(b) Variation of the normalized two-dimensional dllataUonal strain 
increase, (~E11+,~E22)Em/o'o, with distance between the centers of the 
inclusion and the crack 

Fig. 3 An Inclusion surrounded by an array of radial cracks 
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the case with the highest inclusion volume fraction ( p = 0.04) 
produces the largest decrease in effective moduli. 

In order to look into the local crack-tip behavior under 
quasi-static crack growth, consider a solid with the same 
geometry as shown in Fig. 4(a) subject to a uniaxial remote 

C 8 

Em 
d~ 

Fig. 4 (a )  Schemat ic  diagram 

loading, o -  o .  The stress intensity factors normalized against 
the stress intensity factor for a single crack in a homogeneous 
matrix, tr0x/~- ("a" is half the crack length), at three crack 
tips, A, B, and C, are shown in Figs. 4(d) and 4(e) for the 
soft (Ei/E m = 0.25) and hard (Ei/E m = 4.0) inclusions, re- 
spectively. For the soft inclusion, the stress intensity factor at 
tip A is greatly shielded due to the crack-inclusion interac- 
tion when the crack length is so small that crack-crack 
interaction is limited. Also note that the stress intensity 
factor at tip A does not change much as the crack length 
increases due to competition between inclusion-crack and 
crack-crack interactions when a/R is less than 0.9. The 
normalized stress intensity factors in increasing order of their 
magnitudes are tips C, B, and A. When cracks are quasi-stat- 
istically growing to a value of a/R greater than 0.9, the order 
of magnitude of the stress intensity factors changes to A, B, 
and C. This observation suggests that a quasi-static crack- 
growing process may change the interactions among the 
inclusion and cracks. As a result, a growing crack tip may 
become inactive or may be relayed to some previously inac- 
tive crack tips. An accurate description of the sequence of 
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Fig, 4 An Inclusion surrounded by eight parallel cracks 

crack-tip action requires a complete local analysis. Self-simi- 
lar crack growth can be maintained only to where such 
interactions are very weak. Figure 4(e) does not show a 
switch in magnitude of the stress intensity factors for the 
hard inclusion. Note that stress amplification at tips B and C 
exists for both the soft and hard inclusions due to crack-crack 
interaction as cracks are growing. Stress intensity factor at 
crack tip A for the hard inclusion, Fig. 4(e), decreases as the 
crack grows closer to the inclusion. This indicates that the 
interaction between the hard inclusion and the matrix crack 
perpendicular to the inclusion-matrix interface produces 
stress shielding (particulate toughening). Nonetheless, the 
interactions between the hard inclusion and the crack do not 
always provide crack-tip stress shielding. For example, the 
stress intensity factor at tip C, Fig. 4(e), is mainly due to an 
interaction between the hard inclusion and the crack because 
the crack length is very small. The normalized value of the 
stress intensity factor at tip C is greater than 1.0, suggesting a 

crack-tip stress amplification. Finally, it is noted from Figs. 
4(c) and 4(e) that effective moduli decrease steadily as the 
crack length increases, although local stress intensity factors 
vary in a much more complicated way. This is somewhat 
similar to the calculations done by Montagut and Kachanov 
(1988). 
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A P P E N D I X  
The effective moduli of a solid containing dilute inclusions 

are given by 

El(1 + Vm) ] 2(1 + ~o) 2(1 + vm) + P 1 
E o E m Era(1 q" b'i) V (A1) 

and 

2(1 - Vo) 2(1 + Vm)(1 - 2Vm) 
E o Em 

Ei(1 + Um)(1 - 2Vm) ] ~k____kk 
+ p  1 -  Era(1 + vi)( 1 2 v i ) ]  o" o 

(A2) 

where Eo and T 0 are the plane-strain modulus and Poisson's 
ratio, respectively, and ~ and 7kk are the average shear 
strain and two-dimensional dilatational strain corresponding 
to remote shear stress, z 0, and biaxial tensile stress, or0, 
imposed on the composite. For the dilute inclusions, ~/ and 
~k are evaluated by corresponding strains in an inclusion 
embedded in an infinite matrix subject to remote shear 
stress, r0, and remote biaxial tension, g0, respectively. The 
expressions of ~ and 7kk (Muskhelishvili, 1953) are 

~, 2(1 + Vm) 

r O E m [ 3 - 4 v m  ( E i ( l + v m ) ) ]  
1-  4~-~-~) 1 Era(l+ vi ) 

(A3) 

ekk 4 ( 1 -  v~) 1 
o ~ = Em E l ( 1  + Vm ) ( m 4 )  

1 +  
Era(1 + v i ) ( l  - 2v i )  

Equations (A1)-(A4) provide analytical solutions to E 0 and 
T o • 
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Analysis of a Crack Embedded 
in a Linear Elastic Half-Plane 
Solid 
A crack embedded in a half-plane solid traction-free on the infinite straight boundary is 
analyzed. The response of  the material is linear elastic. A system of  singular integral 
equations for the unknown dislocation densities defined on the crack faces is derived. 
These equations are then specialized to the problem of a crack located arbitrarily in an 
orthotropic material which are found to depend on two material parameters only. For a 
crack oriented either perpendicular or parallel to the infinite straight boundary, the 
kernel functions appearing in the singular integral equations are obtained in real form 
which are valid for arbitrary alignment of the orthotropic material. Furthermore, these 
kernel functions are found to be valid even for degenerate materials and can directly 
lead to those kernel functions for isotropic materials. Numerical results have been 
carried out for horizontal or vertical crack problems to elucidate the effect of  material 
parameters on the stress intensity factors. The effect of the alignment of the material on 
the stress intensity factors is also presented for degenerate materials. 

1 Introduction 
The analysis of a straight crack with finite length inside a 

linear elastic half-plane solid or other half-plane related solid 
is of considerable importance in the field of fracture mechan- 
ics. This type of problems has been investigated by many 
researchers for isotropic materials. (Gupta and Erdogan, 
1974; Erdogan and Arin, 1975; Erdogan et al., 1973; Zang 
and Gudmundson, 1989; Bueckner, 1970, 1971; Bowie, 1973; 
Isida, 1966; Higashida and Kamada, 1982; among others.) A 
variety of techniques have been used in investigating these 
kind of problems. A detailed description of these methods 
can be found in Sih (1973). As in anisotropic materials few of 
these types of problems were treated. Heng et al. (1986) uses 
the boundary collocation method to analyze the stress field in 
the vicinity of the crack tip in edge-cracked anisotropic 
plates. Wen (1989) applies the displacement discontinuity 
method to deal with the problems similar by and large to the 
one investigated by Heng et al. (1986). Miller (1989) treated 
the dissimilar anisotropic materials where the problem of a 
crack of arbitrary size and orientation near bimaterial inter- 
faces is considered. All these authors use basically the 
Lekhnitskii formulation (1963). For the problem of an infi- 

Contributed by the Applied Mechanics Division of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOUR- 
NAL OF APPLIED MECHANICS. 

Discussion on this paper  should be addressed to the Technical Editor, 
Professor Lewis T. Wheeler,  Depar tment  of Mechanical Engineering, 
University of Houston, Houston, TX 77204-4792, and will be accepted 
until four months after final publication of the paper  itself in the ASME 
JOURNAL OF APPLIED MECHANICS. 

Manuscript  received by the ASME Applied Mechanics Division, Nov. 
9, 1992; final revision, Feb. 24, 1994. Associate Technical Editor: C. F. 
Sbih. 

nite long strip, Erdogan and his co-workers (Delate and 
Erdogan, 1977; Delale et al., 1979; Kaya and Erdogan, 1980; 
Cinar and Erdogan, 1983) have made many contributions in 
the study of internal and edge cracks in an orthotropic 
material. 

In this paper, the problem of a crack embedded arbitrarily 
in a half-plane solid with pressure or shear loading on the 
crack faces is studied. The boundary condition on the infinite 
straight boundary of the half-plane is traction-free (or called 
flee surface). The geometry of the problem is shown in Fig. 
1. The response of the material is generally anisotropic in the 
sense that in-plane and antiplane deformation in the formu- 
lation are coupled. With the Eshelby (1953)-Stroh (1958) 
formulation and the basic solution to the half-plane solid due 
to point dislocations the problem can be formulated by a 
system of singular integral equations for the unknown dislo- 
cation densities defined on the crack faces. These equations 
are then specialized to the problem of a crack located arbi- 
trarily in an orthotropic material. With four material parame- 
ters introduced by Krenk (1979) for an orthotropic material, 
these equations can be rewritten in a form that depends on 
two material parameters, K and 6, only. For a crack lying 
either in parallel with or perpendicular to the free boundary 
(i.e., horizontal crack or vertical crack), the kernel functions 
appearing in the singular integral equations have been given 
explicitly in real form which are valid for arbitrary alignment 
of the orthotropic material. From the explicit form of these 
kernel functions we are able to show that they are regular 
even for the degenerate material, i.e., when the material 
parameter K = 1. Furthermore, these kernel functions can be 
reduced directly to those for isotropic materials, i.e., when 
material parameters K and 6 are both equal to one. The 
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X2 

Fig, 1 Geometry of the problem 

dependence of the stress intensity factors on the two material 
parameters K and 6 on the geometry of the crack is studied 
numerically. The effect of the alignment of the material on 
the stress intensity factors is also presented for degenerate 
materials. All these studies are for horizontal or vertical 
crack problems. 

2 Basic Equations 
In the following, a two-dimensional elastic deformation 

where the displacement field, u with components u k (k = 
1,2,3) being the function of x 1 and x 2 only (i.e., u = 
u(xl,x2)) are considered. Cartesian coordinate systems xl, 
x2, and x 3 are used for the description of all field quantities 
and, for the convenience sake, we adopt the convention that 
all Latin indices range from 1 to 3 and Greek indices take on 
the values 1 and 2. Repeated indices imply summation and a 
comma stands for differentiation. Boldfaced symbols stand 
for either column vectors or matrices, depending on whether 
lower case or upper case is used As usual, the stress field ~r v 

• " . . . .  J 

of the elastic solids has to sattsfy the eqmhbrlum equatlons 
(with body forces absent) 

o~ ,~  = 0 (1)  

and the stresses are related to the displacements field u k by 
the generalized Hooke's law: 

O)j = Ci jk lUk,  I (2) 

where Cqk l are the elastic moduli. Substituting Eq. (2) to (1) 
we obtain 

C~k~Uk,~ = 0. ( 3 )  

The form of the general solution to Eq. (3) can be assumed 
to be 

u = a f ( z ) ,  z = x ~  +px 2 (4) 

where p and a are complex constants to be determined and 
f ( z )  is an arbitrary function of z. Substituting Eq. (4) into (3) 
we will end up with the eigenvalue problem 

(Cilkl q-p(Cilk2 q'- Ci2kl ) q-p2Ci2k2}a k = 0 ( 5 )  

from which the eigenvalue p and eigenvector a can be 
determined. It can be shown that these eigenvalues, denoted 
by pn(n = 1,2, . . . ,6 ) ,  appear in three pairs of complex 
conjugate roots provided that Cqa t is positive definite. There- 
fore, without loss of generality, we can let 

Im{p,} > 0, Pn+3 =P,~, n = 1,2,3 (6) 

where Im{ } denotes the imaginary part and the overbar 
denotes the complex conjugate. Let a~ be the eigenvector 
corresponding to the eigenvalue p,,(n = 1, 2, 3) then, from 
Eq. (5), we observe that 

an+ 3 = a n ,  n = 1,2,3 (7) 

since material constants are all real values. Introducing two 
matrices P and A by 

P = diag(pl,P2,P3) (8) 

A = [a l ,a2 ,a3]  (9) 

and defining the matrix B as 

B = RTA + TAP, (10) 

where the components of matrices R and T are defined by 
R i k  = C/ik2 and Tik = Ci2~2, respectively, the general repre- 
sentation for the displacements and stresses can be written as 

u = 2Re{Af(z)} (11) 

t 1 = (o-11,o-,2,o-13) T =  -2Re{BPf ' (z)}  (12) 

t 2 = (~r21o-22,o-23) T =  2Re{Bf'(z)} (13) 

where 

f(z) = ( f l(  zl) , f2( z2),f3( z3) ) r (14) 

f,(z) dr(z) ( dfl(Zl) d~2(z2) df3(z3) ) r 
dz dz----7-, dz 2 , dz 3 (15) 

and Re{ } denotes the real part. Define the stress vector 
function ~b by 

~b = 2Re{Bf(z)} (16) 

then it can be shown that the surface traction at a point s on 
a curved boundary is given by 

a4, 
t n = - -  (17) 

c~s 

where s is the arc length measured along curved boundary in 
the direction such that, when one faces the direction of 
increasing s, the material is located on the right-hand side• 
The matrices A and B defined by Eq. (9) and (10) satisfy the 
following orthogonality relations (Stroh, 1958; Ting, 1986): 

[ ;  ~ ] [ ~  ~A]T= [I0 0,1 (18) 

where I is a 3 × 3 unit matrix. It follows from Eq. (18) that 
the matrix L defined as (Ting, 1986) 

L = - 2 i B B  T (19) 

where i 2 = - 1 ,  is real, symmetric, and positive definite 
(Chadwick and Smith, 1977). 

3 Singular Integral Equations 
Consider the problem of a straight crack with length 2c 

embedded in a two-dimensional anisotropie elastic half-plane 
solid (see Fig. 1). The orientation of the crack in the formula- 
tion can be arbitrary. The depth of the center of the crack 
from the infinite straight boundary of the half-plane is de- 
noted by d. Uniform pressure and shear are applied on both 
faces of the crack while the straight boundary of the half-plane 
is assumed to be traction-free. The mathematical statement 
of this problem can be stated more precisely as follows~ 

tq-+- _+l l (0)T[r ,  ~,  0 ]  r I ~1< c, ~7 = 0 ± (20) 

t 2 = 0  - ~ < x  1 < % x  2 = 0  (21) 

t 1 ~ 0, / 
t 2 + 0 j  a s x  2 < 0 ,  I x ~ + x ~ l  ~ (22) 

where (G'0,x 3) is the local coordinates with the origin cen- 
tered at the middle point of the crack and the direction of 
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is parallel to the crack faces; see Fig. 1. The traction applied 
on the lower crack face is denoted by [ - z , - o ' ,  Off where 
the components are expressed in terms of the local coordi- 
nates (~, r/, x3). The 3 × 3 matrix ~ ( 0 )  whose components 
are the cosine of the angle between the local coordinates and 
the global coordinates is given by 

[ c o s ( 0 )  s i n ( 0 ) i ]  
I I ( O ) =  - s i n ( 0 )  cos(0)  • (23) 

0 0 

Note that 0 defined here is positive when measured from the 
positive direction of the xl-axis to the positive direction of 
the ~-axis, as shown in Fig. 1. 

It is well known that the problem stated above can be 
simulated by a continuous distribution of the dislocations on 
the crack faces. The fundamental step of this approach is to 
determine the basic solution to the half-plane uncracked 
solid subjected to point dislocations situated at point zff = 
xl ° + pkx~, (k = 1, 2, 3), where superscript D is used here 
and in what follows to emphasize the term that is related to 
the action of dislocations. The strength of the dislocations is 
denoted by b = [bl, b 2, b3] T. T h i s  basic solution has been 
investigated recently by Ting (1992) and Suo (1990). For the 
purpose of reference, we give the explicit expression for the 
stress function as 

6 ° = 2Re{Bf(z)} (24) 
where 

D -1 D -1 2~' i f ' (z)  = d i a g < ( z  1 - z  1)  ,(z 2 - z  2)  , 

3 
(z 3 - z ~ ) - 1 > B T b +  ~ d i a g < ( z  l -z - ' i f )  -1, 

k=l 

- -  -1 .75 - i  - -  (z z - z ~ )  , (z  3 - z  k )  > M I k B r b  (25) 

and I~ = d i a g <  1 , 0 , 0 > ,  1 2 = d i a g < 0 , 1 , 0 > ,  1 3 = d i a g  
< 0,0, 1 > ,  M = B- lB .  Note that in the derivation of the 
stress function in Eq. (24), the boundary conditions of Eqs. 
(22) and (21) are satisfied. To satisfy the condition in (20), 
point dislocations b are replaced by b(t)dt with densities b(t) 
distributed on the crack face where t is a parameter defined 
on the crack face. Enforcing the satisfaction of the applied 
traction conditions on the crack faces, a singular integral 
equations for the dislocation densities are obtained: 

-L b(_t  2~-f d t+  K ( ~ , t ) b ( t ) d t = t ; ( ~ ) ,  I ~ l < c  
--C --¢ 

(26) 

where the matrix L has been defined in Eq. (19). The kernel 
function appearing in the second integral is given by 

- - Z k  ) ' K( ~,t) -~Im Bdiag < zl*(zl _~ -1 

- z k )  , z~ ( z  3 - ~k°) - > M I k ~  (27) 

where 

z~ = cos0 + Pk sin0 (28a) 

z~= ¢z~ - d p  k, z ff =tz~ - d p k ,  - c  < ¢,t <c.  (28b) 

For single displacements around a closed contour surround- 
ing the whole crack, the following auxiliary conditions have 
to be satisfied: 

f f cb ( t ) d t  = 0. (29) 

The coupled singular integral equations for the dislocation 
densities in Eq. (26) combined with Eq. (29) can be solved 
numerically (Gerasoulis, 1982). Once the dislocation density 
functions have been found, one can then compute the stress 
intensity factors at the crack tips with the formula which will 
be introduced in the following. Since the solutions of the 
coupled singular integral equations for the dislocation densi- 
ties b(t) have a square root singular at both crack tips, it is 
more efficient for the numerical calculations by letting 

b( t )  (c 2 t2) -1/2 = - ( 3 0 )  

where ¢e(t) is a regular vector function defined in the inter- 
val I t  I_< c. The formula for the stress intensity factors at 
the tips, e.g., at the right tip (£ = c), can be derived by first 
considering the traction on the crack line (i.e., the positive 
£-axis) and considering the traction very near the crack tip 
(£ ~ c) which is given by, from Eq. (26), 

o'~(~) = [o70~,o-~,o-,03] T 

1 o (c) 
= I I ( 0 ) t , ( ~ : )  ~ - - -~-I - I (0)L ~ (31) 

where, in obtaining the above result, the definition of Eq. 
(30) has been used. With the following definition 

k = [ K i i , K i , K i i i ]  T = lira V/2~r(s ¢ -  c) o '~(¢) (32) 
~---~ C ÷ 

combined with the result of equation (31), one then leads to 
the expression for the stress intensity factor at a right tip as 

k = l l ( 0 ) L a  (c) .  (33) 

Thus once a (t) has been obtained by solving numerically the 
coupled singular integral equations, the stress intensity fac- 
tors can be evaluated directly on the basis of Eq. (33). Note 
that when discussing the isotropic material the matrix L 
appearing in Eq. (33) reduces to 

Ei E i E i 
L = diag < 2(1 - v ~ ) ' 2 ( 1  - v/e) '2(1 + /)i) > (34) 

where E i is the Young's modulus and v i is the Poission's 
ratio. 

4 H o r i z o n t a l  o r  V e r t i c a l  C r a c k  i n  a n  O r t h o t r o p i c  

M a t e r i a l  

The singular integral Eqs. (26) derived in previous section 
are for general anisotropic materials. In this section we will 
focus on the discussions of orthotropic materials. Assuming 
that the coordinate axes coincide with the material axes, then 
the explicit expressions for B and L, obtained by Dongye and 
Ting (1989), are 

B = 

_klPlC66(C12 2 ' 
- -  Pl C22) -k2P2C66(C12 - -  p22C22) 0 

k l C 6 6 ( C 1 2  - p?C22 ) k 2 C 6 6 ( C 1 2  - p~C22 ) 0 

0 0 k3P3C44 

(35) 
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where 

L n  

L=d'ag(L' ( , La, ) (36) 

= [ (Cl lC22)  1/2 + C12 ] 

X [  C66((CllC22)1/2-C12) 
[C22(2C66 + C12 + ( C n C = )  ]/2) ]1/2. (37) 

] 

C~o(a,/3 = 1, 2 . . . .  ,6) is a contracted notation for Cqkt, and 
kl, k2, k 3 are complex constants which can be determined by 
the normalization condition (18). The assumption that x3-axis 
coincides with the material alignments will decouple the 
antiplane behavior from the in-plane response and hence- 
forth we will ignore the antiplane problem in what follows. 
For an in-plane problem there are four constants involved in 
the constitutive equations, i.e., C11 , C22 , C12 , and C66 , which 
are related to the engineering material constants by 

El l (1  -- 1,23/..'32 ) 
= (38a) 

Cll 1 - 1,121,21- 1,231,32- 1,311,13- 21,211,321,13 

E22(1 -- 1,3t1,13) 
= (38b) 

622 1 -- l.'12v21 -- 1,23v32- 1,31/..,13- 21,211,321,13 

El1(1,21 + V231,31 ) 
= ( 3 8 c )  

C12 1 -- 1,I21,21 -- 1,231,32 -- 1,311,13 -- 21,211,321,13 

C66 = G12 (38d) 

for the plane-strain case. As has been discussed by Krenk 
(1979), the study of stress boundary value problems of plane 
elasticity can be greatly facilitated by introducing four effec- 
tive parameters, E, v, 6, and K, which are defined by 

E11E22 (39a) 
E = (1 - 1 ,13v31) (1  - v231,32) 

./(/"12 "l" 1,131,32)(1,21 + 1,231,31) 

v = (1 -- 1,131,31)(1 -- 1,231,32) 
(39b) 

( e l l ( l -  1,231,32)) 1/4 
~ =  E22(1 1,131,31) (39c) 

~/r NilE22 ( 1 1,12 + V13V32) 

K = (1 -- 1,13V31)(------1 ---- 1,231,32) 2612 E l l  

(39d) 

where E is the plane-strain effective stiffness, v is the 
effective Poisson ratio, 8 is the stiffness ratio, and K is the 
shear parameter. The positive definiteness of the strain en- 
ergy density requires that 6 > 0,E > 0, I v I < 1 and K > - 1. 
Note that for isotropic material, 6 = K = 1 and E,v are 
reduced to Ei/(1 - 1,i a) and %/(1 - vi) , respectively, for the 
plane-strain case where E i is the Young's modulus and 1,i is 
the Poisson ratio for isotropic material. Comparing (38) and 
(39) one obtains 

6 2E E 
C11 1 -- 1,2' C22 32(1  _ 1,2) '  

1,E E 
C66 . (40) C12 1 -- 1,,2' 2(K + v) 

When substituting Eq. (40) to Eqs. (35) and (36) with some 

Journal of Applied Mechanics 

manipulations one obtains 

B =  4( K2 1)1/2 

(SP+)l/2ei57r/4 (3P-)l/2e-iW/4] (41a) × 
(Sp+)-1/2e-'~/4 (3p_)l/2ei¢~/4 J" 

Pl = i3p+, P2 = i3p_, p+ = (K + (K 2 -- 1)1/2) 1/2, 
p = ( K -  (K 2 -  1)1/2) 1/2 for K > 1, and 

11=(4( 1 _E_ ],/2 -,,2ff) 
[ 31/2ei(W/4-¢/2) 31/2ei(57r/4+~/2) ] 

× 3_~%~¢=/4+~/2) a_~%~=/4_~/2~ J (41b) 

pl = 3ei(~-~o), 
[ ~ I - K  

for I K I< 1, and 

E 
 42, 

Here and in what follows, the size of the matrices and vectors 
are 2 x 2 and 2 × 1, respectively, since only the plane prob- 
lem is considered. It is easily seen that when K = 1, one 
encounters the degenerate materials since the eigenvalues Pl 
and P2 are the same and in this case the matrix B, unlike 
matrix L, will be singular. One can expect that the parameter 
K will play an important role in the study of degenerate 
materials. Note also that matrices B and L are independent 
of 1,. Substituting results of (41) and (42) into Eq. (26), 
recalling that matrix M is related to B by M = B-1 ~ and 
noting also that one should replace Pk, B and L by (sin(,)  + 
Pk cos( , ) ) / (cos( , )  - p k s i n ( , ) ) ,  II( 'y)TB and I I ( , ) T L I ~ ( , ) ,  
respectively, when the principal material axes have an angle 7 
relative to the reference coordinates x 1 and x 2 (see Fig. 1) 
(Ting, 1982), one leads to the singular integral equations for 
orthotropic materials: 

- '  h c ,.c Tr F. l 
+ J_c"( ' )  [6-'F21 tJ-c t - -  ~ F22 J 

×f~(T)b(t)dt = - - I I ( 0 ) T ( ; } , I ~ I < C  (43a) 

where 

and 

FH 

b( t )  = a ( y ) r L l ~ ( y ) b ( t ) ,  (43b) 

[ c o s ( y )  s in(y)  ] 
I S ( T ) =  - s i n ( y )  c o s ( y ) j  (43c) 

1 
{(2K + 2)'/2Re[ p+D u + p_Dz2 ] 2(K 1) 

F22 

-2Re[D12 + D2]]} 

1 
{(2x + 2)'/2Re[ p_D]l + p+Dz2 ] 2(K 1) 

-2Re[D12 + D21]} 
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F21 
- 1  

2(K - 1) {" tk2sc + 2)V2imtD,,, r D22] + 

- 2 I m [  p_D ,2 + p+D21]} 

1 
F12 2(n: - 1) {(2K + 2)Velm[D1, + D22 ] 

-2 I r a [  p+D12 + p D211} (44a) 

for K>  1, and 

Fu  
1 

2(K - 1){(2K + 2)'/2Im[e+i~D21 - e-i~D]2] 

- ( 2 K  + 2)Re[D11 + D221} 

F22 
1 

2(K - 1){(2K + 2)V2Im[e+i~D12 - e-i'D2,] 

- ( 2 K  + 2 )Re[D u + D221} 

F21 
- 1  

2(K - 1) {(2K + 2)V2Im[D12 + D21 ] 

+(2K + 2)Re[e i~Du-e- i~D22]}  

F12 
1 

2(K - 1) {(2K + 2)l/2Im[D,2 + D2] ] 

+ ( 2 K +  2)Re[ei~Dzz-e-i~°Dla]} (44b) 

for I K I < 1. In Eq. (44) 

functions for a horizontal crack problem become 

(~ - t )  
FII -dl-d; { (~- -  t) 4 

+2(K - 3)h2(~ - t) 2 + 8(K + 3)h 4} 

( ~ -  t)  
F22 

did2 
- - { (  ~ -  t) 4 -1- 2(5K + 1)h2( ~ -  t) 2 

+8(2/< 2 + 5K + 5)h 4} 

4(K + 1)h 3 
F21 = -F i2  dld2 {3(~:-  t) 2 - 4h 2} (46) 

where h = d6/A,(A = 1 for 3' = 0 deg), 

d 1 = ( ~ - -  t) 4 + 8Kh2(~ - t) 2 + 16h 4, 

d 2 =  ( s  c - 0  2 + 2 ( K +  1)h 2. (47) 

Note that these kernel functions are functions of K, h, ~, and 
t, and they are reduced to those for an isotropic material 
(K = 1, 6 = 1) (Erdogan et al. (1973) note a sign error for F]2 
in the results given by Erdogan et al. (1973)). Substituting Eq. 
(46) into (43) and normalizing the integration from I t I<  c 
to I t l  1 one obtains 

f l  [F*i - 1  [ t  b*( t )  dt + b*(t)dt  
2~r J- l  t - ~ J_][F~ F 

.8 ,  

Djk = 

p~= 

cos(0)  + pTsin(0)  

( ~ - t )cos(0)  + pj. (~sin(0)  - d) - p~(tsin(O) - d) 

sin(3') + pkcos(3') 
k, j  = 1,2. 

cos(3') - pksin(3') ' 

- c  < Gt <_c, 

(45) 

Since the kernel functions in Eq. (44) depend on two 
material parameters, K and 8, only so that only these two 
material parameters have to be considered in the solutions of 
the singular integral equations in (43a). Note that the kernel 
functions in Eq. (44) are for cracks oriented arbitrarily and 
are for materials with arbitrary material angle y. We can not 
tell from the present form that they are valid for degenerate 
cases or not since the factor (K - 1) appears in the denomi- 
nator. However, we will see that this factor will be cancelled 
out for problems when crack is located either parallel or 
perpendicular to the free surface. In these two special cases, 
the kernel functions have been worked out in real form and 
the general expressions are shown in the Appendix. Note 
that these expressions are valid for the material principal 
axes having an arbitrary angle y relative to the reference 
axes. From the explicit forms of the kernel functions shown 
in the Appendix, we can conclude that the kernel functions 
are do regular even for degenerate materials since the factor 
K - 1 do not appear in the denominator. 

When material principal axes coincide with the reference 
axes, i.e., 3' = 0 deg or 90 deg, the problems for orthotropic 
materials will have some interesting features which are dis- 
cussed below. For example, when y = 0 deg, the kernel 

where 

1 0~]Lb(t) (49) b* ( t )  = [0 

and matrix L has been defined by Eq. (42). Functions F~*~ are 
obtained from (46) by replacing h by h/c and are related to 
the material parameter and geometry effect though K and 
h/c = dS/c, respectively, only. Therefore, the solutions of h* 
will depend only on these two parameters too, and will in 
general have the following form: 

[f~ F~] 

where f~¢ =f~¢(t, K, d6/c). Once b*(t)  has been deter- 
mined numerically or analytically if possible, the stress inten- 
sity factors then can be computed by the formula (32) which 
is 

= :" 

8-'f~, f= ]t~: (50 
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where functions f ,~ are defined by 

fo ( ,d6) -1 - -  = - -  l im 2 ~ - 1 )  
c 27r e_,l+ 

× ffz(t, d6] dt K,--~-) ~ - - ~ .  (52) 

One should note that if the material principal axis is rotated 
from 0 deg to 90 deg, one can just replace 6 in Eq. (51) by 
6-1 to obtain the stress intensity factors for 3' = 90 deg. 

As to the problem for a crack normal to the traction-free 
boundary, the kernel functions F m and F21 (from Appendix 
((A3)) are identically zero, and Fll = F22 (denoted by F 
hereafter) become, for Y = 0 deg, 

F(~,t,K,d) 

( ~  - d )  2 + 2(/< + 1 ) ( ~ - d ) ( t  - d )  - ( t  - d )  2 

(~+t-2d)[(~-d) 2+2K(~:-d)(t-d) +(t-d) 2] 
(53) 

15 

tO 

- 5  

0=0 ° y=O ° 

~ ~ , E  ooooo ~C = I, 
Ic: I0. 

;: :: :: ;: × ,,c = 0 ,5  
=====  Higashida et al 1982) 

• rdogan et a1(1973) 

t 

a 
x 

- -10  , , , , i , F , , i , , , , , , , r ,  
0.0 0.5 t .o  

dS/c 
Fig. 2 FuncUons f12 and f== deflnedln Eq. (51) versus flRc for 
v a r l o u s v a l u e s o f K  

which depends on material parameter K only. By letting 
K = 1 in the above equation one leads to the kernel function 
for isotropic material (Kaya, 1984). Substituting these special 
kernel functions F ~  to Eq. (43) one can obtain 

_ t _ ~ a t  + f l F *  ~,t,K, 7 b*(t)dt 
27r 1 

where 

[ 0 
= - 1  0 l ~ o -  ) I ~ 1 < 1  ( 5 4 )  

b*( t )  = Lb(t) .  (55) 

Function F* in Eq. (54) is obtained from (53) by replacing d 
by d/c. One can easily see that these equations are decou- 
pied and they share the same kernel function F*. This 
implies that only one loading case, either pressure or shear, 
acting on the crack faces has to be considered for vertical 
crack problem. The solutions of the dislocation densities 
b*(t) will depend on material parameter K and will have the 
following form: 

b*( t )  = g * [ _ ~  ~ ] { : }  (56) 

where g* = g*(t, K, d/c). The stress intensity factors (at the 
upper crack tip) is then 

where 

K, J (57) 

= lim 'V/~# - 1 ) j  lg ~t,K,~-)#_--t. g K ,  - ~  $_~ 1 + 

(58) 

One can easily show that the formula leading to Eqs. (53), 
(54), and (57) are the same for 3' = 90 deg, which implies that 
for vertical crack problem the stress intensity factors for both 
K t and K u are invariant with respect to a 90-deg rotation of 
the principal axes of the material. This fact has also been 
noted by Delale and Erdogan (1977) in the studies of cracks 
in an infinite long orthotropic strip. 

1.6 

1.2 

0.8 

0=0 ° y=O ° 

COOOC K=] 
x 

~ ~=IO, 

'$, .H,, Erdogan et a](1975) 
'5 
®$~'x. 

0.4 

0 . 0  
0 l 2 

d~/c 

Fig. 3 Functions fll and f21 defined In Eq. (51) versus d~/c for 
various va lues  of  K 

5 Numerica l  Results for Hor izonta l  or  Vertical C r a c k  

Problems 

(A) Material  Al ignment  With ,y = 0 deg or y = 90 deg. 
As has been discussed in the previous section that for mate- 
rial alignment along the reference axes the dependence of 
the stress intensity factors on the material parameters and on 
the geometry effect are related to certain functions, which 
are given by Eqs. (51) or (57). These functions have been 
computed numerically and results are shown in Figs. 2 to 4. 
Figures 2 and 3 are the functions fail for a horizontal crack 
problem plotted versus d6/c for several values of material 
parameter s~. It is seen that our results for K = 1 are in good 
agreement with those results obtained by Higashida and 
Kamada (1982) or Erdogan et al. (1975). Their results are for 
isotropic material (3 = 1, K = 1). It is also observed that 
functions fie and ff21 approach zero while functions fll  and 
f22 become unity as d6/c becomes large, an expected results 
for an infinite medium. Plotted in Fig. 4 is the function g 
versus d/c for vertical crack problem and only the result for 
the upper crack tip is presented in the present analysis. 
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Fig. 4 Function g def ined in Eq. (57) versus d / c  for var ious 
values of 

0 0 ° d / c = 0  1 ~=1. 
75 
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Y 

Fig. 5 Normalized stress Intensity factors versus material angle 1" 
for horizontal crack subjected to uniform pressure (1t: = 1) 

0 =0  ° d / c  =0 .1  a:= 1. 
5 

c c c c c  6 = 1  

1 t ~  ~=2 __IK'] 

, 4 1  ",... ,~--.~-~-,~,-,~ ~: 3 

K I G z  

O ~ t  . _ - - - ~  . . . .  L ~ 7 ~  ~-~" 

0 15 30  45 60 75 90 

y 

Fig. 6 Normalized stress intensity factors versus material angle 1" 
for horizontal crack subjected to uniform shear (K = 1) 

(B) Dependence of the Stress Intensity Factors on 'y for 
Degenerate Materials.  In many cases the material align- 
ment will have an angle with respect to the reference axes 
and in this case the features of the above subsection (A) 
would not preserve. Therefore, we will present in this subsec- 
tion the effect of the material angle 3  ̀ on the stress intensity 
factors, In the following, we will restrict our discussions to 
the degenerate materials, i.e., K = 1, while crack orientation 
is still kept horizontally or vertically• Figures 5 and 6 are the 
results of a horizontal crack (d/c = 0.1) subjected to uniform 
pressure and uniform shear, respectively, while Fig. 7 and 
Fig. 8 are the results for a vertical crack (d/c = 1.1). From 

0 - 9 0  ° d / c = l . 1  / c= l .  
2 .0  

0.5 ***** 6 - 1 / 3  

- 0 . 5  . . . .  i . . . .  F . . . .  i . . . .  i . . . .  i , , , , 

0 1,5 30 45 60 75 90 

7 
Fig. 7 Normalized stress intensi ty factors versus material angle 1' 
for vertical crack subjected to uniform pressure (K = 1 )  

0 = 9 0  ° d / c  1.1 * : 1 .  
4 

K* 2 - = :  : ~ : : 2 -  -8--  ~-~- 

t ~ J ........ a:l/Z 
1 ~ L a : : a  ~=3 

- 4  ~ I  . . . . .  I . . . . . . . . . . .  
0 15 30 45 60 75 90 

7 
Fig. 8 Normalized stress intensi ty factors versus material angle I '  
for vertical crack subjected to uniform shear (K = 1) 

the numerical studies, we found that only the values of 3' 
between 0 deg to 90 deg have to be investigated, since there 
is a common feature that 

K~,ii( 6,3` + 2 ) = K~,11( 6-1,'y ) (59) 

holds. In all presentations, K* is the normalized stress 
intensity factor defined by K* = K / ( g * ~ - )  where (r* = 
or ~r* = ¢. For horizontal crack problems (Figs. 5 and 6) the 
extremes of K~ occur when 3  ̀= 0 deg and 90 deg for both 
shear and pressure loading while the places of extremes for 
K~  are different for different values of 3. It is also observed 
from Fig. 6 that, under uniform shear loading. 

) K?(6,3` )  = K~ 6- , ~  - 3  ̀ (60) 

for a Mode I stress intensity factor. For vertical crack prob- 
lems, more features can be observed from the numerical 
results shown in Figs. 7 and 8. For example, from Fig. 7, 

( ° )  K ? (  6,3`) = K? 6,-~ - 31 , (symmetrical property) 

K ? ( 6 , y )  = K ~ ( 6 - 1 , y ) ,  

K~t( 6, y ) = -K~1(  6-1, 2 - y ) ,  (61) 

under uniform normal pressure loading. The above proper- 
ties are still preserved for uniform shear loading if one 
interchanges the subindex I by H in Eq. (61). 
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A P P E N D I X  
The kernel functions appearing in Eq. (43) have been 

worked out in real form for the special cases when a crack is 
either parallel or perpendicular to the free surface. The 
material alignment can have an angle 3' with respect to the 
reference axis. For a horizontal crack, the kernel functions 
are given by 

Fit = - ~ -  ( ~ -  t) 6 + 4 K - -  1 - 2(K + 1) 

82 s in2(3 ' )  ] 
× A2 [(2,~ - 3)cos 2 ( y )  - a 2 sin 2 (3`)] h 2 ( £ -  04 

62 sin 2 (3`) 
+4  K 2 + 3 + 8 ( K +  1) A2 [2(K - 1) COS2 (3`) 

- ( K  + 1)(  C O S  2 (3`) + a 2 sin 2 (3̀ ))rt]]h4(~ - t )  2 

262  sin2 ( Y )  [ ( u  + 1 ) 2 ( 6 2  sin2 (3`)  
+ 1 6 ( K +  1) K + 3 +  A2 

- -C0S2(3` ) )  + 8 ¢ o s 2 ( 3 ' ) ] l h  6)  

F 2 2 =  d 7  2 ( ~ - t ) 6 + 4  3 K +  1 

262  sin2 ( 3 ' )  [(4K 2 + K -- 3)COS 2 (3 ' )  
A 2 

+(K + 1)82 sin 2 ( y ) ] / h 2 ( ~  : -  t )  4 

862 sin 2 (3') 
+4  9K 2 + 16K + 11 + A2 

× [(K + 1)2[(2K -- 1)COS 2 (3') + 62 sin2 (3')] 

XFi - 2(K 2 -  1)(2K + 1 ) c o s Z ( 3 ' ) ] / h 4 ( ~ -  t )  2 

262  sin 2 (3 ' )  
+16(K + 1) 2K 2 + 5K + 5 A2 [(K + 1) 2 

× 6 2 s i n 2 ( 3 ' ) + ( 2 K 3 + S K 2 + 4 K - - 7 ) C O S 2 ( T ) ] ] h  6} 

COS 2 (3') + 62 sin 2 (3') 
F21 = 4(K + 1) 

{ d3 3 2 6 s i n ( 3 ` ) c ° s ( 3 ` )  ( ~ - t )  h + A d 2 × 
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F12 = 4 ( r  + 1) 

where 

× 

cos 2 (3' )  + 8 2 sin 2 (3')  

h 

26 sin ( y )  cos ( y )  ( ~ _ Z t ) h :  I -da  h3 + 
did 2 h d 2 ) 

(A1) 

dl = (~  _ / ) 4  + 8F2h2( ~ _  t)2 + 16h 4, 

d 2 = ( ~ -  t)  4 - 4(K + 1)Flh2(~ - t)  2 + 4(K + 1)2h 4, 

d 3 = 3 ( ~ -  t)  4 + 2(1 - K + 4F2)h2( ~ -  t )  2 

- 8(K + 1)h 4, 

62 sin 2 (-y) cos 2 ( y )  
F 1 = 4 ( K -  1) A2 - 1, 

82 sin2 ( 7 )  cOS2 (Y) 
I" 2 = K - 2(K 2 - 1) A2 , 

h = d6/k ,  A 2 = cos 4 ( ~ )  

+ 2 K 6 2 s i n 2 s i n 2 ( y ) c o s e ( y )  + 84 s i n a ( y ) .  (A2) 

It is noted that these kernel functions are regular even 
when K = 1. For the vertical crack problem, the kernel 
functions are given by 

1 
Fn d,d2A(K - 1) { - 2 A d s [ A t , ?  - 3R2R~?t d 

+(2R22 + 2R 2 - A)~dt ~ -- R2Rt~] 

+ ( g  + 1)d2[(A~d - (R1R + 2(K - 1)RsR6)ta)  

x ( h e a  2 - 2R,R~dt d + (2R 2 - A)t~)  

+ 4 R s ( ( K -  1 ) (RsR  , - R 6 R  ) + 2 R s R 1 ) t J ( R l e  d - R t d ) ] }  

1 
F= < d 2 a ( ~  - 1) { -2ad l [~X~2  - 3R2R~]t~ 

+ ( 2 R ~  + 2R 2 - A)~dt~ - R 2 R t d  3] 

+ ( K  + 1)d2[(A~: d - (R1R - 2(K - 1)gsg6) td )  

× (A~:f - 2R~R~dt d + (2R 2 - k ) td  2) 

+ 4 R s ( ( K  - 1 ) ( g s g l  + g 6 g )  + 2Rsg l ) t~ (g l~d  - Rtd)]} 

2(K + 1)Rst  d 
F21 7 1 ~ £ :  ~ {d2[R,t~f - 2R~:dt d + R,t~] 

- 2 ( K  + 1)Rst ~ 
F12 = d ~ ' ~ ' u ' { d 2 [ R l ~ f - 2 R ~ : a t d + R , t ~ ]  

+ d l [ ( R  4 - 2R2)~:d 2 + 2R~dt d - R 4 t ~ ]  } (A3) 

where ~d = (~: -- d), t a = (t - d) and 

da = ,5( ~:d 2 -- td2) 2 + 4~dtd(Rlt d -- R~d)(R 1 ~d -- Rtd), 

d 2 = A( ~f  - t~) 2 + 4£dtd(g2td -- g~d ) (R  2 £d -- Rtd), 

A - - - - [ ( 1 -  62)2 sin 2 (3 ' )cos  2 ( y )  + 62] 2 

+2(K - 1)62 sin 2 (3 ')  cos 2 ( 7 ) [ 1  + 84 - 2(1 - 82) 2 

×sin2 (Y) cos2 (3')  + 2(K - 1)62 sin 2 ( y )  cos 2 ( y ) ] ,  

g = [(1 - 62)2sin 2 ( y ) c o s  2 ( y )  - 62 ] 

+ ( K  - 1 ) [ - 2 6 2  sin 2 ( ~ )  cos 2 (~)] 

g 1 = [ ( 1 -  62)2sin 2 ( y ) c o s  2 ( y )  + 62 ] 

+(K - 1 ) [ - 2 6 2  sin 2 ( ~ )  cos 2 (~)], 

g 2 = [(1 - 6 2 ) 2 s i n 2 ( y ) c o s 2 ( y )  + 82 ] 

+ ( K  - 1 ) [ - 2 8 2  sin 2 ( y )  cos 2 ( y )  + 62] ,  

R ,  = [(1 - a2)2 sin 2 (3') cos 2 (3')  + 62] 

+ ( K  -- 1) [282 sin 4 (Y) ] ,  

R4 = [(1 - 62)  2 s in2(r~ ~os 2 ( ~ )  + 6~] 

R 5 = (1 - 62)6  sin ( y )  cos ( y ) ,  

R 6 =  (1 + 6z )6  sin ( 7 ) c 0 s ( 7 ) .  

+ ( K - -  l)[262COS4(T)],  

(A4) 

Although these kernel functions in (A3) contain the factor 
(K -- 1) in the denominator, one can find that this factor can 
be cancelled out if one completes the calculation in the 
brackets. This completes the statements that these kernel 
functions are regular when K = 1. 
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Mechanics of the Segmentation 
of an Embedded Fiber, Part I: 
Experimental Investigations 
Micromechanical modeling is an important aspect in the study of  fiber-reinforced 
composites. In such studies, an important class of structural parameters is formed by 
the interaction between the matrix and the embedded fibers. These interactive processes 
can be investigated by an appeal to a test which involves the segmentation of  an 
embedded fiber. This test is referred to as a "fragmentation test." During a 
fragmentation test, two distinct fracture phenomena are observed. These phenomena are 
directly related to the integrity of bond between the embedded fiber and the matrix. The 
first phenomenon involves situations where the interface bond is weaker than the matrix 
material. In this ease the fiber fragment ends will slip and in this region shear stresses 
are transmitted by friction and/or interlocking mechanical actions. In contrast, when 
the interface bond has stronger properties than the matt£v material, cracking will occur 
in the matrix region. Here, a crack initiated in the fiber will propagate into the matrix 
region typically forming conoidal cracks, or combinations of  conoidal and fiat cracks. 
This paper describes the background of the fragmentation test and the associated 
experimental research. Attention is focused on the experimental evaluation of matrix 
fracture topographies encountered in the fragmentation test. 

Introduction 
Composite materials offer new possibilities for the design 

of engineering structures. A majority of modern advanced 
composite materials is formed by fiber-reinforced plastics 
which can combine low specific weights with high strength. A 
critical engineering property of such composites is the trans- 
verse strength, i.e., the strength normal to the aligned fibers. 
The wide variations in the transverse strength property places 
a severe restriction on the wider applications of fiber-rein- 
forced plastics (see, e.g., Hull, 1981; Pagano, 1989; Friedrich, 
1989; Kedward et al., 1989; Pantano and Chen, 1990; ten 
Busschen, 1991). By gaining insight into the mechanisms that 
are responsible for the magnitude of transverse strength, it is 
possible to identify techniques and properties which could 
lead to improvements in the transverse strength characteris- 
tics. Micromechanical modeling provides a basis for the pre- 
diction of macroscopic mechanical properties of a composite, 
based on the so-called structural parameters. Thus, relation- 
ships can be obtained between the properties at the mi- 
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croscale (structural parameters) and macroscopic composite 
behavior (effective behavior). This is an effective basis for the 
identification of the parameters which contribute to low 
transverse strengths in composites (ten Busschen, 1991). 

The structural parameters needed for micromechanical 
modeling can be divided into three groups; the first group 
consists of the properties of the constituents of the composite 
(i.e., matrix, fibers); the second group is formed by the 
properties of the interaction between the constituents (i.e., 
interfaces, delaminations); the third group is formed by the 
morphology of the reinforcement (i.e., fiber content, fiber 
distribution, and arrangement). In the second group of struc- 
tural parameters, the interaction between the constituents, or 
more specifically the mechanical contact between the fiber 
and the matrix is known to affect the mechanical properties 
of the composite, and especially the transverse strength 
(Moran et al., 1991). A variety of tests can be developed to 
characterize the mechanical response of the contact between 
a fiber and the surrounding matrix; these include, for exam- 
ple, the single fiber pull-out test and fragmentation test 
involving a single filament composite specimen. 

The composites research program at the Laboratory of 
Engineering Mechanics at Delft University of Technology 
has initiated a series of experimental investigations geared to 
the evaluation of the mechanical characteristics of a fiber- 
matrix interface by appeal to the fragmentation test (van den 
Berg, 1990). The fragmentation test uses a specimen that 
consists of a single fiber filament which is embedded in a 
polymer matrix specimen (Fig. 1). Upon application of a 
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Configuration of test specimen with embedded fiber 
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Fig. 2 Observed damage phenomena during fragmentation tests 
(a) cracked fiber, (b) formation of voids (weak Interface), (c) 
matrix crack formation (strong interface) 

longitudinal strain to the specimen, the intact fiber will also 
be subjected to an identical strain. When the longitudinal 
strain reaches a certain magnitude, the fiber will experience 
fracture at several locations (Fig. 2(a)). If the strain is in- 
creased further, two distinct phenomena can be observed. 
These phenomena are directly related to the adhesive prop- 
erties of the fiber-matrix interface. When the strength or 
fracture properties of the mechanical contact are weaker 
than those of the matrix, the fiber fragment ends will move 
relative to the specimen (slip), forming an increasing void 
with increasing strain (Fig. 2(b)). In contrast, when the inter- 
face strength and fracture properties are stronger than those 
of the matrix material, the fiber crack will extend into the 
matrix region (Fig. 2(c)). The occurrence of both phenomena 
at prolonged fragmentation was reported by Selvadurai et al. 
(1991). The occurrence of either slip at the interface or 
cracks in the matrix is directly influenced by the integrity of 
the interface. Consequently, identical fiber-matrix systems 
will display radically different post fiber-fracture processes 
depending upon the coupling agents that are utilized to 
enhance the interface fracture and failure characteristics. 

This paper forms the first part of a study which investi- 
gates the mechanics of a fragmentation test. It discusses the 
experimental investigations which were carried out at the 
Laboratory of Engineering Mechanics at Delft University of 
Technology. The mechanical background of the fragmenta- 
tion test and the test procedure are described. Special atten- 
tion is given to the techniques used in the measurement of 
strains in the specimen and the characterization of fine 
matrix microcracks which occur at the cracked fiber loca- 
tions. An image analysis technique forms the basis for such 
experimental evaluations. The experimental results are pre- 
sented and the characteristic features of "Bat Cracks" are 
quantified. A companion paper will focus on the computa- 
tional modeling of the process of matrix crack extension at 
cracked fiber locations. 

Mechanics of  the Fragmentation Test 

Fiber Reinforcement. Most reinforcing fibers employed 
in advanced composite materials are composed of brittle 
elastic materials. Typical examples of such materials include 

before fracture after fracture 

Fig. 3 F o r m a t i o n  o f  a v o i d  a t  a c r a c k e d  f i b e r  

carbon fibers, graphite fibers, boron fibers, silicon carbide 
fibers and E-Glass. In this article attention is focused on the 
class of fiber-reinforced composites composed of E-Glass 
fibers. These brittle materials generally have an extremely 
high intrinsic strength (theoretical strength); however, in 
practice, the actual strength of such materials is strongly 
influenced by the geometrical imperfections. This can be 
attributed to processes such as notch, surface flaw, or inter- 
nal flaw sensitivity which can drastically reduce the measured 
strength (see, for example, the classical study by Griffith, 
(1921). For this reason, fibers for composite reinforcement 
are manufactured as thin as possible; this reduces the proba- 
bility of occurrence of strength-reducing flaws. From these 
observations it becomes evident that the effective strength of 
a reinforcing fiber is dependent on the fiber length; i.e., it 
increases with decreasing length (see, e.g., Merle and Xie, 
1991). Although long fibers used in composites do contain 
many flaws, it is assumed there are no disadvantageous 
effects in the generation of longitudinal strength in a com- 
posite due to the load transfer mechanisms that occur within 
the matrix phase. 

The Fragmentation Test. The fragmentation test consists 
of the straining of a matrix specimen which contains a 
co-axial single fiber (or single filament). The dimensions of 
the single fiber, relative to the dimension of the matrix region 
are such that, effectively, the fiber is embedded in a matrix 
region of infinite extent (i.e., d/t = 0.015; where d = 151.tm; 
t = 1 mm and t is the thickness of the specimen). The 
fragmentation test specimen is subjected to uniform strain 
over its entire cross-section. When the strain reaches a cer- 
tain value, the fiber will fracture at its weakest locations. If 
the strength and fracture characteristics of the fiber-matrix 
interface are lower than those of the matrix material, inter- 
face slipping and/or interface locking can occur at a de- 
tached interface. This phenomenon can be explained by the 
unloading of cracked fiber ends after fracture. In this in- 
stance the fiber strain will be zero at the cracked ends and by 
gradual load transfer processes the longitudinal strains in the 
fiber will reach the same magnitude as the matrix strain. 
Over the distance where gradual load transfer takes place the 
incompatibility of strains between the matrix and the fiber 
usually results in the formation of a void (Fig. 3). 

In Fig. 3, the fiber strain is assumed to be linear in the 
longitudinal direction over this slipped section. It is often 
assumed that the shear stresses in the interface region where 
slipping takes place has constant value (see, e.g., Piggot, 
1980). This constant shear stress is regarded as a strength 
property of the interface (i), indicated by rl. To account for 
the difference in fiber strain and the matrix strain, the matrix 
exhibits shear deformation besides slip at the fiber-matrix 
interface. Such mechanisms can be described by shear-lag 
theory (Cox, 1952) and by more advanced load transfer 
models (McCartney, 1989). However, the effects of shear 
deformation of the matrix material is negligible when com- 
pared to the effect of slipping of the interface (van den Berg, 
1990). 
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Critical Fiber Length. With the assumption that the shear 
stress is constant in the parts of the fiber-matrix interface 
where slip occurs (slip theory), attention can be focused on a 
fiber fragment between two fractures with slip regions (S) at 
the ends (Fig. 4). By means of the shear stresses at the 
fragment ends, the fiber can be loaded in the middle part 
(M) until the fiber strength is reached again forming a new 
fracture in the fiber, etc. A critical situation occurs when the 
middle part disappears (slip over the entire fragment). In this 
case the largest possible loading of the fiber occurs, which 
gives the maximum fiber stress in the middle of the fiber 
fragment, indicated by Of, max: 

21~- i (1) Of ,  max = df 

In this connection, the critical fiber length is defined as 
the length at which the maximum fiber stress in (1) equals 
the fiber strength indicated by (o f )  (belonging to a particular 
fiber length) i.e., 

dr<o?> 
lcr ( 2 )  

2~" i 

This critical fiber length is the shortest fiber fragment that 
can fracture under the given assumptions. In the case of fiber 
slip, the fragmentation test is terminated when further strain- 
ing of the specimen does not cause new fractures in the fiber 
fragments; in this case all the fragments will not be longer 
than the critical length (assuming the validity of the slip 
theory). When the fiber diameter and fiber strength (at 

S M S 

K Y Y h 

Ls J L _1 
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Fig. 4 Fiber fragment with slipping end; observed phenomena and 
modeling 

critical length) are known the average fragment length indi- 
cated by l can be used to determine the slip length of the 
interface, e.g., 

d~<-r> 
(3) 

ri 31 

The above result is based on the fact that fiber fragments 
with critical length have equal probability either to fracture 
or not to fracture. In this case of fracture the resulting 
separate parts have to be accounted for in the calculations. 
With this simple model, the mean fragment length can be 
expressed in terms of the critical length: i.e., 

2 
l= ~lcr (4) 

The result (4) which was also reported by Merle and Xie 
(1991) can also be derived by employing a more sophisticated 
simulation where the fragment lengths are not required to 
assume the critical length or half of the critical length. 

Formation of Cracks, If the strength and fracture tough- 
ness of the interface are higher than those of the matrix 
material, the ends of the cracked fiber will remain adhered to 
the matrix thus forcing the crack to extend into the matrix. 
The explanation and evaluation of the mechanical aspects of 
this crack growth will be given in the ensuing sections. 

Let us first consider the case of the classical penny-shaped 
crack which is located in an elastic matrix of infinite extent 
and subjected to a uniform stress field at infinity (oD (see, 
e.g., Fig. 5). The Mode I stress intensity factor at the crack 
tip can be obtained from the classical result given by Sned- 
don (1946) (see also Kassir and Sih, 1975), i.e., 

2 ooox/~" 
g ~  = ~ ( 5 )  

qT 

where c is the radius of the penny-shaped crack. For a 
polyester matrix it is possible to determine the extent of 
cracking necessary prior to reaching the strength of the 
matrix material ore,. The limiting case occurs when the 
remote stress o~ reaches the material strength at the same 
instance when the stress intensity factor reaches its critical 
value Klc, i.e., 

2o-..~ 
K1. (6) 

qT 

Thus for crack extension prior to reaching the material 
strength, the minimum crack radius required is given by 

=(Trglc) 2 
Cmi n ~ 20"mr (7) 

Fig. 5 Penny-shaped crack In an elastic medium of Infinite extent 

Table 1 

Curing 
s ta te  

Minimum crack radii for a polyester matrix 

Ktc ( M P a  x / ~ )  
Rebelo et al. (1986) 

o'mt (MPa)  
Berg (1990) 

c~i.  (~m)  
From Eq.(7) 

seven days af ter  1.0 53 846 
solidification 
af ter  pos t -cure  0.6 87 117 
t r e a t m e n t  
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The Table 1 gives results for Cmi n for polyester matrices at 
various stages of the hardening phase. From Table 1 it can be 
concluded that pre-existing penny-shaped cracks have to be 
several times the size of the fiber diameter (15/.~m) to permit 
crack propagation. It should be noted that polyester shows 
the lowest critical Mode I stress intensity factor and the 
highest material strength after a full post-cure treatment. 
This hardening state, therefore, yields the lower bound for 
the minimum crack radius. 

Let us now focus attention on the case of the fiber matrix 
crack in which a penny-shaped crack extends through a 
cracked fiber into the matrix region (Fig. 6). This problem 
was investigated by Selvadurai (1991) by using a boundary 
element modeling of the fracture mechanics problem. More 
recently Selvadurai et al. (1995) have also developed a com- 
plete analytical solution for the integral equations governing 
the mixed boundary value problem. In the case of the fiber- 
matrix crack, the Mode I stress intensity factor is significantly 
higher than that for the penny-shaped crack. For typical 
fiber-matrix cracks (Fig. 6), the stress intensity factors are 
given as a function of the modulus mismatch between the 
fiber and the matrix (Fig. 7). From these results it may be 
concluded that in situations where the interface strength and 
fracture toughness are sufficient enough to prevent slip pro- 
cesses, the fiber crack will propagate into the matrix. With 
stiffer fibers (i.e., Et./E m > 1) the stress intensity factor at 
the matrix-fiber crack tip is sufficiently amplified to cause 
crack propagation prior to reaching the matrix strength. 
Although a penny-shaped crack is intuitively thought to be 
the most likely crack propagation mode subsequent to fiber 
fracture, other crack topographies are possible depending 
upon local inhomogeneities and the degree of localized dam- 
age that can be induced in the matrix region at the location 

Fig. 6 The matrix-fiber crack in an elastic medium of Infinite extent 

of a cracked fiber (Selvadurai et al., 1991). Figure 8 illus- 
trates four crack topographies that were observed in the 
fragmentation tests involving an E-Glass Fiber embedded in 
a polyester matrix. Other researchers have also observed 
similar crack patterns in materials with stiff inclusions. For 
example, penny-shaped cracks and conoidal cracks were ob- 
served in Boron fiber-Epoxy systems (Chamis, 1974) and 
glass bead-polystyrene composite systems (Dekkers, 1985). 
Similar crack patterns in fragmentation tests with carbon 
fiber-epoxy systems were reported by Sancaktar (1991). The 
main categories of crack patterns observed in actual fragmen- 
tation tests are shown in Fig. 9. These fracture patterns are 
characterized by the fiber crack separation distance 2u0, the 
diameter of penny-shaped cracks 2c, the crack termination 
diameter of purely conoidal crack (2c), the crack termination 
diameters for combined cracks involving penny-shaped (2c 2) 
and conoidal cracks (2c 1) and the inclination of the conoidal 
crack to the axis of the fiber (00). In general 

where ~ = o'~/E m. 
In connection with the crack inclination 00, the following 

observations can be made. First, in the experiments, this 
angle can have different values; in any calculation (Selva- 
durai and ten Busschen, 1995) this parameter needs to be 
assigned a specific value in order to examine the progress of 
matrix crack extension at a cracked fiber location. Secondly, 
consider the local geometry in the vicinity of a cracked fiber 
location. Referring to Fig. 10, two possible scenarios exist. In 
the first case strong interface bond will propagate the ele- 
mental or starter matrix cracks (e.g., penny-shaped and coni- 
cal) into the matrix region. With weaker interface bond, 
delaminations can occur along the interface (00 = 0 deg). As 
can be observed in Fig. 10, the locations A correspond to 
points which are located at bi-material interface regions. 
Consequently, oscillatory stress singularities will be observed 
at the locations A. The stress singularities K~ and K H at 
such crack extremities will exhibit an oscillatory character 
(see, e.g., Williams, 1959; England, 1965; Sih and Chen, 1980; 

19.0 

I v 16,0 
o 

13.o 

10.0 

~ 7.0 

~ 4.0 

1.0 

Mode-1 Stress Intensity (K1) versus crock length (c). 
K1 normalized with Sneddon solution (Klo); c normalized with fibre radius (o). 

J i i i 

0 Ef/Em = 1330. (SlC/Epoxy) 
= El/Era = 23. (Glass/Epoxy or Gloss/Polyester) 

3, (Steel/Alumlnum) 

i I i 
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Normalized crock length: c /o  ( - ) .  

Fig. 7 The stress Intensity factor for the penny-shaped matrix-fiber crack: influence 
of  f i be r -ma t r i x  m isma tch ,  K 1 = stress intensity factor for the penny-shaped matrix 
fiber crack, Ko = stress Intensity factor for the penny-shaped crack in a matrix 
region 
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Atkinson, 1979). In the case of the matrix crack (locations B 
in Fig. 10) the stress intensity factors will either be purely K~ 
or K l and KH, depending upon the crack type. When the 
stress intensity factors at the fiber-matrix interface at the 
location A are lower than the associated critical values and 
when the stress intensity factors at the matrix location B 
reach their critical values, the crack will propagate into the 
matrix. 

Experimental Procedure 
Materials. The fibers used in the experiments were 

Fig. 8 Photographs of observed cracks during a fragmentation 
test 

fibre f r a c t u r e - -  
7 

supplied by PPG Industries Fiber Glass bv. The commercially 
available fibers contain a sizing; however, the fibers used in 
the current series of tests were especially prepared by PPG 
Industries Fiber Glass bv and contained only a coupling 
agent (Gamma-glycid-oxypropyl-trimethoxy-silaan, A-187). 
For the matrix material, an isophtalic-based unsaturated 
Polyester was used; Synolite 593-A-2 (see, e.g., DSM Resins, 
1991). The choice for these materials is based on prior 
experience with these materials which enables the use of 
results derived from other experimental investigations to 
supplement the required material characteristics (ten Buss- 
chen, 1991). 

Manufacture of Specimens. In order to cast single fila- 
ments in the polyester matrix a special mould is constructed. 
The co-axial alignment of the fiber of filament within the test 
specimen is an important requirement of the specimen fabri- 
cation process. In order to maintain the filaments straight, 
they are subjected to a nominal tension by the application of 
static weights (Fig. 11). The application of the tension is also 
necessary to prevent the filaments from touching the sides of 
the mould. Due to the exothermic reaction during solidifica- 
tion, the thicker regions of the cast (these locations are 
indicated by a star (*) in the mould illustrated in Fig. 11)will 
first start to become a solid. Thus the middle part that is still 
liquid (located at the removable part) will be insulated during 
solidification between blocks of matrix material that have 
already solidified. Unfortunately, polyester exhibits volume 
shrinkage during solidification, which results in "lake forma- 
tion" at the surfaces of this captured midsection. The remedy 
to alleviate this problem was to install a removable part in 
the mould that can follow the shrinkage of the middle part of 
the cast (see Fig. 11). During solidification, the bolts of the 
removable parts are released so that these parts can follow 
the shrinkage. After completion of solidification, the cast is 
released from the mould and sawed into specimens, using a 

A o 

2% 2% 2% 

Penny-shaped crack Conical crack Combined crack 

Fig. 9 Main crack extension geometries 

B critical 

A critical 

a) Crack encountering the interface, b) Crack propagation into the  
ma t r ix  or along the interface 

Fig. 10 Matrix and Interface crack configurations at a cracked fiber location 
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Fig.  11 Fiber filament assembly In casting location 

diamond saw. The shape and dimensions of the final speci- 
men are shown in Fig. 12. The precise dimensions of the 
middle section of the specimen are carefully measured for 
each specimen in order to accurately define the matrix stress 
in this region during testing. The test is carried out seven 
days after solidification (the specimens are kept at 23°C at 50 
percent relative humidity). 

Testing. The specimens are tested in a servo-controlled 
tensile testing machine, which applies a constant displace- 
ment rate at the free grip end. The rate corresponds to 

/Agrip = 0.40 mm/min.  

Initially the specimen exhibits linear elastic response and 
the strain rate in the midsection (dEz°z/dt) can be approxi- 
mated by the result 

d~O 
dt = ~[~ = UgriP20 = 0.02 (min) -  1 = 2 percent (min) -  ] 

(9) 

(It should be noted that the components of the overall strain 
of the specimen (e~) are macroscopic or homogenized com- 

J . . 

ponents, as opposed to the components of the strains m the 
specimen (El j), which are microscopic components. The z-axis 
is defined tO be the fiber direction and the y-z plane is 
defined to be the plane in which the strains are measured). 

At relatively high stress levels, (stresses approaching the 
tensile strength o- T of the polyester = 87 MPa), the polyester 
behavior exhibits a nonlinear response. Furthermore, a more 
accurate approximation of the strain in the middle section 
(than those that can be derived from the strain rate defined 

Fig.  12 The fragmentation test specimen 

by (9)) is needed. Image analysis is identified as a suitable 
procedure for the measurement of the longitudinal strain. 
Other conventional techniques for strain measurement can- 
not be adopted for this purpose due to the relatively small 
dimensions of the test specimen. In the image analysis proce- 
dure, the midsection of the specimen is installed with sprayed 
or marker dots of paint measuring approximately 20/xm. 
During straining of the specimen, the displacements of the 
centroids of these marker dots are observed. The principal 
strains associated with the in-plane deformations can be 
calculated by utilizing the displacements of the centroids of 
three marker dots. The following relationships are used in 
the calculation of the strains: 

Ayo21 = Yo2 - Yol ; •Uy21 = Uy2 - Uyl 

~Z021 = Z02 -- Z01 ; ~Uz21 = Uz2 - -  Uzi 

AY031 = Y03 - YOl ; AUy31 = Uy3 - Uyl 

Az031 = z03 - zol ; ~Uz31 = Uz3 -- Uzl (10) 

in which Yoi and Zoi are coordinates of point i in the 
undeformed state. Provided the macroscopic strain field is 
homogeneous and the displacement gradients are small, the 
displacement field for the kth load step can be obtained 
from the relationships 

AUy21 ] [ Ay°21 

AUz21 / = 0 

AUy31 / AY°31 

Auz31 ]k 0 

Az021 0 

0 Ay021 

Az031 0 

0 Ay031 

o 1 AZ021 
0 

AZ031 I ou/oy] 
oujoz I 

× 3Uz/3y | " 
I 

OUz/O  

This result can be written in the compact form 

= [,Xr0] 7 r  k' 

(11) 

(12) 
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The vector of displacement gradients [au /ar ]  k can be 
determined from the initial relative positions of the cen- 
troids, [Ar0], and the relative displacements of the centroids 
[Au] k by inversion of the result (12), i.e., 

[ a u ]  = [Ar0]_ ,  [Au]k" (13) 7 r k  
The strain in the specimen along the direction of loading 

(e~z) and perpendicular to this direction (e~y) can be calcu- 
lated from the results 

OUz. o = Ouy (14) 
Ez°z = cgZ '  ayy Oy 

During an experiment, the camera is accurately positioned 
with its horizon parallel to the axis of the specimen. The 
maximum misalignment in this configuration is found to be 
0.01 radians, so that the difference between the strains that 
can be calculated in (14) and the principal strains in the 
y - z  plane of the specimen will be negligible. Using the 
Image Analysis System, the strain field in a stressed speci- 
men could be determined to within an accuracy of 2 /zm/mm 
(=  0.2 percent strain). It is also noted that the initial elastic 
properties of the matrix material can be estimated by using 
the results for the applied load and the resulting strain. This 
procedure was carried out by optimizing five sampling points 
that were determined when the specimen strain was between 
0.5 percent and 1.0 to be representative of the range of strain 
for initial elastic behavior of the matrix material. The results 
associated with this procedure is shown in Table 2. The 
results indicate a large variation in the value of E m which 
can be attributed to the incomplete curing of the polyester 
matrix. The representative value of E m = 1500 MPa is con- 
sistent with results derived from other investigations (Bus- 
schen, 1991). Testing is terminated after the fragmentation 
process is saturated (i.e., no new fragments are observed 
during further straining). After a test, the cracks are investi- 
gated with the Image Analysis System, using the TCL-Pro- 
gramme (Toussaint, 1991) for processing the images. The 
complete procedure for analyzing the images of the matrix 
cracks is described in the ensuing section. 

Experimental Results 

Data Evaluation. After a fragmentation test, each speci- 
men contains about 50 cracks. A large proportion of these 
cracks can be classified according to the three main crack 
geometries illustrated in Fig. 8. Other cracks can have heli- 
coidal shapes (see, e.g., Fig. 13). These cracks, however, will 
not be taken into consideration in the data reduction process. 
The cracks to be evaluated will be subjected to the ensuing 
procedure for purposes of comparison with numerical simu- 
lations. The image of the crack is first recorded using a 
microscope (Type Panphot 407650, Ernst Leitz GmbH) with 
a magnification of either 165x, 225x, or 450x (depending on 
the dimensions of the cracks, the measurements will be 
scaled to the fiber radius) and a digital camera (type CCD 
video camera 91750155 Sanyo). With the digital camera a 
picture is recorded, containing 256 x 256 pixels in which 

each pixel has grey-value that may range from 0 (black) to 
255 (white). The 386, 25 MHz computer (with math coproces- 
sor) in which these images are recorded also contains the 
TCL-Programme (Toussaint, 1991). After the image of the 
crack is stored, the contrast is stretched; i.e., the range of 
grey-values of the actual image (which usually does not cover 
the range from 0 to 255) is stretched from 0 (black) to 255 
(white). The effect of this stretching process is illustrated in 
Fig. 14. 

After this procedure a threshold value of grey-values is 
chosen. Pixels with a grey value below this value are con- 
sidered to be a part of the crack and are made black; other 
pixels are considered to be outside of the crack and are made 
white. Thus a binary image is obtained. The choice for a 
threshold value is made by taking the largest value that is 
possible provided that (i) discrepancies that do not belong to 
the crack (shadows, etc.) are not connected to the upper or 

Fig. 13 Helicoidal matrix cracks 

Specimen 

Table 2 Measured data for test s 

Maximum strain 

. . . .  x (%) 
4.3 
7.7 
8.6 
8.8 
10.8 

Init ialst iffness 
Em (MPa) 

1550 
2060 
2190 
1080 
1390 

mclmen 

Initial Poisson's Ratio 
(-) 

0.35 
0.33 
0.35 
0.40 
0.26 
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lower part of the crack and (ii) the disturbances themselves 
do not have an area larger than the crack area. In Fig. 15, 
this is illustrated with three threshold values, employed on 
the same crack. With the high threshold value, disturbances 
around the crack are assigned to the crack region; the middle 
value shows disturbances that are unconnected to the crack; 
the low value shows a crack that has smaller dimensions than 
in the case of the midvalue. 

The binary image that is obtained after the threshold 
procedure of contour of the image is determined with the 
TCL Programme (Fig. 16). Of this contour only the upper 
part and the lower part are needed to determine parameters 
necessary for comparison with numerical simulations. From 
the contour lines, the skeletal lines or crack outlines are 
determined (Fig. 17(a)). The end points of the skeleton lines 
are used for the y-coordinate of the position of a box region 
employed to remove tips of conical cracks (Fig. 17(b)). This 

procedure is adopted to remove from the crack tip the 
following: the side contour of the entire crack and the 
strongly curved part of the tips of the conical cracks. Also, 
the tip of the penny-shaped crack is used to determine the 
location of y-axis; in the conical case, the point with the 
lowest absolute value of y in the upper or lower contours is 
used for this purpose. Thus the upper and lower contours of 
the crack under consideration are determined (Fig. 18). 

The upper and lower contours are rastered in order to 
define discrete points in pixel coordinates. The fiber location 
is indicated manually by specifying four separate points cor- 
responding to fiber edges around the crack. If only three 
fiber edges are visible, the fiber radius and the middle of the 
fiber are determined by an iterative procedure. In this case 
the crack image under consideration is classified as accurate. 
If this is not possible (due to the fact that two or more of the 
fiber edges are not visible), the edges are indicated as accu- 
rately as permissible and the crack image under considera- 
tion is classified as approximate. The results of these two 

Fig. 14 
outline 

Effect of stretching of grey-values on definition of crack 

High va l . e  

Fig. 16 Contour of the binary image of matrix crack 

~[iddle value 

LOW value 

Fig. 15 Results for different threshold values 
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classes of crack images will be treated separately. The fiber 
edges that are indicated (either accurate or approximate) will 
determine the location of the z-axis (the direction of the 
z-axis is taken as the same as the horizontal of the image of 
the camera). Furthermore, the fiber radius (required for 
nondimensional plots) is also confirmed by this procedure. 
All the contour halves of the cracks are made dimensionless 
with respect to the fiber radius (a). For each class of contour 
halves, the results are superimposed. Examples of such 
grouped results are shown in Fig. 19. For each class of 
contour halves and for each specimen, an average contour is 

. - .  I b o x  

l S q'% J 

\ \  ooo,oo ,o, 

b) Position of removal-box, 

Fig. 17 Use of skeletel lines for the Isolation of parts of contour 

determined by means of a path searching technique proce- 
dure available in the TCL software. Also, an optimum path is 
determined by considering all contour halves. 

The contour halves determined via the above procedure 
are used to determine the values of c/a, Q/a, c2/a, and 00. 
The crack images do not possess the degree of refinement 
which enable the determination of uo/a. The crack topogra- 
phies generally obstruct the visibility of the cracked fiber. 

Fracture Geometries  
In this section, the results determined from five specimens 

are presented. These specimens have different levels of strain 
at which the fragmentation test is terminated. Furthermore, 
for every specimen, the initial elastic properties of the matrix 
are calculated for purposes of comparison. The results are 
listed in Table 2. 

For each specimen the cracks (including the irregular 
helicoidal type) are numbered. The cracks are subdivided 
into (i) the group of cracks that cannot be classified accord- 
ing to the three main types of fracture topographies (penny- 
shaped, conoidal and combination of conoidal, and penny- 
shaped); (ii) the group of cracks that can be classified with an 
accurate fiber location determination. The results of this 
classification is shown in Table 3. The dimensions and orien- 
tation of the cracks specified geometries are determined with 
the image analysis procedure. These results are summarized 

, J  
Accurate, conical 
(3 contour-halves, sp. 4) 

I," I 

II, I  i!1 
:",! ;:11.' 

0oo• 

Accurate, combined 
(8 contour-halves, sp. 3) 

Upper contour.  Lower COlltOUl'. 

Fig. 18 Extracted upper and lower contours of matrix crack 

J /  
l k. dr.#"  

Approximate, conical 
(18 contour-halves, sp. 4) 

Fig. 19 

i i 

Approximate, combined 
(11 contour-halves, sp. 3) 

Cumulative Image of contour halves (specimens 3 and 4) 

Specimen 

Table 3 Dlstrlbutlon of cracks In the tested specimens 

Number  of  Cracks 
Total  I Helicoidal (1) 

33 21 
52 43 
46 36 
41 16 
56 25 

Approximate  (2) 

13 
5 
6 

22 
26 

Accura te  (3) 
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Table 4 Results of crack measurements 

S p e c i m e n  
Conical (approximate') 

1 
2 
3 
4 
5 

Conical (accurate) 
1 
2 
3 
4 
5 

Combined (approximate)  
1 
2 
3 
4 
5 

Combined (accurate) 
1 
2 
3 
4 
5 

Number  of Crack-Halves (c/a)  

12 2.91 
0 * 
1 2.05 

18 3.19 
6 3.18 

(el/a) (c2/a) 
- 

~ 0  

57 ° 
45 ° 
45 ° 

2.53 51 ° 
2.37 510 

2.63 57 ° 
2.96 57 ° 

14 2.42 3.36 56 ° 
10 2.78 6.12 63 ° 
1 t 1.98 5.63 45 ° 
22 1.60 4.32 51 ° 
46 2.44 7.20 56 ° 

4 1.69 2.84 56 ° 
5 1.31 6.53 * 
8 * * * 

3 * * * 
9 2.17 4.79 i56° 

(- indicates that  the parameter  is not applicable; * indicates tha t  no reliable measurement  

was possible) 

in Table 4. In these studies only one isolated penny-shaped 
crack was observed. Consequently, this category of cracks is 
not considered further. The results in Table 4 are those for 
contour-halves, (i.e., one observed crack is divided into two 
halves and thus yields two contour halves (after image pro- 
cessing). 

C o n c l u s i o n s  

The engineering properties of a fiber-reinforced composite 
are strongly influenced by the micromechanical processes 
that take place within the fibers, the matrix, and at the 
fiber-matrix interface. The fragmentation tests involving the 
axial loading of a matrix specimen, containing a single coaxial 
embedded fiber filament is a possible test for examining the 
micromechanical processes at the scale of a fiber. In frag- 
mentation tests two phenomena are observed after fiber 
fracture. When the interface has strength and fracture tough- 
ness characteristics that are lower than those of the matrix, 
fiber ends will experience slip. With the advent of coupling 
agents, the bond at the fiber-matrix interface can be en- 
hanced with the result that matrix cracking occurs at a 
cracked fiber location. In this sense the cracked fiber loca- 
tions act as nuclei for matrix cracking. Fragmentation tests 
with embedded single-fiber filaments require advanced ex- 
perimental procedures involving accurate preparation of 

specimens, their precise uniaxial loading and the develop- 
ment of computer-aided techniques for the evaluation of 
matrix crack topographies, particularly at cracked fiber loca- 
tions. This research has developed efficient experimental 
schemes and computer-aided data evaluation techniques for 
the study of matrix crack evolution at cracked fiber locations. 
The experimental studies indicate that at the micromechani- 
cal level, stable matrix crack extension can take place at 
cracked fiber locations. In particular, three major matrix 
crack propagation patterns are observed. With the aid of the 
computer-aided image analysis technique, these patterns can 
be quantified for several levels of longitudinal straining of 
the fragmentation specimen. The quantification of specific 
geometrical features of the matrix crack configurations can 
also be achieved. These include the inclination of the matrix 
crack at the fiber-matrix interface, the radii of single conoidal 
cracks and multiple cracks involving conoidal and penny- 
shaped cracks. The data on crack topographies have been 
evaluated with a view to examining the efficiency of elemen- 
tary computational models of crack extension in brittle elastic 
solids. 

The primary motivation for the development and examina- 
tion of fragmentation tests involving embedded fiber fila- 
ments stem from the need to understand micro-mechanical 
level matrix cracking at cracked fiber locations in fiber-rein- 
forced composites. The methodologies, however, have appli- 
cations to the study of crack extension at rock anchor re- 
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gions, anchor bolts in concrete and cracking at the extremi- 
ties of multiphase composites reinforced with elongated in- 
clusions. The experimental methodologies involving the spec- 
imen fabrication and testing are directly applicable to the 
latter topic. The evaluation of the extent of crack extension 
can be achieved by ultrasonic and acoustic emission tech- 
niques, which can adequately describe the formation of dis- 
crete cracks and the precursor microcracks. 

Acknowledgments 
The authors wish to express their thanks to PPG Indus- 

tries Fiber Glass bv (Hoogezand, The Netherlands) for sup- 
plying specially prepared fibers for the experimentation. The 
following people from the Laboratory of Engineering Me- 
chanics at Delft University of Technology are thanked for 
carrying out the experiments: Mr. J. C. Sterk, Miss C. M. van 
Daalen, and Mr. C. A. J. Toussaint. 

References 
Atkinson, C., 1979, "Stress Singularities in Fracture Mechanics," ASME 

Applied Mechanics Reoiew, Vol. 32, pp. 123-155. 
Berg, R. M., van den, 1990, "Fragmentation Tests with Glass/Polyester 

and Glass/Epoxy," (in Dutch), Report No. LTM-918 Laboratory of Engi- 
neering Mechanics, University of Technology, Delft, The Netherlands. 

Bussehen, A., ten, 1991, "Micromechanical Modelling of Uni-Direc- 
tional Glass Fiber Reinforced Polyester: Effect of Matrix Shinkage," Proc. 
Euromech Colloquium 269, A. Vautrin, ed., St. Etienne, France, pp. 1-8. 

Chamis, C. C., 1974, "Mechanics of Load Transfer at the Interface," 
Interfaces in Polymer Matrix Composites, Vol. 6, L. J. Broutman and R. H. 
Crock, eds., Academic Press, New York, pp. 31-77. 

Cox, H. L., 1952, "The Elasticity and Strength of Paper and Other 
Fibrous Materials," British Jour. Appl. Phys., Vol. 3, pp. 72-79. 

Dekkers, M. E. J., 1985, "The Deformation Behaviour of Glass Bead 
Filled Glassy Polymers," Ph.D. Thesis, Tech. Univ. Eindhoven, The 
Netherlands. 

DSM Resins, 1991, Brochure Synolite, The Netherlands. 
England, A. H., 1965, "A Crack Between Dissimilar Media," ASME 

JOURNAL OF APPLIED MECHANICS, Vo]. 32, pp. 400-404. 
Friedrich, K., ed., 1989, Application of Fracture Mechanics to Composite 

Materials, Composite Materials Series, Vol. 6, R. B. Pipes, ed., Elsevier, 
Amsterdam, The Netherlands. 

Griffith, A. A., 1921, "The Phenomena of Rupture and Flow in Solids," 
Phil. Trans. Roy. Soc. London, Vol. A221, pp. 163-179. 

Hull, D., 1981, An Introduction to Composite Materials, Cambridge 
University Press, Cambridge, U.K. 

Kassir, M. K., and Sih, G. C., 1975, Three Dimensional Crack Problems, 
Mechanics of Fracture Series, Vol. 2, G. C. Sih, ed., Noordhoff, Leyden, 
The Netherlands. 

Kedward, K. T., Wilson, R. S., and McLean, S. K., 1989, "Flexure of 
Simply Curved Composite Shapes," Composites, Vol. 20, pp. 527-536. 

McCartney, L. N., 1989, "New Theoretical Model of Stress Transfer 
Between Fibre and Matrix in a Uniaxially Fibre-Reinforced Composite," 
Proc. Roy. Soc., Vol. A425, pp. 215-244. 

Merle, G., and Xie, M., 1991, "Measurement of the Adhesion of 
Polyester Block Amine to E-Glass by Single Filament Fragmentation," 
Composites Science and Technology, Vol. 40, pp. 19-30. 

Moran, B., Gosz, M., and Achenbach, J. D., 1991, "Effect of a Vis- 
coelastic Interracial Zone on the Mechanical Behaviour and Failure of 
Fibre-Reinforced Composites," Proc. 1UTAM Symposium: Inelastic Defor- 
mation of  Composite Materials, G. J. Dvorak, ed., Springer-Verlag, Berlin, 
pp. 35-49. 

Pagano, N. J., ed., 1989, lnterlaminar Response of Composite Materials, 
Composite Materials Series, Vol. 3, R. B. Pipes, ed., Elsevier Scientific 
Publ., Amsterdam. 

Pantano, C. G., and Chen, E. J. H., eds., 1990, Interfaces in Composites, 
Proceedings of the MRS Symposium, Boston, Materials Research Society 
Symposium Proceedings, Vol. 170, Pittsburgh, PA. 

Piggott, M. R., 1980, Load Bearing Fibre Composites, Pergamon Press, 
New York. 

Rebelo, C. A. C. C., Ferreira, A. J. M., Marques, A. T., and de Castro, 
P. M. S. T., 1986, "The Influence of Processing Conditions on Mechani- 
cal and Fracture Properties of GRP Plates," Mechanical Behaoior of 
Composites and Laminates, W. A. Green and M. Micunovic, eds., Proc. 
Euromech. Colloquium 214, Kupari, Yugoslavia, Elsevier, Amsterdam, 
The Netherlands, pp. 54-63. 

Sancaktar, E., 1991, "Nonlinear Viscoelastic Behaviour of the Fibre- 
Matrix Interface, Theory and Experiment," Proc. Euromech Colloquium 
269, A. Vautrin, ed., St. Etienne, France. 

Selvadurai, A. P. S., 1991, "Cracks at the Extremities of Cylindrical 
Fiber Inclusions," Proc. IUTAM Symposium on Inelastic Deformation of 
Composites Materials, G. J. Dvorak, ed., Springer-Verlag, Berlin, pp. 
147-171. 

Selvadurai, A. P. S., and Busschen, A. ten, 1995, "Mechanics of a 
Fragmentation Test Involving an Embedded Fiber, Part II: Computa- 
tional Modeling and Comparisons," ASME JOURNAL OF APPLIED ME- 
CHANICS, Vol. 62, pp. 98-107. 

Selvadurai, A. P. S., Busschen, A., ten, and Ernst, L. J., 1991, 
"Batman-Cracks: Observations and Numerical Simulations," Proc. 13 
Can. Congr. Appl. Mech. CANCAM '91, Winnipeg, Canada, pp. 382-383. 

Selvadurai, A. P. S., Singh, B. M., and Au, M. C., 1992, "The Matrix- 
Fiber Crack in an Elastic Solid," unpublished, 

Sih, G. C., and Chen, E. P., 1981, Cracks in Composite Materials, 
Mechanics of Fracture, Vol. 6, Martinus Nijhoff, The Hague. 

Sneddon, I. N., 1946, "The Stress Distribution in the Neighbourhood of 
a Crack in an Elastic Solid," Proc. Roy. Soc., London, Vol. A187, pp. 
229-260. 

Toussaint, C. A. J., 1991, "Manual for the Image Analysis Programme 
TCL," (in Dutch) Report No. LTM 953, Laboratory for Engineering 
Mechanics, University of Technology, Delft, The Netherlands. 

Williams, M. L., 1959, "The Stresses Around a Fault or Crack in 
Dissimilar Media, ~ Bulletin Seismological Soc. of America, Vol. 49, pp. 
199-204. 

Journal of Applied Mechanics MARCH 1995, Vol. 62 1 97 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A. P. S. Selvadurai 
Department of Civil Engineering 

and Applied Mechanics, 
Faculty of Engineering, 

McGill University, 
Montreal, QC H3A 2K6, Canada 

Mem. ASME 

A. ten Busschen 
Laboratory of Engineering Mechanics, 

Faculty of Mechanical Engineering 
and Marine Technology, 

Delft University of Technology, 
Delft, The Netherlands 

Mechanics of the Segmentation 
of an Embedded Fiber, Part I1: 

  omput.ational Modeling and 
ompansons 

A fragmentation test has been developed for the study of the influence of the adhesive 
characteristics of the interface between reinforcing fibers and the matrix on the 
development of matrix cracking at a cracked single fiber location. The present paper 
examines the numerical modeling of the crack extension process within the matrix 
region. The numerical modeling focuses on the application of boundmy element 
techniques to the study of an axisymmetric fiber-matrix model and quasi-static crack 
extension criteria are employed to determine the path of crack extension. The result for 
the crack extension patterns obtained from the numerical models are compared with the 
results derived from the experiments. It is shown that elastic fracture mechanics 
simulations of quasi-static crack extension can successfully model the observed 
experimental phenomena. 

Introduction 
The integrity of bond between a fiber and the surrounding 

matrix is of fundamental importance to the successful devel- 
opment and adaptation of fiber-reinforced composite materi- 
als. The interface bond characteristics are important from 
the point of view of both longitudinal and transverse resist- 
ance to fracture and failure of fiber-reinforced composites. 
Debonding, delamination, and cracking at a fiber-matrix in- 
terface can be initiated by a variety of factors including stress 
concentrations at sharp edges, inhomogeneities, thermal mis- 
match between the matrix, and the reinforcement and other 
environmentally induced loading effects. The evaluation of 
the influence of such defects on fracture propagation, stiff- 
ness degradation, etc., can significantly enhance both per- 
formance evaluation and material selection for fiber-rein- 
forced composites (Sih and Tamuzs, 1979; Selvadurai, 1981; 
Hashin and Herakovich, 1983; Kelly and Rabotnov, 1983; and 
Dvorak, 1991). 

The companion paper (Busschen and Selvadurai, 1995) 
focussed on the experimental evaluation of the influence of 
interface strength characteristics on the development of ma- 
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trix cracking at a cracked fiber location. The stress transfer 
between the fiber and the matrix and vice versa, is achieved 
by means of a bonding mechanism (i.e., chemical bonding 
and mechanical interlock) or by means of a slip mechanism 
(friction between matrix and crack). These two mechanisms 
can be characterized experimentally for a specific fiber-ma- 
trix combination. A well-known test used for this purpose is a 
"pull-out" test (Piggott, 1980), which consists of a single fiber 
which is embedded in a matrix. This method of fiber-matrix 
interface characterization is, however, both time-consuming 
and highly sensitive to the test procedure. This research 
program advocates the development and use of the fragmen- 
tation test which provides information about the role of the 
interface strength characteristics on the subsequent develop- 
ment of matrix fracture. The testing of a composite speci- 
men, in which a single fiber is embedded within a larger 
matrix region, permits not only ease of testing but also a 
clearer study of extended matrix fracture generation at a 
cracked fiber location. The companion paper has character- 
ized the morphology of matrix crack patterns which can exist 
in a fragmentation test particularly in the presence of strong 
interface bonding, i.e., the interface strength and fracture 
toughness characteristics are expected to be much larger 
than the corresponding properties for the matrix region. 

The primary objective of this paper is to examine whether 
the fracture morphologies observed in the fragmentation 
tests can be predicted by appeal to current developments in 
fracture mechanics. It must be observed that fracture mor- 
phology is one of the main observations of the fragmentation 
test. Due to the relatively small area of the fiber cross-section 
its influence on the overall load-displacement behavior of the 

98/Vol. 62, MARCH 1995 Transactions of the ASME 

Copyright © 1995 by ASME
Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



fragmentation specimen is not significant. Attention is there- 
fore focussed on a numerical modeling scheme which will 
examine the quasi-static crack extension within the matrix in 
the presence of strong adhesion. 

The numerical modeling of fracture can be approached by 
adopting either finite element techniques or boundary ele- 
ment techniques. Accounts of these developments together 
with extensive references to developments in these areas are 
given by Zienkiewicz (1977), Brebbia et al. (1984), Brebbia 
and Aliabadi (1991), and Atluri (1991). In this paper, the 
boundary element technique is used to study the evolution of 
quasi-static crack extension into the matrix region at a cracked 
fiber location. 

The Boundary Element Method 

The formulation of the boundary element method for 
elastostatic problems is given by Banerjee and Butterfield 
(1981) and Brebbia et al. (1984). In this section a brief 
exposition of the basic features of the method are summa- 
rized for completeness. Further details of the application of 
boundary element techniques to the computational modeling 
of problems in fracture mechanics are given by Cruse and 
Wilson (1977), Blandford et al. (1981), Smith and Mason 
(1982), and Selvadurai and Au (1986, 1988, 1989, 1991). 

We specifically consider the problem of a cylindrical elas- 
tic fiber which is embedded in bonded contact with an elastic 
matrix region of infinite extent. We assume that the fiber 
develops a plane crack normal to its axis due to the applica- 
tion of a uniform axial strain to the entire composite region. 
As indicated previously (Busschen and Selvadurai, 1995), the 
further application of uniform straining will induce either 
matrix cracking or fiber-matrix interface delamination. In the 
numerical modeling we primarily focus attention on the ma- 
trix cracking problem which persists in the presence of strong 
interface adhesion. The three main modes of matrix cracking 
include the following: (i) the development of a penny-shaped 
crack, (ii) the development of a conoidal crack, or (iii) the 
development of a combined conoidal crack-penny-shaped 
crack, at the cracked fiber location. As observed in the 
experiments, three-dimensional helicoidal cracks can occur in 
the fragmentation tests; these, however, do not abound. The 
boundary element technique in conjunction with crack exten- 
sion criteria are used to establish the computational predic- 
tions for crack extension. Admittedly, the fracture propaga- 
tion in a brittle material such as the matrix of a fiber-rein- 
forced structural element is usually a dynamic phenomenon. 
In the fragmentation test, however, it is observed that the 
growth of the fracture in the matrix region can be effectively 
controlled to minimize dynamic aspects of crack extension. 
For this reason, the boundary element modeling is restricted 
only to the static problem, 

We assume that both the uniform straining of the frag- 
mentation test specimen and the resulting extension of ma- 
trix cracking exhibit a state of symmetry about the axis of the 
embedded fiber (Fig, 1). Both the fiber and matrix regions 
are assumed to be isotropic elastic materials which satisfy the 
stress-strain relationship 

°) = ,,(") (1)  + Go{u!;) + , , , ,  

and the Navier equations 

G.V2u! .)  + ()% + t'z. "~,,(-) = 0 (2) ~ o e ] ~ k , k i  

where G,~ and h,, are Lame's constants; the subscript or 
superscript " a "  refers to the matrix (m) and fiber ( f )  re- 
gions; u~ and o'~i are, respectively, the displacement compo- 
nents and stress tensor referred to the rectangular Cartesian 
coordinate system x, y, z; i, j = x, y, z; )t. = 2G~ v./(1 - 
2v,~); v,~ are Poisson's ratios; G,, = E./2(1 + v.); V 2 is 

-T',V,f-~"T'T T T T T [" 

) 

Fig, 1 The axisymmetrlc modal of the fragmentation tests for an 
embedded fiber 

Laplace's operator referred to the rectangular Cartesian co- 
ordinate system; and 6 i. is Kronecker's delta function. Here, 
and in what follows, the Greek indices and subscripts will 
refer to quantities pertaining to the matrix and fiber regions. 

The boundary integral equation for the axisymmetric prob- 
lem pertaining to the fiber-matrix composite region can be 
written in the form (see, e.g., Kermanidis, 1975; Cruse and 
Wilson, 1977) 

r 
f ro.(.),,(~) "*(")D(~)/-dF = 0 (3) 

CekU(k " )  + ) r a l " e k  ~ k  --  " e k  • k J ri 

where F, is the boundary of the region o~; u~ ~) and P~") are, 
respectively, the displacements and tractions on the bound- 
ary F~ and u~  ") and o*(~) • ik are fundamental solutions. Also 
in (3), ci, is a constant (=  0, if the point is outside the body; 
= 8~, if 'the point is inside the body; = 8ij/2 if the point is 
locai'ed at a smooth boundary, and is a function of disconti- 
nuity at a corner and of Poisson's ratio (Banerjee and Butter- 
field, 1981)). 

For axial symmetry 

(4(1- u,~)(P 2 + Z2) -- P 2 } 
,~*(~ = C~ = K ( m )  
--rr 2rR 

{ (7 - 8V~) R (e4 - 24) ) E ( ~ )  4rR3ml 

rz 2 . ~ 3 m l  

" *(") = Clri2 - - - - - -  E ( m )  + K ( m )  (6) Uzr 2r/~3ml 2 

u*} ~ = Clr i + ~'-ffg---E(~) (7) 

where 

= - z , ) ;  = ( r  + p2 = + 4 )  

1 
e = ( r  - = + C ,  

4 = a o ( 1  - vo )  

_ _  2 r r i  
m =  _~2, m 1 =  1 - ~  (8) 

and K ( ~ )  and E ( ~ )  represent, respectively, the complete 
elliptic integrals of the first and second kind. The corre- 
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sponding terms for the traction fundamental solution P ~ )  
can be obtained by the manipulation of the results (4) to (7). 

Upon discretization of the boundaries F~ into boundary 
elements, the integral Eq. (3) can be represented in the form 
of a boundary element matrix equation as follows: 

l u, o,/= (9) 
l 

[H (~, H(/")] [ uS,S) l 

where H's and M's are the influence coefficient matrices 
derived from the integration of the fundamental solutions 
P*(") and "*(~) respectively. In the instance where there is 

g k  ~ g k  ' 

complete bonding between the fiber-matrix interface we have 

U 7  ) = U(/m) = U I 

p/(f) = _p/(m)= Pt. (10) 

Using the above result, the complete matrix equation 
governing the fiber composite-crack interaction problem can 
be expressed in the form 

H(/m) H (m) u l  
U (m) 

I: 1[ = f) M~ f) 0 P, . (11) 
M(/m) M(m) p(m) 

Modeling of  Crack-Tip Behavior 
In the boundary element discretizations discussed in the 

previous section, quadratic elements will be employed to 
model the boundaries of the matrix and fiber regions. That 
is, the variation of the displacements and tractions within an 
element can be described by 

u}~) } ~.2 (12) 
pi(a ) = a o + a 1~ + a 2 

i 

where ~" is the local coordinate of the element and a r ( r  = O, 
1, 2) are constants of interpolation. However, in the context 
of linear elastic fracture mechanics, the stress field at the 
crack tip should contribute to a 1/x/7-type singularity. In the 
finite element technique, the quarter-point element of the 
type proposed by Henshell and Shaw (1975) and Barsoum 
(1976) can be used to model the required ~--type variation of 
the displacements. That is, if the same type of element is 
implemented in a boundary element method where b i ( i  = O, 
1, 2) are constants 

U! a) 
= b o + b lv f r  + b2r .  (13) 

pi (~) 

Since the P/(~) in (13) does not produce a 1/~/7-type singu- 
larity, Cruse and Wilson (1977) developed the so-called "sin- 
gular traction quarter-point boundary element," where the 
traction variations in (13) are multiplied by a nondimensional 

where f is the length of the crack-tip element. The 
variations of tractions can be expressed in the form 

C O 
Vi = 7 + cl + c2V/~ (14) 

where c i (i = 0, 1, 2) are constants. The performance of both 
types of quarter-point elements have been studied by Bland- 
ford et al. (1981), Smith and Mason (1982), and Selvadurai 
and Au (1989) and their accuracy established by comparison 
with known exact solutions. 

I 
Z 

A B C pr 

o 

Fig. 2 Detail at the crack t ip. Node arrangement for the computa- 
tion of the stress intensity factor, 

In the crack-fiber interaction problem examined in this 
paper the axial straining induces a state of axial symmetry in 
the fiber-matrix composite region. Consequently, only the 
Mode I and Mode II stress intensity factors are present at 
the tips of the crack region. The flaw opening-mode stress 
intensity factor can be evaluated by applying the displace- 
ment correlation method which utilizes the nodal displace- 
ments at four locations A, B, E, D, and the crack tip (Fig. 2) 
i.e., 

G~ 2 V ~  K}~) (k~ + 1) { 4 [ u z ( B )  - uz(D)]  

+uz(E) - u~(A)} (15) 

where k~ = (3 - 4v~) and g 0 is the length of the crack-tip 
element. Similarly the flaw shearing mode stress intensity 
factor can be written in the form 

G,, @ 2~r 
K}7) (ko, + 1) ~ {4[Ur(B) - ur(D)]  

+ur(E ) - u,.(A)}. (16) 

Crack Extension Criteria 
The boundary element technique described in the previous 

section can be applied to examine the mechanics of matrix 
crack extension at the cracked fiber location. In order to 
develop the computational model it is necessary to establish 
a crack extension criterion applicable to the brittle matrix 
region. The subject of fracture extension in brittle elastic 
solids has been studied very extensively over the past two 
decades. Such studies have been motivated by the interest in 
the examination of crack extension in both metallic materials 
such as steel and nonmetallic materials such as concrete, 
rock, ceramic materials, polymeric materials at low tempera- 
tures, and ice. Extensive accounts of these developments can 
be found in the literature on fracture mechanics (see, e.g., 
Liebowitz, 1968; Kassir and Sih, 1975; Atkinson, 1979; 
Cherepanov, 1979; Lawn and Wilshaw, 1980; Broek, 1982; 
Kanninen and Popelar, 1985; Shaw and Swartz, 1987; Sih, 
1991). In studies related to crack extension in brittle elastic 
solids, it is necessary to postulate two criteria. The crack 
extension criterion establishes the stress conditions necessary 
for the onset of crack extension. The second relates to the 
criterion which establishes the orientation of crack growth. 

(a) Criteria for Onset of Crack Extension. The onset of 
crack extension in brittle elastic solids can be described by a 
variety of criteria. Such criteria are invariably developed on 
the basis of experimental investigations on fracture toughness 
testing of materials such as concrete mortar, rock, and brittle 
ceramics. A simple form of a criterion for the onset of crack 
extension can be expressed in terms of the fracture toughness 
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of the material in the crack-opening mode. Accordingly, 
crack extension can be initiated when 

K t = K h, (17) 

where Kic is the critical value of the stress intensity factor in 
the crack-opening mode. 

The result (17) can be generalized to include the influence 
of mode II or flaw shearing effects. The simplest form of a 
generalization due to Hellan (1985) takes the form 

a 1 - -  + a 2 tKzcJ ~ + a 3  ~Hc 

- -  = a I + a 2 ( 1 8 )  +a4 K//c 

where Kn~ is the critical value of the stress intensity factor in 
the flaw shearing mode and a i (i = 1, 2, 3, 4) are experimen- 
tally derived constants. 

The studies by Sih (1974) indicate that a generalized 
theory for the onset of crack extension can be posed in 
relation to the local strain energy density at the crack tip. 
The theory does not require the calculation of energy release 
rate and thus possesses the inherent advantage of being able 
to accommodate crack extension processes in which all modes 
of crack extension (in this case the Modes I and II) con- 
tribute to the local strain energy density function. The strain 
energy density function S at the crack boundary (Fig. 3) can 
be written as 

S = OqlK/2 + 2 a , z K i K  . + a22 K2' (19) 

where 

1 
= -i 2( 1 + cos 0 ) ( a  - cos 0 )  

1 
= ~ s i n  0[2cos 0(Sq - 1)] at2 16Gm 

1 
-22 = ]T6  [ ( a  + 1)(1 - cos 0 )  

+(1  + cos 0 ) (3cos  0 -  1)] (20) 

and 

(3 - 4urn) plane strain 

= (3 - u,,) plane stress (21) 
(1 + ~m) 

depending upon whether the local stress field conforms ei- 
ther to a state of plane strain or plane stress. It can be shown 
that the stationary value of Smi . can be used as an intrinsic 
material parameter the value of which at the onset of crack 
extension Set is independent of the crack geometry and 
loading. 

(b) Orientat ion of  Crack Growth. If we consider the 
conical elemental matrix crack with an arbitrary orientation 
to the cracked fiber location (Fig. 3), it is evident that at the 
crack-tip location both the stress intensity factors K I and K n 
are present. Consequently, a generalized crack extension 
criterion should incorporate the influence of both stress 
intensity factors. In this study the orientation of crack growth 
is examined by employing the criteria postulated by Erdogan 
and Sih (1963). 

The maximum stress criterion assumes that the crack will 
start to extend in the plane which is normal to the maximum 
circumferential stress or00 (i.e., stress state referred to the 
local polar coordinate system located at the crack tip) in 
accordance with the condition 

K 1 sin 0 + K l l ( 3 c o s  0 -  1) = 0 (22) 

for determining the initial angle of crack growth 0. 
The criterion defined by (22) has been used quite exten- 

sively for the study of quasi-static crack extension paths in 
brittle elastic materials such as concrete, epoxy, ceramics, 
and rock. This is by no means the only available criterion 
which has been proposed for crack extension in mixed mode. 
References to such developments are given by Sih and Theo- 
caris (1979) and Sih (1991). 

M a t r i x  C r a c k  D e v e l o p m e n t  at  th e  C r a c k e d  F i b e r  

First, the methodologies outlined in the previous sections 
are utilized to examine the crack extension into the matrix 
region at the cracked fiber location. In view of the applica- 
tion to the fragmentation test described by Busschen and 
Selvadurai (1995), attention is restricted to a typical E-glass 
fiber-polyester matrix system with the following basic proper- 
ties. 

E-Glass  Fiber. 

Diameter of fiber = 1.5 × 10 -5 m = 15 /xm 
Elastic modulus of fiber = 70,000 MPa 
Poisson's ratio of fiber = 0.20 
Uniaxial tensile strength of fiber = 2500 MPa 

Polyester  Matrix.  

Elastic modulus of matrix (E m) = 1500 MPa 
Poisson's ratio (u m) = 0.35 
Uniaxial tensile strength (~r r )  = 87 MPa 
Uniaxial compressive strength (o- c) = 140 MPa 
Critical stress intensity factor at seven days (Ktc) = 1.0 

MPav~- 
Critical stress intensity factor post cure ( K l c ) =  0.6 

MPa~/~- 

The cross-sectional dimensions of the fragmentation test 
specimen in its midsection are 1 mm X 5 mm. When compar- 
ing the cross-sectional dimensions of the specimen with the 
diameter of the embedded fiber it is evident that the trac- 
tion-free outer boundary of the specimen is located remote 
from the fiber (aspect ratio of 1/50). Consequently, in the 
numerical modeling attention is focussed on the problem of 
an elastic fiber which is embedded in an elastic matrix of 
infinite extent. 

The primary objective of the exercise in numerical model- 
ing is to use the concepts in crack extension discussed previ- 
ously to predict the matrix crack patterns which originate at 
cracked fiber locations. It is assumed that at a cracked fiber 
location matrix cracking can originate in a variety of configu- 
rations. The origination of matrix cracking can be modeled as 
incremental starter cracks with basic conical or penny-shaped 
configurations which can occur either individually or simulta- 
neously. The incremental penny-shaped starter cracks can 

Journal of Applied Mechanics MARCH 1995, Vol. 62/101 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(o) 

'oio%, ,If! 
crack---n H: !i: 

.tJ,ili il, 
cracked ~ ~ 
f~br°----Jliil;! ili 

-ZT 
(b) 

conical 
crack ---~ 

I"! 

(c) 

conical 'il l 
crack ~ ii',i 

penny- I I  :1 
s h a p e d ~  :~!1 

crack / 1 

(d) 

crack I 

Fig. 4 Elemental matrix crack configurations at cracked fiber loca- 
tions; (a) elemental conical crack, (b) elemental conical cracks 
which are symmetrically located about the plane of the cracked 
fiber, ( c )  a combination of an elemental penny-shaped crack and a 
single elemental conical crack, ( d )  a combination of an elemental 
penny-shaped crack and symmetrically placed elemental conical 
cracks, (~o = ~7/2-9~0) 

occur in the plane of the cracked fiber and the incremental 
conical starter cracks are at an arbitrary orientation to the 
axis of the cracked fiber. Altogether four types of initial 
starter crack configurations can be examined. These include 
the following: 

1 an elemental conical crack which is oriented at an arbitrary 
inclination to the fiber axis (Fig. 4(a)). 

2 elemental conical cracks which are symmetrically located 
about the plane of the cracked fiber and oriented at an 
arbitrary inclination to the fiber axis (Fig. 4(b)). 

3 a combination of an elemental penny-shaped crack and a 
single elemental conical crack which is oriented at an 
arbitrary inclination to the fiber axis (Fig. 4(c)). 

4 a combination of an elemental penny-shaped cracked and 
symmetrically placed elemental conical cracks which are 
oriented at an arbitrary inclination to the fiber axis (Fig. 
4(d)). 

Admittedly, the scope of the numerical modeling can be 
extended to cover other conical elemental matrix crack con- 
figurations which are located nonsymmetrically with respect 
to the plane of the cracked fiber. The composite region 
containing the cracked fiber and the elemental cracks (Fig. 4) 
is subjected to a uniform far-field axial strain. A typical 
boundary element mesh discretization used in the numerical 
modeling of the fragmentation test is shown in Fig. 5. The 
extension of the crack and the path extension of the crack 
can be determined by considering the criteria for the onset of 
crack extension and the criteria for the orientation of incre- 
mental quasi-static crack growth. 

In order to perform the numerical computations for the 
onset of crack extension by using the result (18) it is neces- 
sary to establish the critical values of the stress intensity 
factors governing both Mode I (Kic) and Mode II (Kit ~) 
fracture processes in the Polyester matrix. An examination of 
the literature on fracture toughness testing for the Polyester 
matrix material indicates that most such experimental evalua- 
tions of fracture toughness primarily focus on the determina- 
tion of K~. Further, for the Polyester matrix material, K,c,  

% 

matrix region ( I )  

e region 

______•crock - t ip of 
conical crack 

matrix region (2)  

j -  

Fig.  5 Boundary element discretlzatlon used In the numerical 
modeling of the fragmentation test 

is expected to be much larger than the Ktc. For this reason 
the criterion for the onset of crack extension is defined by 
the simpler criterion (17). This criterion has been very suc- 
cessfully adopted for the examination of fracture initiation in 
brittle solids such as concrete, rock, and ceramics. 

With this onset of crack extension criterion, attention is 
focused on the specification of the orientation of crack 
growth. Preliminary investigations conducted by the authors 
on typical elemental starter crack configurations indicate that 
both criteria (22) and (24) give approximately the same 
results for the orientation of crack growth. The result of 
these studies cannot in any way be generalized. It is, how- 
ever, convenient to adopt the simplified orientation of crack 
growth criterion defined by (22). With these simplified repre- 
sentations in mind, i.e., result (17) for the onset of crack 
extension and result (22) for the orientation of crack growth, 
the boundary element modeling procedure can be used to 
establish the quasi-static crack extension paths associated 
with the various starter crack configurations. 

In the computations, the inclination of the conical starter 
crack to the axis of the fiber (0 o) is set equal to 45 deg, 50 
deg, 55 deg, and 60 deg. By assigning this range of conical 
starter crack orientations it is possible to assess their influ- 
ence on the mode of crack extension. The lengths of the 
starter crack can be a variable; however, for the purposes of 
the numerical computations, the length of the starter crack 
(either conical or penny-shaped) is set equal to 0.01 a where 
a is the radius of the fiber. 

We first consider the results developed for the case of an 
elemental conical crack which is located at an arbitrary 
orientation to the axis of the fiber. Figure 6 shows the crack 
extension pattern within the matrix region for starter crack 
orientation 00 e (45 deg, 60 deg). The extent of matrix crack 
extension shown in Fig. 6 takes into consideration various 
levels of axial strain E o E (0.01, 0.12). In Fig. 7 we present the 
results for the strain-level-dependent crack extension pat- 
terns derived for the situation where conical starter cracks 
are symmetrically situated at the cracked fiber location. As is 
evident, either the symmetry or asymmetry in the orientation 
of the conical starter cracks appears to have a significant 
influence on the path of crack extension within the matrix. 

We next consider the situation where both a penny-shaped 
starter crack and a nonsymmetric conical starter crack are 
present at the cracked fiber location. In this arrangement 
quasi-static crack extension can take place at either crack-tip 
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Fig. 7 Matrix crack extension at a cracked fiber location: elemental conical cracks 
symmetrlcally placed about the plane of crack tlber 

location. In the numerical computations, the criteria for 
crack extension is checked at both crack-tip locations and the 
crack extension is allowed to take place at the appropriate 
location which satisfies the crack extension criterion. Figure 
8 illustrates the crack extension patterns derived for initial 
conical crack orientations in the range 00 ~ (45 deg, 60 deg). 
Figure 8 also illustrates the extent of crack extension either 
at the tip of the conical crack or at the penny-shaped crack 
consistent with the level of axial strain in the composite 
region. The results of additional computations indicate that 
for 00 within the range (0, 45 deg), the conical starter cracks 
essentially remain dormant and the crack extension mainly 
occurs at the location of the penny-shaped crack. For 00 = 60 
deg and 70 deg, crack extension can occur at both crack-tip 
locations. When 00 = 75 deg, the conical crack extension 
mode dominates initially, and the tip of crack extension must 
be remote from the fiber to initiate the extension of the 
penny-shaped crack. Figure 9 illustrates the matrix crack 
extension characteristics for the situation where the penny- 
shaped crack at the cracked fiber location interacts with 
conical starter cracks which are symmetrically inclined to the 
axis of the fiber. Here again, computations carried out indi- 
cate that the conical starter crack does not extend at values 

of 00 < 30 deg. With increasing 00 (e.g., 00 = 45 deg), the 
conical starter crack will extend but such crack extensions 
will take place only as the penny-shaped crack extends to 
regions remote from the cracked fiber locations. For the 
larger values of 00, crack extension takes place mainly within 
the conical crack tip. The results are presented for various 
values of the applied strain Co. It is also evident that the 
extent of crack extension can be influenced by the symmetry 
or asymmetry in the orientation of the conical starter cracks. 

The numerical modeling technique is now used to provide 
a comparison for the experimental results derived from the 
actual fragmentation tests. From the experimental results 
presented in the companion paper (Busschen and Selvadurai 
(1995), Table 2) it is evident that all fragmentation test 
specimens display a variable matrix modulus Em. The devel- 
opment of numerical results for all fragmentation test speci- 
mens 1 to 5 will involve an inordinate amount of computa- 
tion. For this reason, attention is focused on the two frag- 
mentation test specimens which give the largest group of 
conical and combined cracks. From Table 4 of Busschen and 
Selvadurai (1995) it is evident that test specimens 1 and 5 can 
be used as typical experimental data sets for purposes of 
comparison. It is also noted that in these specimens the 
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orientations of the initial starter crack have been accurately 
determined. The elastic properties of the polyester matrix 
used in these specimens are given in Table 2 of the compan- 
ion article. The boundary element method and the fracture 
mechanics computations are used to compute the crack ex- 
tension paths for both symmetrically placed single conical 
cracks and symmetrically placed single conical cracks inter- 
acting with a penny-shaped crack. Figure 10 presents the 
results of the comparison derived for the cases of the sym- 
metrically placed conical cracks with 0 o = 39 deg and 0 o = 45 
deg. The result for 00 = 45 deg is provided only for purposes 
of comparison. The experimental results derived via the 
image analysis technique are classified as the accurate mean  
contour. The extended path of the cracks are derived for a 
strain level of e0 = 0.043. Figure 11 presents the comparison 
between the computations for 00 = 39 deg and 00 = 45 deg 
and analogous results derived via the experimental data set 
which is classified as the approximate mean  contour. It is 
clearly evident that the general trends indicated in the com- 
putations compare well with experimental data. We now 
focus on the comparison of results derived for the situation 
where the symmetrically placed conical crack interacts with a 
penny-shaped crack during the simultaneous crack extension 
process. In this case the initial inclination of the conical crack 
is assumed to be 00 = 34 deg and the applied maximum 

strain e o = 0.108. Figure 12 illustrates the limits of crack 
extension derived via the computational scheme and the set 
of experimental data identified as the accurate mean  contour. 
The result for 00 = 45 deg is again presented for purposes of 
comparison. Analogous comparisons of computational results 
and the data identified with the approximate mean contour 
are presented in Fig. 13. In these representations the experi- 
mental results for the penny-shaped crack record either 
accurate or approximate contours. As is evident, these con- 
tour bounds for the penny-shaped crack indicate trends con- 
sistent with experimental data. m further comparison can be 
made by examining the values of c (radius of purely conical 
crack), c l (radius of the conical crack part of combined 
crack), and c 2 (radius of the penny-shaped crack) obtained at 
the limit of the axial strain e 0 = 0.108. The comparisons are 
given in Table 1. Further comparisons can be also made by 
using the results for the computational modeling given in 
Table 1 with the experimental results for specimens 2, 3, and 
4 given in Table 4 of Busschen and Selvadurai (1995). 

Conclusions 
The integrity of bond between a reinforcing fiber and the 

surrounding matrix is an important property of a fiber-rein- 
forced composite material. As the bond strength is enhanced 
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Table 1 Comparison of computational estimates and experimental data 

Specimen 1 
c/a c~/a e2/~ 

Theory 3.65 2.38 9.01 
(Experiment)A¢c~e 2.53 1.69 2.84" 
(Experiment)Appreciate 2 .912.42 3.36* 

Specimen 5 
c/a e,/a e~/,~ 
3.65 2.38 9.01 
2.96 2.17 4.79 
3.18 2.44 7.20 

[* In these cases the boundary of the penny-shaped crack is not completely defined.] 

by the use of coupling agents the role of matrix fracture has 
an important influence in determining the transverse strength 
of unidirectional fiber-reinforced composites. The fragmenta- 
tion test is an effective method for the observation of frac- 
ture processes in the matrix in the presence of strong inter- 
face adhesion. This test is considered to be a more realistic 
analogue, in contrast to the testing of the matrix alone, for 
the investigation of matrix fracture in the vicinity of a fiber 
fracture. The objective of this phase of the research program 
is to provide a suitable computational procedure which can 
adequately model the developing matrix cracking in the frag- 
mentation test. The modeling of fracture processes in pre- 
dominantly brittle elastic materials such as brittle matrices in 
composites, ceramics, concrete, rock, etc., is a difficult exer- 
cise in computational mechanics. The crack extension is 
invariably a dynamic process. In the fragmentation test, how- 
ever, the stable growth of matrix cracking can be exercised by 
suitable controlled straining of the active section of the 
fragmentation test specimen. Consequently, the mechanics of 
crack extension can be examined by appeal to quasi-static 
computational modeling. In such an exercise, the growth of 
matrix cracking at a cracked fiber location is assumed to 
occur by the extension of a nucleated or starter crack, which 
extends to the matrix region. In general, these starter cracks 
could have arbitrary three-dimensional configurations; for 
the purposes of the analyses it is assumed that the nucleated 
cracks can be composed of either individual or combined 
arrangements of conical and penny-shaped cracks. An alter- 
native to the nucleated crack concept is to postulate a crite- 
rion, which could initiate cracking into the matrix region 
commencing at the boundary of a cracked fiber. Such an 
analysis is a complex exercise in fracture mechanics involving 
crack initiation at a bimaterial corner region. In addition to 
the assumption of a nucleated starter crack, it is necessary to 
specify criteria for the onset of crack extension and for the 
orientation of crack growth. In this study two relatively 
simple forms of these criteria are adopted for the computa- 
tional modeling of crack extension. 

The methodologies discussed here are implemented in a 
boundary element model which examines the quasi-static 
growth of a variety of configurations of starter cracks with 
conical and/or penny-shaped forms. 

It is shown that the boundary element based computational 
scheme can be successfully employed to examine the matrix 
crack growth with conoidal and penny-shaped topographies. 
The boundary element scheme is particularly efficient for the 
study of crack extension in brittle solids since the incremental 
growth of the crack can be accommodated very conveniently. 
This is in contrast to other numerical schemes such as finite 
element schemes where constant remeshing at the crack-tip 
location is necessary to accommodate crack growth processes 
without specified orientations for the growth direction. 

Finally, the computational procedure is employed to pre- 
dict the growth of matrix cracking at a cracked fiber location. 
The correlations are established for conical cracks which 
have been measured accurately in the experimental research 
program. In order to establish the correlation it is necessary 

to specify the orientation of the conical crack, with respect to 
the fiber axis, as determined in the experiments. The specifi- 
cation of the orientation of the conical starter crack can 
certainly be regarded as a limitation of the modeling exer- 
cise. It is foreseeable certain additional criteria may need to 
be invoked to determine precisely the orientation of such 
conical matrix cracks which can initiate at the inception 
(dynamic fracture) of an embedded fiber. Similar uncertain- 
ties are encountered in the consideration of fracture initia- 
tion due to indentation where the elasticity mismatch be- 
tween the indentor and the contacting surface and the local 
geometry at the contact boundary (in this case the local 
geometry at the fractured fiber boundary) will influence the 
orientation of the starter crack. It is, however, observed that 
when the initial conical crack orientations are specified, the 
crack growth paths observed in the experiments are pre- 
dicted, reasonably accurately, with the computational model. 

Studies in fracture mechanics of the brittle matrix phase of 
composite materials have important considerations in estab- 
lishing the transverse strength of unidirectional fiber rein- 
forced materials. With the availability of a computational 
modeling procedure it is possible to contemplate on the 
prediction of crack propagation within the matrix of a fiber- 
reinforced material in which the transverse tensile matrix 
fracture is governed by matrix crack extension within the 
random network of reinforcing fibers. The research also 
identifies certain fundamental issues pertaining to matrix 
crack initiation at cracked fiber boundaries which merit fur- 
ther study. 
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Elastic Analyses of Planar 
Cracks of Arbitrary Shape 
A numerical method is presentedforplanar cracks of arbitrary shape. The fundamental 
solution for a dislocation segment is obtained from the point force solution and used to 
derive three coupled surface integral equations in which the crack-face tractions are 
expressed in terms of the gradients of the relative crack-surface displacements. Because 
the singularity of the kernel in the integral equations is one order less for fundamental 
solutions based on dislocation segments than for those based on dislocation loops or the 
body force method, no special numerical techniques are required. Most of the 
integrations over elements are evaluated analytically. The integral equations are solved 
numerically by covering the crack surface with triangular elements, and taking the 
relative displacements to vary linearly over the elements. The mesh is generated by 
optimizing the local aspect ratio, which is related to the difference in the principal 
stretches of the mapping of a square reference mesh onto the fracture surface. This 
mesh generator allows cracks of a wide variety of shapes to be analyzed with good 
accuracy. Comparison with known solutions indicate that accurate numerical solutions 
are obtained with a relatively coarse mesh. 

Introduction 
In fracture mechanics applications, three-dimensional 

elasticity solutions are often called for by the geometry of the 
body, the loading, and the cracks, but not considered because 
of the much greater difficulty involved. In critical applica- 
tions, three-dimensional analysis is essential for obtaining 
reliable solutions. Analytical solutions have been obtained 
for some three-dimensional cracks, for instance, circular and 
elliptical cracks in an infinite, isotropic body, by Kassir and 
Sih (1975, 1966), Shah and Kobayashi (1971), Sneddon and 
Lowengrub (1969), Westmann (1965), Keer (1964), and 
Segedin (1950). Analytical solutions for irregularly shaped 
three-dimensional cracks are not available and numerical 
methods have been developed for finding the stress distribu- 
tion and relative crack-surface displacements for these cases 
by a number of researchers. For example, Bui (1977), follow- 
ing Kossecka (1971), obtained a singular integral equation by 
the use of single layer and double layer potentials for a 
three-dimensional crack. Bui (1977) obtained numerical solu- 
tions for a square crack under uniform pressure. 

Murakami and Nemat-Nasser (1983), Murakami (1985), 
Lee and Keer (1986), and Lee, Farris, and Keer (1987), 
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among many others, used a body-force method developed by 
Murakami and Nemat-Nasser (1983) from Mura's eigenstrain 
approach (see, for example, Mura, 1987) to reduce the prob- 
lem of a planar crack to singular integral equations over the 
crack surface in terms of the relative crack-face displace- 
ments. Special numerical techniques are required to solve the 
integral equations because the kernels are singular. A numer- 
ical procedure has been given by Murakami and Nemat- 
Nasser (1983). Solving the singular integral equations numeri- 
cally gives the relative crack-surface displacements and stress 
intensity factors for the three modes of crack opening. 

Weaver (1977) presented a different method for solving 
three-dimensional cracks. In his method, the governing singu- 
lar integral equations are expressed in terms of the gradients 
of the relative crack-surface displacements. Because the sin- 
gularity of these integral equations is one order less than for 
the integral equations expressed in terms of the relative 
crack-face displacements, no special numerical techniques 
are required in obtaining numerical solution of the integral 
equations. He gave a numerical procedure only for rectangu- 
lar cracks in an infinite body. Clifton and Abou-Sayed (1981) 
used equivalent integral equations in a variational approach 
for solving three-dimensional problems for cracks of arbitrary 
shape in the simulation of hydraulic fracturing. 

In this paper, fundamental solutions for a dislocation 
segment are derived from the point force solution and the 
reciprocal theorem (Kurashige and Clifton, 1992). Three 
coupled integral equations over the crack surface are ob- 
tained from these fundamental solutions. The variational 
numerical method introduced by Clifton and Abou-Sayed 
(1981) for solving a pure opening-mode three-dimensional 
crack is extended to a mixed-mode three-dimensional crack. 
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Numerical solutions provide the three relative displacement 
components over the crack and the three stress intensity 
factors along the crack front. An adaptive mesh generator 
developed by Clifton and Wang (1991) is implemented in the 
present code for analyzing cracks of a wide variety of shapes 
with good accuracy. Comparisons of the numerical results 
with known solutions for cases of a penny-shaped crack, an 
elliptical crack, and a rectangular crack show that accurate 
numerical solutions are obtained even for a relatively coarse 
mesh. 

Method of Analysis 
Consider a planar crack of arbitrary shape in an isotropic, 

linearly elastic space. The Cartesian coordinate (x, y, z) or 
xs(i = 1, 2, 3) is oriented such that the crack lies on the x-y 
plane. The tractions O-ix(X, y), o-~y(x, y), cr~(x, y)  or ~r3~(x, 
y)(k  = 1, 2, 3) are prescribed on the crack surface z = 0. 

Suppose that the stress tensor tr(x', x) at point x' due to a 
point load P 6 ( x ' - x )  at the point x is known. Then, by 
means of the reciprocal theorem, the displacement u(x) at 
the point x due to a dislocation loop that bounds a surface .4 
can be expressed as (see, e.g., Kurashige and Clifton, 1992) 

P"  u(x) = -ffa{,,(x'; x)b(x')} • n(x ' )dS' ,  (1) 

where b = u + -  u_ is the jump in displacement across the 
surface; n = n + = - n _  is the unit normal to the lower 
surface of .4; subscripts " + "  and " - "  denote evaluation on 
the lower and upper surface of .4; and the dot " . "  denotes 
dot product of two vectors. From Eq. (1) 

urn(x) = - ffzO'(m),j(x'; x)b i (x ' )ny (x ' )dS ' ,  (2) 

where O'(m)ii(xt; x) is the stress tr i, at x' due to a unit force in 
• J . J . . 

the xm-dlrectlon at x and the summation convention on 
repeated indexes is used here and throughout the paper. 

Differentiating Eq. (2) with respect to x s and then apply- 
ing Stokes' theorem one obtains (Kurashige and Clifton, 
1992; Mura, 1987) 

0Urn(X) 
, j sn~bio ' (m) i j (x '  ; x ) d J f ; ,  ( 3 )  

3x~ 

where the permutation symbols %k are zero, except e~: 3 = 
E312 = ~231 = 1 ,  E132 = E321 ~" E213 = - -  1 .  The stress gradient 
caused by dislocations with Burgers vector b i and line seg- 
ment dx~ can be obtained from Eq. (3) and Hooke's law as 

do'pq(X) = LpqmsEjsnbio-(m)ij(x; x ' )dx'n,  (4) 

where, for isotropic materials, the elastic moduli Lpqms are 
given as 

Lpqms = a apmaqs @ apsaqm .q.- ~ ¢~pqC~ms ' ( 5 )  

where G and v are shear modulus and Poisson's ratio, 
respectively, and 60. is the Kronecker delta. 

For a dislocation segment with components dx in the 
x-direction and dy in the y-direction, the products of Burgers 
vector b and the dislocation segment can be expressed in 
terms of the relative crack-surface displacements w~(x, y)  = 
Ui(X , y, z = 0 +) - ui(x, y, z = 0 - )  as 

OWi 
bidx  dxdy,  ( 6 )  Oy 

Ow i 
b~dy = axdy. (7) 

0x 

Substituting Eqs. (6) and (7) into Eq. (4) allows the line 
integral to be replaced by an area integral. The result is the 

following surface integral equation that relates the traction 
on the crack surface to the derivatives of the relative dis- 
placements over the crack surface as 

troq(X, y )  = Loqm~ffAtr(m)ij(X', y'; X, y )  

OW i OW i E" - -  t t 
× - %~ --ay' + .2 ox' I dxdy (8) 

where A is the area of the fracture surface. The stresses 
O'(m)ij(x'; X) for a unit concentrated force at point x in the 
xm-direction in Eq. (8) are available for a full space (Kelvin, 
1882) 

1 { - ( 1  - 2 v )  O'(m)~j(x'; x) 8 ~ - ( f ~  ,,) 

aim(X 5. -- X j )  "Jr ajm(X; -- x i )  -- ~ij(X~n -- Xm)  
X 

Ix' - x l  3 

- - 3  (X~n -- X m ) ( X ;  -- Xi)(X; .  -- X j )  } 
~77£ 7 . (9) 

/ 

Substituting Eq. (9) into Eq. (8) gives three singular integral 
equations, one for each component of the tractions a3~(x, y) 
(k = 1, 2, 3) on the crack surface, in terms of the derivative 
of the relative crack-surface displacements w~(n = 1, 2, 3): 

. .  Own , , 
o' , ,(x,  y)  = o'0 / / SokS--Sy--, dx dy,  (10) 

where 
G 

or° 4~r(1 - u ) '  (11) 

and the nonzero terms of S ~  arc 

S~# = (x~ - x , ) / g  3, (12) 

/ s3%' = 3(x~ + x°) (x~  - x , ) ( x ,  - x O / ( Z U  5) 

+ (1 - 2 v ) ( 6 ~  (x'~ - x~) - 6~(x'~ - x , ) ) / ( 2 R 3 ) ,  (13) 

for a, /3, 3' = 1, 2, and 

R 2 = (x'  - x )  2 + (y '  - y ) 2 .  (14) 

Using different approaches, Eq. (10) was obtained by 
Kossecka (1971), Bui (1977), Weaver (1977), and Sladek and 
Sladek (1986) for a Mode i planar crack under dynamic 
loading. 

Integrating Eq. (10) by parts would result in integral equa- 
tions in terms of the relative displacements wi(x, y). However, 
it is advantageous to have the governing integral Eq. (10) in 
terms of the gradient of Ws(X, y) because the singularity of 
the kernel of Eq. (10) is one order less than that of the kernel 
of the integral equations in terms of crack opening, e.g., 
Murakami and Nemat-Nasser (1983), Lee, Farris and Keer 
(1987), among many others. As will be shown in the next 
section, no special numerical techniques are required to 
evaluate matrix elements for the integral Eq. (10). 

Numerical Implementation 
The integral equations can be solved numerically using a 

variational approach similar to the one introduced by Clifton 
and Abou-Sayed (1981) for a pure opening crack. From the 
principle of the minimum of the total potential energy, the 
relative crack displacements wi(x, y)  that vanish along the 
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Fig. 1 One half of the meshed region for a penny-shaped craok. 
The mesh Is an 8 × 8 mesh, 

crack front and satisfy Eq. (10) are the functions that mini- 
mize the total potential energy U + V, where 

o- 0 8 w n 
u= T ffA w+(x' Y) ffA s+e(x'' y'; x, y)Gdx'dy'dxdy, 

(15) 

V = --ffzWk(X, y)o'3k(X, y)dxdy. (16) 

The crack surface "A"  is divided into a meshed region 
"A0", which is subdivided into triangles, and a crack-tip 
region "OA". Figure 1 shows one half of the meshed region 
for a penny-shaped crack. The narrow crack-tip region "OA" 
outside the meshed region is not shown in Fig. 1. Over each 
triangle, the three relative crack-surface displacements w,(x, 
y) and three tractions tr3k(x, y) are expressed in terms of the 
local trial functions fi(x, yXi = 1, 2, 3) and nodal values w] 
and ~r~k(i = 1, 2 . . . . .  N), according to 

i=N 
wj(x, y) = E wjfi(x, Y), (17) 

i = 1  

i=N 
O'3k(X, Y) = E ~r~kfi(x, Y), (18) 

i = 1  

where N is the total number of nodes and the trial function 
fi(x, y) has (i) the value of unity at the ith node, (ii) varies 
linearly over adjacent triangles, and (iii) vanishes along the 
opposite side of these triangles and outside the adjacent 
triangles. In the near-tip region "SA", the relative displace- 
ments wffx, y) vary as the square root of the distance from 
the crack tip. That is, the relative displacements in the region 
"aA" are expressed as 

where e is the width of the crack-tip region "aA" and ~ is 
the distance from the crack tip to point (x, y). The function 
wj(s) is taken to vary linearly over the straight line segments 
which represent the inner boundary of "OA". Since e is very 
small and the tractions O'3k(X, y) do not vary much across 
this narrow region, we assume that the traction is constant 
over each near-tip element. 

A numerical method for finding an approximate solution 
wi(x, y) is based on minimizing the total potential energy, 
U + V, for a restricted class of functions wg(x, y) that are 
determined by a finite number of nodal values of the three 
relative displacements over the crack as indicated in Eqs. (17) 
and (19). Minimizing the total potential energy one obtains, 
from Eq. (15)-(19), a system of algebraic equations for the 
nodal relative displacements w~. These equations can be 
written in the partitioned form 

°/-Z/K23 K =  = P2 (20) 
2 

LK,3 K12 K1, JLwa LP, J 
where Wk(k = 1, 2, 3) is an N-dimensional column vector of 
nodal displacement components w~ and p+ is an N-dimen- 
sional column vector of nodal forces 

= ffo'3k(X , y)fi(x, y)dxdy. (21) (Pk), 

The stiffness matrix Kiy, comprised of submatrices 

= ffd ayff + s3fffi~x ~ )dx'dy', (22) 

is a full, symmetric matrix. The submatrices (22) satisfy the 
symmetry relation (Kkn)~j = (Knk) #. 

TO construct the stiffness matrix, we need to consider two 
cases: (1) overlapping elements, where (x, y) and (x', y ')  
belong to the same element Ap, and (2) nonoverlapping 
elements, where (x, y) and (x', y') belong to different ele- 
ments Ap and An, respectively. For each case, we also need 
to differentiate b~tween elements which are in the near-tip 
region 8A or in the interior region A o because different trial 
functions are used in the two regions. 

Procedures for evaluating the integrals are the same for all 
indices k, n. The method is illustrated below by considering 
the first term in Eq. (22) and the case of k = n = 1, i.e., 

( Z ~ K l l ) i j  = ff f~dxdyff -~S31~dx'dy ', (23) 
J +'Ap " JAq dXl3 

where 

3(x' - x) 3 

2R , 

(1 - 2v ) (y '  - y )  

+ R 3 J ' 
(2+) 1 [ 3(x' - x)2(y ' - y)  

= 7 [ 

Nonoverlapping. If neither element Ap nor Aq belongs 
to the near-crack-tip region, then the trial functions are 
linear functions and we have 

a = 3  Zp 3fj 
(AKll)ij = ~=IE -~'-fi(x~, Ya) Ox--~ 

a = 3  Ap 
× f f  S~(x' ,  y'; x,~, y~)dx'dy' = - E -~'-fi(x~, Y~) 

Aq a = l  

x ox--rT 

~fj ny 

(Y~ ~3Y')Z )d s, 

( 1 - 2 , , ) ) )  
+ ~ ds ' .  (25) 

Here three-point Gaussian integration is used for the inte- 
gration over the element Ap with area Ap and quadrature 
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° 

• t x  ,y,) 

(x~,yj - O- 
Fig. 2 Geometry for integration along a side of a triangle 

ill x 

Fig, 3 Local coordinates of an Isosceles triangle approximation of 
a triangular element 

where 

{ Z21kn, Z31kn} = iSApSSAp{ S, t}S~k dSdtds'dff , 

{Zz2kn, Z32kn} = iiApSSAp{S, t}S~dsdtds'dt', (30) 

and s = ~/l, t = rl/l are the normalized local coordinates; l 
is the height of the triangular element. Z21kn , Z31kn , Z22kn , 
and Z32k~ (k, n = 1, 2, 3) are evaluated numerically and 
stored in arrays for stiffness matrix calculations. For an 
isosceles triangle, it can be shown that Zzak,, Z3~k~ , Zz2k, , 
and Z32k~ (k, n = 1, 2, 3) can be expressed in terms of the 
following four integrals: 

S -- S t 
ace = [ [  s d s d t [ [  - - -=-ds 'd t '  (31) 

J YAp J JAp R j 

t - t' 
c% = [ f  tdsdtf[ --=-as'dr (32) 

J JAp J JAp R ~ 

Ap Ap R 5 .ds'dt' = 2 a ~  

points (x , ,  y~) ( a  = 1, 2, 3). The vector n = (nx, ny) is the 
unit exterior normal of the perimeter Sq of the element Aq. 

All the integrals in Eq. (25) can be evaluated analytically 
through the following two integrals. For each side of a 
triangular element Aq,  say the side 2, we have (Fig. 2) 

1 (  1 +  sin 0) °+ 
f ~ d s ' = ~  l n l _ s i n O  o- '  

= nx2 In 1 - - s in  

0 + 
cos 0 -  (n~ - @) sin 0} ~ 2 n x n y (26) 

! 0-  
For  the case where a quadrature point lies along the exten- 
sion of the side of the triangle, we have, instead of Eq. (26), jl< (r+) 

= I n  7 ' 

(r+) 
f (Y~ R3~-Y ) ds' = n~ln ~=- , (27) 

where r -  and r + ( r - <  r +) are the distances from the 
quadrature point to the two ends of the side of the triangle. 

Overlapping. For an overlapping element, it is more con- 
venient to use the local coordinates (~:, 7) (see Fig. 3) in 
constructing the stiffness matrix. Since fs(x,  y)  is a linear 
function, we have 

f/(  ~, 7) = f/t0, 0) + f/.1 ~ + fi,zr~ • (28) 

Subscripts ",1" and ",2" denote differentiation with respect to 
and rt, respectively. From Eqs. (23) and (28) one has 

(AK l l ) i j  = SSA? (f/,1SSApS~ld<'d~ ' -I- fi,2 fSApS~d<'dTf ) 

= -13(fi , l f j , iZ2111 +f/,lfj ,2Z3111 

--~-f/,2D,1Z2211 -q- fi,2D.2z3211), (29)  

~2 
+ 2 ,2 fo lydYfo l (  _Y_-5 

q (1  _ y ) 2  + ( 2 ( y  _ x ) 2  

+ 
x + y  

1//(1 _ y ) 2  + ~.2(x +y)2  

_ 5 _+ y I dx (33) 
¢ ( y  _ x ) 2  + ~2(x +y)2  J 

3(t , 2 
- t ) ds'dt' = 2 ann = f f tdsdt f f R5 Ap Ap 

~2 

3ql + 

+2 2Sol So, ( y - x  
¢ ( y  _ x)2 + ( 2 ( y  + x)2 

1 - x  

¢ (1  - x )  2 + ~'2(x - - 2 )  2 

1 - x  

v/t1 __X)2 + ~-2( X +y)2  
dx (34) 

where ( = h/l.  Integrals (31) and (32) have been evaluated 
by Clifton and Abou-Sayed (1981) in closed form, but the 
final expressions are cumbersome. Integrals (33) and (34), 
which may be expressed in closed form, are evaluated numer- 
ically and stored in tabular form as functions of r. Numerical 
evaluations of integrals (33) and (34) are validated with 
asymptotic expansions of Eqs. (33) and (34) for large ~. For 
large ~, we have fl~ .~ a~  and fln~ = .3%~ - 2~/3. In our 
numerical implementation, the approximation of replacing 
the actual triangle by an isosceles triangle (see Fig. 3) is used 
to save computational time. This appears to be a reasonable 
approximation from all the case we have studied. 
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Fig. 4 A crack-tip element 

Near-Crack-Tip. For a near-crack-tip element, instead of 
a linear trial function, we have 

where 4~i(s) can be a constant or a linear function of "s"over  
the length of the element with width e and length l (see Fig. 
4). The same method used above for cases of overlapping and 
nonoverlapping elements can also be used here for the evalu- 
ation of the integral (23). The only difference is the trial 
function. 

If the element A_ is in the near-crack-tip region OA, but 
Aq is not, then fron~Eqs. (23) and (35) we have 

( A K l l ) i j  

- Ox;OJ~" 2e3 Jo aJAftqbJ(s)dS[fq S~I~(x'' y'; s, ~7 = 4e/9)dx'dy'. 

(36) 

The integrals over element hq have been evaluated as given 
in Eq. (26) or Eq. (27). 

If the element Aq is in the near-crack-tip region ,~A, but 
Ap is not, then we have 

(Agll)ij = f f ApfidxdY fol { S~Tqbj(s') + -~ S~fc~}(s') }ds'. 

(37) 

The integration over Ap is handled by three-point Gaussian 
quadrature in the same way as in Eq. (25) and the line 
integral can be evaluated analytically. 

If both A o and A o a r e  in the near-crack-tip region, trial 
functions of Eq. (35) should be used for both fl and ~ in Eq. 
(23) and the contribution from the overlapping near-ci'ack-tip 
element is 

(mKll)ij=ff~×l~JJ(S)v~Edsd~SSe×l(f~i(S')2~ sl~ 
ds'dn'. (38) 

If 4~i(s) = 4~](s) = 1/2 (, j = 1, 2, 3) are taken, then one can 
obtain from Eq. (38) 

2 ( A K ,  i ) i  I = - @ ( 2  - u ) ( l  - el3) - (n2x - @ ) ( l  - el6). 
(39) 

Mesh Generation 
In the numerical simulation of a planar crack of arbitrary 

shape, a robust and optimal mesh generator is critically 
important due to the variety of crack shapes and the need to 
remesh at each step if the crack is allowed to grow. A good 
mesh must optimize the local aspect ratio, which is related to 
the difference in the principal stretches of the mapping of a 

square reference mesh onto the crack surface. The mesh 
generator used for this study (Clifton and Wang, 1991) maps 
a reference mesh of M × N squares onto a crack surface. A 
narrow annular region is added outside the M × N mesh to 
capture the large crack-opening gradient near the crack 
front; however, in the following the whole mesh is referred to 
as an M × N mesh. For example, the mesh shown in Fig. 1 
for a circular crack (only one half of the mesh is shown 
because of symmetry with respect to the y-axis) is called an 
8 × 8 mesh. Location of the nodes on the boundary is 
determined by considering a weight average of the boundary 
curvature and the sector area bounded by adjacent nodes. 
The nodal coordinates within the fracture are obtained by 
optimizing the local aspect ratio. This mapping provides 
triangles which are nearly isosceles as used in evaluating the 
integrals a~, ce~, floo, and fl,n over overlapping elements. 

Numerical Results 
The above analysis has been implemented in a computer 

code in which the symmetry of the stiffness matrix is used to 
minimize storage requirements, and computational t i m e - -  
both in evaluation of its elements and in its numerical inver- 
sion by means of the Cholesky scheme. Numerical results 
provide the three relative displacement components (wa, w 2, 
w 3) over the crack and the three stress intensity components 
(K], KH, K m) along the crack front. The stress intensity 
factors at point (x, y) on the crack front are defined as 

K 1 = lim {(2~'r)l'aCrzz]z,o=o}, 
r ~ O  + 

= lira ((27rr)l'aCrnzlz,o=ol, Kn 
r ~ O  + 

Kll l = lim {(21rr)lZZatzlz.o=o }, (40) 
r~0 + 

where the polar coordinate (r, 0) on the plane z = 0 is 
centered at the point (x, y)  with 0 = 0 corresponding to the 
normal direction n of the crack front, and t is the tangent to 
the crack front contour. Using the relations between stress 
intensity factors and the crack displacements near the crack- 
tip (see for example, Eq. (3.1-16), (3.1-39), and (3.1-42) in 
Kanninen and Popelar (1985)), one can extract the stress 
intensity factors along the crack front from the crack surface 
displacements by means of 

Kt = o'01rw3 2 ~ ,  

K i i  = O - o T r ( w l n  x + w2ny) 2g~-~, 

Ki, s = (1 - v)Croqr(-wany + wznx) 21/~-~, (41) 

where w i (i = 1, 2, 3) are the relative crack-surface displace- 
ments evaluated at points a small distance "e" f rom the crack 
front, again (n x, ny) is the unit outward normal to the crack 
front. 

To validate the code by comparison with a closed-form 
solution, numerical results have been obtained for a penny- 
shaped crack of radius "a"  in an infinite body. The exact 
solution for uniform pressure or uniform shear in the y-di- 
rection has been given by Segedin (1950), Westmann (1965), 
Kassir and Sih (1975) and others. The mesh used in the 
calculations is shown in Fig. 1 for one half of the crack. For 
the case of constant applied pressure p, the crack openings 
with different meshes (4 x 4 mesh or 40 nodes; 8 x 8 mesh 
or 110 nodes and 12 x 12 mesh or 212 nodes) are shown in 
Fig. 5, where Wma x is the exact solution of the displacement 
at the center of the crack, and R is the distance from the 
center of the crack. From Fig. 5 one can see that greater 
accuracy is obtained for a finer mesh. Accuracy of the results 
using 110 nodes is within five percent, which is regarded as 
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Fig. 5 Compar ison of  calculated and analytical crack-opening dis- 
p lacement for a penny-shaped crack under uni form pressure and 
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Fig. 7 Compar ison of calculated (mesh of  Fig. 1) and analytical 
displacement for  a penny-shaped crack under uni form shear, v Is 
the relative displacement In the applied shear direct ion. The l ine Is 
the theoretical result. 

1.2 

1.1 

1.o ® 

0 . 9  

0.8 

0.7 

O.B 

0.8 

0.4 

0.8 

0.8 

0.1 

0.0 I 
0.0 0.1 0.8 0,8 0,4. 0.8 0,6 0.7 0.8 0.9 1.0 1.1 1.8 

R/a 

Fig. 6 Dependence of numerical results on the IimlUng aspect 
ratio of the annular region ( 4 )  and the width of the near-tip region 
(4)  for a penny-shaped crack ( e _ ~  = 1:9, • = 0.004a; + - - 4  = 1:3, 
• = O.012a; ©m~ ,  = 1:9, ~ = 0.O09a; • - -1 :3 ,  ~ = 0.024a)  

acceptable. Although the accuracy can be improved by finer 
meshes, the required additional computational time may 
hinder our application for crack growth problems. The width 
of the discretized annular region adjacent to the crack front 
(Fig. 1) is controlled by the specified limiting aspect ratio of 
the elements of the annular region. Varying the limiting 
aspect ratio from 1:3 to 1:9 and varying the width "~" of 
near-tip region from 0.4 percent to 2.4 percent of the radius 
causes little change in the computed crack opening (Fig. 6). 

Comparison of the normalized numerical and analytical 
displacements for a penny-shaped crack subject to a uniform 
shear r in the y-direction is shown in Fig. 7;/)max is the exact 
solution for the relative displacement at the crack center. 
The displacements in the direction perpendicular to the 
applied shear are either equal to zero or very nearly so, and 
therefore are not shown here. The normalized numerical and 
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Fig. 8 Comparison of calculated (mesh of  Fig. 1) and analyt ical 
stress intensity factors (K I for uniform pressure p; K o and K m for 
uniform shear ~) along the crack front for a penny-shaped crack. 
The curves represent the analyt ical results. 

theoretical stress intensity factors for the case of uniform 
pressure (K1) , and for the case of uniform shear (Kll and 
Kii l) are shown in Fig. 8. For a penny-shaped crack under 
linear pressure, p(x, y)=P0 +Pt(Y/a), Fig. 9 shows the 
normalized stress intensity factors along the crack front for 
the case Pl/Po = 0.2. 

Numerical results are also presented for an elliptic crack. 
Figure 10 shows the calculated stress intensity factors calcu- 
lated from a 10 x 10 mesh in the first quadrant for the case 
when the major axis, b is twice the minor axis, a, together 
with the analytical solution of Irwin (1962) and Kassir and 
Sih (1966). Figure 10 shows that the maximum error is about 
eight percent and appears near the point x = b due to the 
large radius of curvature there and the isosceles triangle 
approximation used in the evaluation of the stiffness matrix. 
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Figure 11 shows the mesh for one half of a rectangular 
crack of width "2a"  and length "2b",where b is 4.4 times a. 
Figure 12 depicts the stress intensity factors calculated from 
the 16 × 4 mesh shown in Fig. 11 along the crack front y = a 
for the rectangular crack in an infinite body under uniform 
surface tractions. K I is the opening stress intensity factor for 
the case of a uniform pressure p, while Kzl and K m are the 
shear stress intensity factors for the case of a uniform shear 
in the y-direction. The values of the stress intensity factors 
near the center of a long crack are approximately equal to 
the corresponding values for plane strain. The stress intensity 
factors defined by Eq. (40) should be zero at the corners 
because for polygonal cracks, the stress singularity at such 
points of abrupt change of slope is less severe than the 
square-root singularity. Since no special measures are taken 
in the numerical procedure at the corners (Weaver, 1977), 
the numerical results at the corners of the rectangular crack 

are not accurate. The stress intensity factors KI and K m at 
the center of the short side of the rectangular crack is 
0.77p/(~a) 1/2 and 0.66p/(c'a) 1/2, while the results obtained 
by Weaver (1977) are 0.80p/(~'a) ~ and 0.67p/(Tra) l/z, 
respectively, 

Concluding R e m a r k s  

Three coupled integral equations over the crack surface 
are derived in terms of the gradients of the relative crack 
displacements. A variational numerical procedure is devel- 
oped by minimizing the total potential energy. No special 
numerical techniques are required in evaluating the elements 
of the symmetric stiffness matrix; most integrals are evalu- 
ated analytically. Comparisons with exact solutions for sev- 
eral cases of three-dimensional cracks in an infinite medium 
indicate that accurate numerical solutions are obtained even 
for a relatively coarse mesh. 
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The present formulation has been extended to planar 
surface cracks in a half-space (Guo, Wang and Clifton, 1995). 
Xu and Ortiz (1993) recently considered nonplanar cracks in 
an unbounded elastic space. 
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An Axisymmetric Crack in 
Bonded Materials With 
a Nonhomogeneous Interfacial 
Zone Under Torsion 
In this study the mode 111 axisymmetric crack problem for two dissimilar homogeneous 
materials bonded through a thin layer of  nonhomogeneous interfacial region is 
considered. The shear modulus of the interfacial layer is assumed to be ix2(z) = 
~z exp (cez). It is also assumed that i~ 3 = tx 1 exp (ceh), h being the thickness of  the 
layer and tz 1 and tz 3 the shear moduli of the adherents. The main results of  the study 
are the stress intensity factors, the strain energy release rates and, to a limited extent, the 
crack-opening displacements obtained as functions of  the two primary variables h/a 
and tx3/iz 1 under various loading conditions, where a is the radius of  the crack. Some 
results are also presented for a penny-shaped crack in an unbounded nonhomogeneous 
medium. 

Introduction 
In studying the fracture mechanics of bonded materials 

the structure and thickness of the interracial zones seem to 
play an important role in determining the crack growth 
resistance parameters as well as the crack driving force. Very 
often, however, the interfacial zone is simply neglected and 
the medium is assumed to be piecewise homogeneous. Such a 
simplified model is generally adequate if the purpose is to 
evaluate, for example, the strain energy release rate (see, for 
example, Hutchinson, 1990). One could also model the inter- 
facial zone as a thin layer of homogeneous continuum with 
thermomechanical properties different than that of the ad- 
herents (Erdogan and Gupta, 1971a, 1971b; AriA and Erdo- 
gan, 1971). A further simplification of this model is obtained 
by neglecting the thickness variation of stresses in the layer 
and by assuming that its tensile and shear deformations are 
uncoupled (Erdogan, 1972; Erdogan and Joseph, 1990; Gecit 
and Erdogan, 1978). On the other hand, recent studies indi- 
cate that in many cases the interfacial zone consists of a very 
thin layer with steeply varying composition profile and, hence, 
highly nonhomogeneous physical properties. This nonhomo- 
geneous region may correspond to the chemical reaction or 
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diffusion zone, or it may develop as a result of certain 
processing techniques such as ion plating, sputtering or 
plasma spray coating (Batakis and Vogan, 1985; Houck, 1987; 
Brennan, 1991; Shiau et al., 1988). The nonhomogeneous 
interfacial zone may also result from intentional grading of 
the material composition for the purpose of reducing the 
concentration of residual and thermal stresses and increasing 
the bonding strength (Kurihara et al., 1990; Kawasaki and 
Watanabe, 1990; Hirano et al., 1988; Hirano and Yamada, 
1988; Chigasaki et al., 1990). 

Fatigue and fracture analysis and characterization of 
bonded materials require the solution of certain standard 
crack problem. With the exception of torsion problem con- 
sidered by Kassir (1972) and the axisymmetric mixed-mode 
problem studied by Ozturk and Erdogan (1993) in an un- 
bounded medium, the existing solutions of the crack prob- 
lems in nonhomogeneous materials have been obtained un- 
der the assumption of plane strain or antiplane shear loading 
(Gerasoulis and Srivastav, 1980; Delale and Erdogan, 1983, 
1988a; Erdogan et al., 1991a, 1991b). In this paper we con- 
sider the axisymmetric crack problem for two dissimilar ho- 
mogeneous materials bonded through a nonhomogeneous 
interfacial zone and subjected to "torsion" (Fig. 1). Some 
results for the simpler problem of infinite nonhomogeneous 
medium containing a penny-shaped crack under various mode 
III loading conditions are also given. It is assumed that the 
shear modulus /..i, 2 of the interfacial zone is a function z only 
and is approximated by /x z = /z 1 exp(az).  The crack prob- 
lems in nonhomogeneous materials do not appear to be 
analytically tractable for arbitrary variation of the elastic 
parameters A and /z. Usually one tries to generate the forms 
of nonhomogeneities for which the problem becomes 
tractable. The actual material property distribution is then 
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(3) 

(2) 

(1) I 
r a 

Fig. 1 The geometry of two dissimilar homogeneous materials 
bonded through a nonhomogeneous interfaclal layer 

approximated by one of these forms (Erdogan and Ozturk, 
1992). 

Formulation of the Nonhomogeneous Interfacial Zone 
Problem 

Consider the axisymmetric crack problem for two dissimi- 
lar homogeneous half-spaces bonded through a nonhomoge- 
neous interracial zone described in Fig. 1. It is assumed that 
the radius of the crack and the thickness of the layer are 
small compared to the bulk dimensions of the medium, the 
geometry of the medium and the applied loads are axisym- 
metric, all applied loads act in the circumferential direction, 
and through a proper superposition the problem has been 
reduced to a perturbation problem in which the crack surface 
tractions are the only external loads. Thus, the displacement 
component u o = v and the stress components ~ro~ and troz 
are the only nonvanishing field quantities and the medium 
may be assumed to be unbounded. 

By substituting from the constitutive relations 

cr°~=21~E°z=~Tz '  ~0r=2b~eOr=/* -- r ' (1) 

into the equilibrium equation 

d~o~ OCroz - - +  
Or 3z 

and assuming 

/.1 = constant, /*3 = constant, 

we find 

2 
+ - % r  = 0, (2) 

r 

~ 2  = ~ 2 ( Z )  = ~ e~ ,  
(3) 

02Oi 1 o~V i V i o32Ui 
- - +  + - - = 0 ,  i = 1,3, (4) 
Or 2 r dr r 2 o~z 2 

0202 1 OV 2 02 ¢~2V 2 0V 2 
Or--- T + + - -  + a = O, (5) r Or r 2 O~Z 2 aZ 

where subscripts i = 1, 2, 3 refer to the materials shown in 
Fig. 1 and the nonhomogeneity parameter a is given by 

1 
a = ~ l n  (/z3//x,). (6) 

Equations (4) and (5) are subject to 

Or2oz(r, h)  = tr3oz(r, h), 0 _< r < 0% (7) 

v2(r,  h) = v3(r  , h), 0 _< r < o% (8) 

trlo,(r,O) = tr2o~(r,O), 0 < r < 0% (9) 

O-,oz(r,O) = p ( r ) ,  O_<r <a ,  

v2(r, +0)  - v,(r ,  - 0 )  = 0, r > a (10a,b) 

and the regularity conditions at z = Tm. Thus, the displace- 
ments vi, (i = 1, 2, 3) may be expressed as 

m 

v i ( r , z )  = ~ F/(z, p ) J , ( r p ) p d p ,  i = 1, 2,3 (11) 

where J1 is the Bessel function of the first kind. From (4), 
(5), and (11) it follows that 

~z 2 _ p 2  Fi(z , p )  =0 ,  i =  1, 3, 

~ + o ~  - 0 2 f2(z,  o) = 0. (12a-c)  

By making use of the regularity conditions at Izl = ~, solu- 
tions of the differential Eqs. (12) may be expressed as 

F l ( Z , p )  =AleOZ, z < 0, (13) 

F2(Z, p) = A2 emlz + A3 em2z, 0 < z < h, (14) 

F3(z, p) =A4  e - ' z ,  z > h (15) 

where 

ml 
0¢ el 
2 A, m 2 =  ---~ + a ,  A =  ¢ p 2 +  12/4.  

(16) 

By substituting from (13)-(15) and (11) into (1), the non- 
vanishing stress components are found to be 

¢rloz(r, z )  = i., fo°~A1( p)p2epZJ,(rp)dp.  (17) 

2 
O'2oz(r , z )  = /x2(z) f  0 lEAk+l( p)mkeml~ZJl (rp)pdp,  (18) 

tr3oz(r, z)  = -/.,3fo~A4( p)p2e-pZJ,(rp)dp,  (19) 

(20) 

2 

O'2or(r, z )  = /~2(z)f0 ~1 Ak+ l( P)emkZp 

X [  pJ° ( rp )  2Jl(--rP)] d p ' r  (21) 

~r3o~(r, z)  = /.z3f ° A4(P)e-PZp pJo(rp) do. 

(22) 

The unknown functions A 1 . . . .  , a 4 are determined from 
the boundary and the continuity conditions (7)-(10). Substi- 
tuting from the general solution given by (11) and (13)-(19) 
into the homogeneous conditions (7)-(9) we find 

1 
A 2 ( p A l ) ,  (23) 

m~ - m2E 

E 
A 3 ( p a l )  (24) 

m 1 - m z E  

mle(ml + p)h _ m2Ee(m2+ p)h 

A 4 = p ( m l  _ m 2 E )  ( p a l ) ,  (25) 
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where 

ml + P -2Ah (26) E e 
m 2 + p  

The remaining unknown Aj may then be determined from 
the mixed boundary conditions (10). 

Derivation of  the Integral Equation 
To reduce the mixed boundary conditions (10) to an inte- 

gral equation we first define the following new unknown 
function 

1 0 
g(r) = -~Tr[rV2(r, +0) - rvx(r, - 0 ) ] .  (27) 

From (10), (17), and (27) it can then be shown that 

g(r) = f0~°p2Al( p)H(  p)Jo(rp)dp, (28) 

Oqoz(r, O) = tZl f ~ ° p e A l (  p)Jl(rp)dp (29) 
Jo 

where 

2(A + p tanh(Ah))  
H ( p )  = - a . (30) 

A + ( p + -~)tanh(Ah) 

From (28) and (10b) by observing that 

1 foag(s)Jo(sp)sds, (31) AI(P) pH(p) 

and by using (29), Eq. (10a) may be expressed as 

where 

a p ( r )  f k(s, r)sg(s)ds = ~ ,  0 < r < a (32) 

® p 
k(s, r) = fo H ~  J°(sp)Jl(rp)dp" (33) 

To examine the singular behavior of the kernel k(s, r) we 
first note that for p ~ % p/H(p) has the following asymp- 
totic form: 

P P a a 3 
+ 4 + . ~ . p - 2  + O ( 0 - 4 ) .  (34) 

H ( p )  2 

Equation (32) may then be expressed as 

2 p ( r )  
i f [  - R o ( s ,  r) + Rl(S , r)]g(s)sds 
Jo t£1 

- - ,  O < r < a ,  

(35) 

no(s ,  r )  = fo~°Jo(sp)Jl(rp)pdp 

()s<r = _  P - ; - 7  E ; , 

s 1 [r'~ 2K(_r]  
- -  , S > r  

; T - - T E l ; )  rs \ s l  

(36) 

(37) 

and K and E are complete elliptic integrals of first and 
second kind, respectively. 

Further, by examining the singular behavior of R o we find 

-sRo(s,  r )  = - -  + lnls - rl + Ml(s, r 
qT" s -- r s + r ~ r  

(38) 

Ml(S, r) 
M2(s,r ) - 1 M2(s,r ) - 1 

s - - r  s + r  

1 
In Is - rl, 

2r 
(39) 

s s 

M2(scr ) = s 2 s 2 _ r 2 

~ E ( ~ )  r2 s > r .  
(40) 

The logarithmic singularity in (38) follows from 

l n ( 4 / V / 1 - h  2) for A - ,  1 K(A) 

which leads to 

M2(s , r) - 1 1 
- - - l n l s - r l  for s ~ r .  (42) 

s - r 2r 

Similarly, the convergence of R 1 may be improved consider- 
ably by evaluating its leading term for p ~ a¢ in closed form. 
Thus, from (34) and (37) it can be shown that 

R l ( S , r )  = fool 2p a] So t H(p)  + p + 2  J°(sO)Jl (rp)do 

- ~  fo°~Jo(sP)J,(rp)dp (43) 

f0 ~ / ~  s < r  Jo(sp)Y~(rp)dp = ' 
~0,  s > r .  

(44) 

Collecting now the square integrable kernels, from (35) 
and (38) we obtain 

- -  + kl(s ,r  g(s)ds 
s - r  s + r  

2 
=--p(r), O < r < a ,  (45) 

/xl 

where the kernel k 1 is a known function (see (35), (38), and 
(43)). 

Physically since (rye -rvi-)  is zero at r = 0 and r > a, 
from (27) it follows that the unknown function g must satisfy 
the following condition: 

foarg(r)dr = 0. (46) 

Also, since (s + r) ~ 0 as s and r approach the end point 
r = 0 simultaneously, (45) has a generalized Cauchy kernel in 
the sense that the kernels 1/(s + r) as well as 1 / ( s -  r) 
contribute to the singular nature of g(s) at s = 0 (Erdogan, 
1978). Therefore, expressing g(s) by 

h(s) 
g(s) s a ( a _ s ) ~ ,  O < s < a ,  (47) 
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and using a function theoretic method, from (45) and (47) the 
characteristic equations giving ,y and /3 may be obtained as 

cot 7r7 = O, cos Ir/3 = 1. (48a,b) 

In (47), h(s) is bounded in 0 ~ s _< a and nonzero at s = 0 
and s = a. The admissible root of (48a) is ,y = 1/z. Since in 
the "torsion" problem under consideration we must have 
v2(O , Z) = O, Z >_ O, Vl(O , Z) = O, Z _< O, from (48b) it follows 
that /3 = O, giving 

h(s) 
= , O < s < a ,  g(s) ~ a -  s 

h(O) 
o2(r, +0) - vl(r, - 0 )  = - ~ - r ,  r << a. (49a,b) 

from (56)-(58) we find 

£a[ -Ro(s,  r )  - R2 ( s ,  r ) ] s g ( s ) d s  = 2p(r______) 
/-to 

, 0 < r < a ,  

(59) 

where 

R2(s,r)  = [®[ p2 c~2 ] 
Jo t a. - p -  ~p J°(sP)Jl(rp)dp 

a2 "~J°(sp)Jl(rP) dp, (60) 
+TJo p 

The Infinite Nonhomogeneous Medium 
Consider now the infinite nonhomogeneous medium which 

has a shear modulus /z(z) = / z  0 exp(az) ,  contains a penny- 
shaped crack of radius a at z = 0, and is subjected to the 
external load 

%z(r,O) =p(r ) ,  0 _ < r < a .  (50) 

From (11), (12c), (14), and (16) it may be seen that 

v(r , z )  = I folA(p)emlzjl(rp)pdp,  z > O ,  

fo B( p)em zj,(rp)pdp, z < O. 
(51) 

£ ~ J°(sP~-JI(rp) dp 

P 

; E  7 rs K , s > r ,  
(61) 

and Ro(s, r) is given by (36) or (38)-(40). 
It is seen that the dominant parts of the integral Eqs. (45) 

and (59) are identical. Therefore, the solution of (59) too 
would have the form given by (49). Also, it is clear that in this 
problem too the unknown function g must satisfy the single- 
valuedness condition (46). 

Now, by using the condition 

%(r ,  +0) = %(r ,  - 0 )  

we find 

m 2 

A ( p )  = 
P 

(52) The Solution 
Equations (45) and (59) may be solved after normalizing 

the interval by defining y = (2s/a) - 1 and by observing that 
the orthogonal polynomials associated with the weight func- 

(53) tion w(y)= 1/(1 _y)a/z of the integral equations are the 
Jacobi polynomials P,~- l/Z, 0)(y). Thus, expressing 

Also, by defining the unknown function 

1 0 
g(r) = r ~r[rV(r, +0) - rv(r, - 0 ) ] ,  (54) 

and by using the following mixed boundary conditions 

Obz(r,O) =p(r) ,  O ~ r < a ,  

v(r, +O) - v(r, -O) =0, r > a, (55) 

we obtain 

a p ( r )  
k(s ,r )g(s)sds  = , 0 < r < a, (56) 

/,to 

oo  2 

k ( s , r ) = - £  2~Jo(sp)J,(rp)dp 

where A is given by (16). 
By observing that for large values of p 

(57) 

p 2  p 0~2 

= --2 + - T  p-'  + O(p-3 ) ,  (58) 

1 N 
g(s) = dp(y) ~ - -  ~AnP~-Vz'°)(y),  (62) 

~/1-  y o 

the integral equations may be regularized by using the prop- 
erties of Jacobi polynomials and the unknown coefficients A n 
may be determined by collocation (Mahajan, 1992). In this 
study, however, the somewhat more direct method described 
by Ozturk and Erdogan (1993) is used to solve (45) and (59). 
The unknown function is defined by 

~1 z tx 1 
-2 -gtas ) ~/s'(1 - s') o ~BjTj(2s'  - 1), s' = s/a (63) 

where Ti(x) is the Chebyshev polynomial of the first kind. 
From-(63), (49), and (46) it follows that 

( -  1)Jnj = O, n 0 + ~ n  1 = O. (64) 
0 

The remaining unknowns are then determined by truncating 
the series and by using a simple collocation technique. The 
following relations are used to remove the singularities of the 
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integral equations and to calculate the stress intensity factor: 

~ f o  1 ~(2s '  - 1) 
(s' - r')~/s'(1 s') as' 

U/_l(2r' - 1), 0 < r ' <  1, r '=r /a ,  

- ( x -  x2~/~-~-l)J x = 2 r ' - l > l ,  
x ~ - I  ' 

-~ f011nls ' - r'l 

(65) 

Tj(2s' - 1) 
d s '  

~/s'(1 - s ') 

f -211n2, j = O, 

= [ - T T i ( 2 r ' -  1), ] _> 1. (66) 

After determining the constants B,, by observing that in 
. . J 

(45) the left-hand side of the integral equation represents 
Oboe(r, 0) outside as well as within the cut (0, a), the mode III 
stress intensity factor may be defined and evaluated as fol- 
lows: 

O0 

k 3 = lim 2 ~ -  a) Ohoz(r,O ) = - 2 F E B  n. (67) 
r - - ~ a  0 

Also, from (27) and (63) the crack-opening displacement may 
be determined as 

r[ve(r, +0) - vl(r, -0 ) ]  = - fraSg(s)ds 

- B 1 "~ sin2~h + ~ sin4~b 
/zl 

[l~n 4 ~ 1  + ~ B .  sin 2n4~ + sin (2n + 2)q~ 

+ ~ sin (2n - 2)4~ (68) 

where 
r 

cos 2 ~ b = - ,  0 _ < r < a .  (69) 
a 

It should be observed that vz(r, + O) - vl(r, -0)vanishes for 
r ~ 0. This may be seen from (27), (46), and (63) as follows: 

1 frasg(s)ds lira [va(r ,  +0)  - vl(r, - 0 ) ]  = - lira - 
r ~ O  r-sO r 

d . 
= - iim ~r [Jr sg(s)ds = lim rg(r)  = O. (70) 

r ~ 0  r ~ O  

After determining the crack-opening displacement and the 
corresponding stress component ~rloz(r, 0), r > a, the strain 
energy release rate may be obtained from 

f a  + da 1 9da ~aloz(r,O)[v2(r - da, +0) 
~a 

- v l ( r  - da, - 0 ) ] d r .  (71) 

Thus, using the asymptotic relations 

k (a) 
2 -a) 

k3 
v2(r, +0) - vl(r, - 0 )  = ~ - ~ ~ -  r ) ,  (72) 

we find 

k3 2 
9 = ~ -~-. (73) 

In (72), ~ is the stiffness coefficient that relates the displace- 
ment derivative to the stress in the dominant part of the 
singular integral equation, which usually has the form 

(74) 

From (45) it may be seen that in the problem under consider- 
ation ~ = / Z l / 2  giving 

9 = - - - - .  (75) 
2 ~1 

Note that Eqs. (67), (68), and (73) are equally valid for the 
special case of nonhomogeneous infinite medium described 
in the previous section. 

T h e  L i m i t i n g  Cases 
Referring to Fig. 1 and (6), for h ~ 0  or a ~ o o  the 

problem would reduce to that of two bonded homogeneous 
materials with shear moduli/z 1 and ]J,3 containing an axisym- 
metric interface crack. In this case from (16), (30), and (33) 

Table 1 The stress intensity factors in an infinite nonhomoge- 
neous medium containing a penny-shaped crack; ~(z) = 
/~0exp(az). (See Eq. (81) for loading conditions.) 

~ a  k3  

0.0 0.5 
0.1 0.5000 
0.2 0.5002 
0.4 0.5008 
0.6 0.5018 
0.8 0.5032 
1.0 0.5049 
1.5 0.5105 
2.0 0.5177 
2.5 0.5262 
3.0 0.5356 
3.5 0.5457 
4.0 0.5564 

]d 3 

0.4244 
0.4244 
0.4245 
0.4249 
0.4256 
0.4266 
0.4277 
0.4316 
0.4365 
0.4424 
0.4459 
0.4558 
0.4632 

k3  

P2q~ 

0.3750 
0.3750 
0.3751 
0.3754 
0.3759 
0.3766 
0.3775 
0.3803 
0.3839 
0.3883 
0.3931 
0.3982 
0.4037 

0 . 4  i • i I i 

W(r) 0"3 ~ ~  

0 . 2  

ao  = 

O . t  

0 . 0  , I 
o . o  o . z  0 . 4  o . e  o . s  t . o  

,7. 
Fig. 2 The normalized crack-opening displacement, in an infinite 
nonhomogeneous medium; W(r)  = (v(r, +O)-v(r , -0) ) /v  1, v 1 = apl / 
P,0, ~oz = - P l r / a  
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for a ~ oo or h ~ 0 it can be shown that 

t a n h ( ~ h ) = t a n h  ~ l n  ~ /  #3 + # 1 '  

#3 + #1 
H ( p )  - ,  - - ,  

#3 

~3 [ ~  
k(s, r) ~ I-1"1 ~ #3 JO PJ°(sP)J'(rp)dp 

#3 
= --Ro(s, r), (76a-d)  

/xl + #3 

and the integral Eq. (35) becomes 

p(r)  
fo a #* = 0 < r < a 

#1 ~3 
Ro(S, r)g(s)sds #,  , #, + #------~, 

(77) 

where R 0 is given by (36). Equation (77) is the integral 
equation for two dissimilar bonded half-spaces. 

In the other limiting case of h ~ oo or oe ~ 0 it may easily 
be shown that H ( p )  ~ - 2 and (32) become 

r laRo(s, r)g(s)sds p(r)  0 < r < a, (78) 
#1/2'  "o 

which is the integral equation for a homogeneous medium 
containing a penny-shaped crack. From (74), (77), and (78) it 
is seen that (77) and (78) are identical except for the stiffness 

which is #* in (77) and btl/2 in (78). Thus, for crack 
surface tractions -Po, -pl(r/a) and p2(r/a) 2, the stress 
intensity factors and strain energy release rates for these two 
problems may be evaluated as follows; 

1 
k3 ( ~ p o f £  ' 4 ~ P l f d ,  (79) 

¢r 2 ( ~r 2 4 9~ 2 1  
~ = ' ~ k 3 =  l~Fpoa, 9~Pi2a, 2 ~ p 2 a  ), (80) 

where ~ = #* = #1 #3/(  #1 ''}- ~3 ) for h = 0 (or a = oc) and 
= # l / 2  for h = oo (or a = 0). 

Table 2 Stress Intensity factors and strain energy release rates In bonded 
dissimilar materials with a nonhomogeneous Inter'facial zone (Fig. 1); gt = rrPl 2a / 
(2#1), I =  O, 1, 2, /~a < #1, Po, Pl, P2 are given by (81) 

h/a 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 
oo 

]¢3 

1.6956 
1.019 
0.835 
0.698 
0.636 
0.603 
0.582 
0.554 
0,539 
0.532 
0.526 
0.5 

#J#a  = 1/22 

~3 

1.4392 
J0.808 
0.672 
0.566 
0.522 
0.498 
0.483 
0.463 
0.453 
0.447 
0.443 
0.4244 

k 3 

1.2717 
0.673 
0.465 
0.484 
0.449 
0.432 
0.420 
0.405 
0.397 
0.393 
0.389 
0.3750 

! 
Oo 

2.875 
1.039 
0.697 
0.488 
0.404 
0,363 
0.339 
0.307 
0.291 
0.283 
0.277 
0.25 

0 0 
0-; G 

2.0713 
0.653 
0.451 
0.320 
0.273 
0,248 
0.233 
0.214 
0.205 
0.199 
0.196 
0.1801 

1.6172 
0,453 
0.319 
0,234 
0.202 
0,186 
0,177 
0.164 
0.158 
0.154 
0,152 
0,1406 

# J t q  = 1/3 

h/a k3 

0.0 0.7071 
0.1 0.640 
0.2 0.601 
0.4 0.563 
0.6 0.545 
0.8 0.534 
1.0 0.527 
1.5 0.518 
2.0 0.514 
2.5 0.511 
3.0 0.509 
oo 0.5 

k3 
pfq8 

0.6002 
0.531 
0.499 
0.470 
0.457 
0.449 
0.444 
0.437 
0.434 
0.432 
0.431 
0.4244 

k 3 

0.5303 
0.459 
0.434 
0.410 
0.399 
0.394 
0.390 
0.385 
0,383 
0.381 
0.380 
0.3750 

! 
~o 

0.5 
0.409 
0.361 
0.317 
0.297 
0.285 
0.278 
0.268 
0.264 
0.261 
0.259 
0.25 

0 

01 

0,3602 
0.282 
0.249 
0.221 
0.208 
0.202 
0,197 
0,191 
0.188 
0.187 
0.186 
0.1801 

0 

0.2813 
0.211 
0,188 
0,168 
0.159 
0.155 
0.152 
0.148 
0.146 
0.145 
0.144 
0.1406 
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The Results and Discussion 
The main results of this study are the stress intensity 

factors calculated for crack surface tractions 

~rloz( r, O) = ~r2oz( r, O) 

= ( - P o ,  -p l (r /a) ,  -p2(r/a)2), 0 < r < a. (81) 

The variables in the problem are aa for the infinite nonho- 
mogeneous medium and h/a and ~3/~1 for the two dissimi- 
lar materials bonded through a nonhomogeneous interfacial 
zone (Fig. 1). In the latter case aa, h/a and /z3//z~, are 
related by (6). For reference the stress intensity factors and 
strain energy release rates in a homogeneous medium, having 
shear modulus /z~ and subjected to the external loads (81), 
are given by (79) and (80) (with ~ =/xa/2). 

Table 1 shows the stress intensity factors for a penny- 
shaped crack of radius a in an infinite nonhomogeneous 
medium with a shear modulus /~(z) = / x  o exp(az).  The re- 
sults given for aa = O, i.e., for the corresponding homoge- 
neous medium, are obtained from (79). It may be seen that 
for all loading conditions the stress intensity factor increases 
slightly and monotonically with the increasing value of the 
nonhomogeneity parameter aa. One would then expect the 
crack-opening displacement (COD) too would increase the 
increasing aa. This may indeed be seen from Fig. 2 where 

for the external load -pl(r/a) the dimensionless COD de- 
fined by 

1 
W(r)  = ~- (v ( r ,  +0) - v(r, - 0 ) ) ,  v ,  = apl/tz 1 (82) 

is shown for various values of ~a. 
The results for the dissimilar homogeneous materials 

bonded through a nonhomogeneous interfacial zone (Fig. 1) 
are given in Tables 2-4 and Figs. 3-5. For the loading 
conditions (81) the tables show the normalized stress inten- 
sity factors and the strain energy release rates as functions of 
h/a and /z3/pq (Fig. 1). In Tables 2 and 3 the results given 
for h/a = o~ correspond to an infinite homogeneous medium 
having the shear modulus tz~ and are obtained from (79) and 
(80) (with ~ = ix1/2). For P~3 < /Zl, since the overall stiffness 
of the half-space z > 0 increases with increasing h/a, as 
expected, k 3 and g are seen to decrease monotonically as 
h/a increases (Table 2). The opposite effect is expected for 
/~3 > /x l  and is observed in Table 3. For h/a ~ O, the prob- 
lem shown in Fig. 1 reduces to that of two bonded dissimilar 
materials the solution of which is given by (79) and (80) with 

=/z* =/~/z3/(/z 1 +/z3). The strain energy release rates, 
9/9i, i = 0, 1, 2, shown in Tables 2 and 3 for h/a = 0 are 
obtained from (80) and are seen to be continuous smooth 
limits of the values obtained from (71) and (75) for (h/a) > O. 

Table 3 Stress intensity factors and strain energy release rates in bonded 
dissimilar materials with a nonhomogeneous Interfaclal zone (Fig. 1); ~t = ~TPl 2a / 
(2/J.1), I = 0, 1 ,2 ,  /*.3 > /.L 1 

#3/#1 = 22 

h/a k3 
po ~Ya 

0.0 0.3615 
0.I 0,369 
0.2 0.384 
0,4 0.407 
0.6 0.423 
0.8 0.435 
1.0 0,445 
1.5 0.458 
2.0 0.467 
2.5 0.473 
3.0 O.477 
c~ 0.5 

0.3068 
0.319 
0.335 
0.355 
0.368 
0.375 
0.383 
0.394 
0.401 
O.4O5 
0;408 
0.4244 

k3 
P2",I~ 

0.2711 
0.286 
0,301 
0.319 
0.329 
0.337 
0.343 
0.351 
0,356 
0.359 
0.362 
0.3750 

g 

go 

0,1307 
0.136 
0.148 
0.166 
0.179 
0.189 
0,197 
0.210 
0.218 
0,224 
0.228 
0.25 

g 
gl 

0.0942 
0.102 
0.112 
0,126 
0.135 
0,141 
0,146 
0.155 
0.160 
0.164 
0.166 
0.1801 

g 
g~ 

0.0735 
0.082 
0.091 
0.102 
0.109 
0.114 
0.118 
0.123 
0.127 
0.129 
0.131 
0.1406 

#Jtq  = 3 

h/a 

0.0 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 
O 0  

]C 3 
po',f~ 

0.4082 
0.422 
0.436 
0.453 
0,464 
0,471 
0.476 
0,484 
0,487 
0,489 
0,492 
0.5 

]C 3 
pf,[~ 

0,3465 
0.364 
0,376 
0.389 
0,398 
0.403 
0.407 
0.412 
0.415 
0.417 
0.418 
0.4244 

]¢3 
p2~f~ 

0,3062 
0,325 
0.336 
0.348 
0,354 
0.358 
0.361 
0.366 
0.368 
0.369 
0.370 
0.3750 

g 
E 

0.1667 
0.178 
0.189 
0,206 
0,215 
0,222 
0,227 
0.234 
0.238 
0.240 
0.242 
0.25 

g 

0.1201 
0.133 
0.142 
0,152 
0.158 
0.163 
0.166 
0.170 
0.172 
0.174 
0.175 
0.1801 

g 

g2 

0.0938 
0.106 
0.113 
0,121 
0,125 
0.128 
0.131 
0.134 
0.135 
0.136 
0.137 
0.1406 
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Table 4 The var iat ion o f  stress intensity factors and strain energy release rates with P,3/Pl  for 
var ious  loading condi t ions and th ickness rat ios h / a ;  gj = ~rp12a / (2/~1), I = 0, 1, 2, 

h/a = 0.1 

k3 
tt3/ gl po~ 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 

0.860 
0.723 
0.611 
0.550 
0.523 
0.5 
0.465 
0.445 
0.433 
0.423 

k3 k3 

p2'~f~z 

0.694 
0.595 
0.509 
0.467 
0.442 
0.4244 
0.396 
0.382 
0.371 
0.364 

0.589 
0,509 
0,443 
0.409 
0.389 
0.3750 
0.353 
0.340 
0.331 
0.325 

0 
Oo 

0.740 
0.522 
0.373 
0.309 
0.273 
0.25 
0.216 
0.198 
0.187 
0.179 

0 
gl 

0.481 
0.354 
0.259 
0.218 
0.195 
0.1801 
0.157 
0.146 
0.138 
0.132 

0 
g2 

0.347 
0.259 
0.196 
0.168 
0.152 
0.1406 
0.125 
0.116 
0.109 
0.106 

#3/#1 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 

k 3 

P0~l'~ 

0.618 
0.580 
0.543 
0.523 
0.510 
0.5 
0.484 
0.473 
0.465 
0.459 

]C 3 

pl'(ff 

0.509 
0.482 
0.455 
0.441 
0.432 
0.4244 
0.412 
O.405 
0.399 
0.395 

h/a = 0.5 

]¢3 

0.440 
0.419 
0.399 
0.388 
0.381 
0.3750 
0.366 
0.359 
O.355 
0.352 

go 

0.382 
0.336 
0.295 
0.274 
0.260 
0.25 
0.234 
0.224 
0.217 
0.211 

h / a  = 2.0  . . . .  

g 
gl 

0.259 
0.232 
0.207 
0,194 
0.187 
0.1801 
0.170 
0.164 
0.159 
0.156 

0 
g~ 

0.193 
0.176 
0.159 
0.151 
0.145 
0.1406 
0.134 
0.129 
0.126 
0.124 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 

0.529 
0.520 
0.511 
0.506 
0.503 
0.5 
0.495 
0.492 
0.489 
0.487 

I k3 

pfC6 

0.445 
0.439 
0.432 
0.429 
0.426 
0.4244 
0.421 
0.419 
0.417 
0.415 

~3 

0.391 
0.386 
0.381 
0.378 
0.376 
0.3750 
0.372 
0.371 
0.369 
0.368 

0 
go 

0.278 
0.270 
0.261 
0.256 
0.252 
0.25 
0.245 
0.242 
0.239 
0.238 

g 

0.198 
0.193 
0.187 
0.184 
0.182 
0.1801 
0.177 
0.175 
0.174 
0.173 

0 
02 

0.153 
0.149 
0.145 
0.143 
0.142 
0.1406 
0.139 
0.137 
0.136 
0.135 

This is the expected results. However, there seems to be 
somewhat of a paradox regarding the limit of k 3 as h/a 
approaches zero. The values of k 3 for h/a = 0 are given by 
(79) and clearly do not agree with the trends seen in the 
tables) In this case the physical quantity which is expected to 

and does remain continuous in limit is the strain energy 
release rate g. For h > 0, g is related to k 3 through (75). 
Thus, observing that ~ = ~* = /z  I/z3/(/z 1 +/z3), for exam- 
ple, for the external loading P0, from (75) and (80) we find 

'/T( ,1/"1 q'" ~1/'3) qT 
lim 9 ( h )  p~a = - -  lira k~(h) (83) 
h-O 16/zl/z 3 2/z I h-,O 

1As observed by the reviewer, this discrepancy may further be clarified 
by invoking the path independence of the J integral, giving 
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g / g '  o.z°"3 ~ . 0  
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0 . 5  1 . 0  1 .5  2 . 0  2 . 5  3 . 0  

IL:~/ # ,  

Fig.  3 Strain energy release rate as a function of the stiffness 
ratio, for 0 " 1 0  z = -P l r / a ,  gl = zrp~a/(2/,tl) 

~ * 0  " I " I I I ' 

1 . 5  t ~ N x ~  ~/~1 #---~ = 1/3 
/h 

' °  L 
Ik__~ = 3.0 

t l q  

0 . 5 1  , I , I I , I 
0 . 0  O.g  0 . 4  0 . 6  0 . 8  

i 

1 . 0  

Fig.  4 Stress Intensity factor and strain energ~y release rate as a 
function of the thlokness to ratio / f  a, ~1 = ~rp¢a / (2/ . t l ) ,  t r l e z ( r ,  O) 
= -pff/a 

O.  ~ 1 I ' 1 ' I " I ' 

0 . 2  

w(~) 
0 .  I 

1.0 
1.5 
3,0 

0 . 0  
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

r/a 

Fig, 5 The normalized crack.opening displacement, W(r )=  
(v2(r, +O)-v l ( r , -O)) /v  1, v I = ap  1 / / . t  I for the external load ~ l e z  = 
-p l r  la,  h /a = 0.5 

lira ka(h ) = 1 ~ r -  h-so ~V ~ 3  PoVa. (84) 

Similarly, for the external loads -pt(r/a) and -p2(r/a) 2 we 
obtain 

lim k3(h ) = ~ pl~/a- ,  (85) 
h ~ 0  

lim k3(h) = 3 ~ r -  h~O 8V ~ P2Va, (86) 

Thus, it may easily be observed that the limits of  k 3 given in 
Tables 2 and 3 and Fig. 4 for h ~ 0 correspond to the values 
calculated from (84)-(86). 

One may note that for g3 " oo and h - 0 the problem 

becomes one of an elastic medium bonded to a rigid half- 
space containing a penny-shaped interface crack. In this case 
the strain energy release rate would be one half of that of the 
corresponding homogeneous infinite medium given by (80) 
with ~, = / z J 2  or by the last lines in Tables 2 and 3. The g 
values given in Table 3 clearly show this trend. 

Table 4 gives the variation of stress intensity factors and 
the strain energy release rates with the stiffness ratio /z3//z ~ 
for some fixed values of h/a. The table shows the expected 
trends, namely that k 3 and g are monotonically decreasing 
functions of ~J~3//Jq. The dependence of g on ~3//zt is also 
shown in Fig. 3. It is seen that g becomes much more 
sensitive to the variations in /x3//z I for smaller values of h/a 
and this dependence becomes much more significant a s  ~t/,3/]J q 
decreases. 

Figure 4 shows the thickness dependence of g and k 3 
normalized with respect to the homogeneous medium results 
given by (79) and (80) (with ~ =/zt/2).  It may again be seen 
that the variation in k 3 and g becomes increasingly signifi- 
cant for /% </x~ and as h/a tends to zero. Some sample 
results for the normalized crack-opening displacement (Fig. 
1) defined by 

1 
W(r) = - - [ u 2 ( r ,  +0) - ul(r, -0)1 ,  u I = aPt/tx I (89) 

u l 

are given in Fig. 5. The external load in the examples 
considered in Figs. 4 and 5 is "pure torsion." The results 
given in Tables 2-4 and Figs. 3 and 4 generally indicate that 
extreme care may be needed in using any stress-based theory 
and in interpreting the experimental results with the energy 
based theories in studying the interracial fracture of bonded 
materials, particularly if h/a -~ O. The stress intensity factor 
k 3 (calculated as a function of h/a) has validity only in the 
"near-field" 0 < r < rt, r << h, r l << a. k a calculated by as- 
suming h/a = 0 may have a region of approximate validity 
r 2 < r < r3, only for (h, r 2, r 3) << a and r 2 >> h. g, on the 
other hand, is a far more physically meaningful quantity but 
could be highly dependent on the properties and the thick- 
ness of the interfacial zone. 

The results given in the Tables may be used to obtain the 
solution for arbitrary external loads provided the crack sur- 
face tractions in the corresponding perturbation problem can 
be approximated by a second degree polynomial. 
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Particle Orientation and Velocity 
Equations of Clay in a Plane- 
Strain Condition 
The directional property of soils, particularly clays, are directly related to the particle 
orientations. The platy clay particles do possess the tendency to reorient themselves in 
the most stable condition against applied stress. One may conceive of deoeloping a soil 
model directly relating particle orientation and applied stress. In this study an angle O, 
which is the preferred (therefore stable) orientation of clay particles, is introduced. 
Using this concept and slip-line theory, the velocity equations of clay in a plane-strain 
condition are developed. In this approach any change in clay particle orientation is 
essentially dependent on principal stresses magnitudes as well as their directions. 
Therefore, the effect of rotation of principal stresses can be included and quantified. 

Background 
Studies of the structure of clays have shown that platy clay 

particles tend to become oriented perpendicular to the direc- 
tion of applied stress in drained conditions such as in consoli- 
dation tests. During isotropic consolidation a random struc- 
ture is produced; however, in an anisotropic consolidation an 
oriented structure with respect to the higher or lower stress 
directions is observed. Since in general the natural state of 
in-situ stress is not isotropic, this variation in particle orienta- 
tion is expected which in turn affects the directional proper- 
ties of clay deposits. Kirkpatrick and Rennie (1973), after 
shooting a large number of micrographs from the slurry 
samples consolidated under isotropic and anisotropic (K 0) 
conditions, reported that "Electron micrographs of labora- 
tory consolidated kaolinite samples have shown that the clay 
microstructure is controlled by the consolidation stress 
rGgime. Kaolinite samples consolidated under isotropic pres- 
sure conditions are shown to have an isotropic structure with 
the particles oriented randomly with respect to each other. 
Samples consolidated anisotropically, especially under K 0 
conditions, are found to have a severely oriented structure 
with particles faces aligned at right angles to the direction of 
major consolidation pressure." They also found that clay is 
more compressible in directions parallel to the aligned plate 
structure than at right angles to it. 

Mitchell (1956) concluded that six out of seven undis- 
turbed marine clays and one lacustrine clay had some degree 
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of parallel orientation particles. Rosenqvist (1959) studied 
lig.htly consolidated Norwegian marine clays using electron 
m~croscopy. He found that all of the clays conformed nearly 
exactly to the salt-flocculated clays hypothesized by Lambe 
(1953); characterized by edge-to-face and random particle 
orientation. Martin (1962) compared the peak amplitudes of 
diffracted x-rays from different planes of kaolinite clay and 
concluded that the clay was approximately "ideally random" 
for isotropic consolidation pressure up to 98.1 KPa and was 
approximately "ideally oriented" for one-dimensional consol- 
idation pressure up to 19.33 MPa. Any orientation due to 
flucculations or other chemical agents is negated after 
isotropic consolidation up to 98.1 KPa. 

Hvorslev (1960) showed that specimens trimmed from Vi- 
enna and Little Belt clays had different undrained strengths 
in different directions. Broms and Casbarian (1965) con- 
ducted three series of consolidated undrained triaxial tests 
on hollow cylindrical specimens of a remolded kaolinite clay. 
In test series I the effects of principal stress direction and in 
series II the effects of intermediate principal stress were 
investigated on the friction angle and induced pore water 
pressure, while in series III the combined effect was investi- 
gated. The investigators attributed the effect of the rotation 
of the principal stress direction to the reorientation of the 
individual clay particles. The tendency of the individual clay 
particles to align themselves parallel with the final failure 
plane will increase with increasing rotation of the principal 
stress axes. It was concluded that the maximum deviator 
stress and the frictional angle ~b' will decrease with increas- 
ing rotation of the principal stress axes. The excess pore 
water pressure due to rotation of principal stress directions is 
also explained by the following statement. "Due to the align- 
ment of the individual clay particles and the resulting de- 
crease of particle interlocking, it is also expected that the 
pore water pressure at failure at a given void ratio will 
increase with increasing rotation of the principal stress axes." 
From a study of the isotropically consolidated specimens in 
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series I and III (total of 36 tests), two more interesting 
conclusions may be made. 

(i) The minimum strength belongs to the direction of 45 
degrees. 

(ii) The strengths of other directions are symmetric with 
respect to the 45-deg direction which clearly indicates that in 
isotropic consolidation, preferred orientation is about 45 deg. 

Duncan and Seed (1966) performed an extensive series of 
undrained tests on the specimens of kaolinite trimmed from 
a block in different orientations. The specimens were trimmed 
from a block of kaolinite consolidated under vertical pressure 
of about 900 KPa and lateral pressure of about 550 KPa. 
They clearly exhibited that anisotropicaUy consolidated clays 
are anisotropic with respect to the undrained strength. In a 
diagram in which the variation of strength with respect to 
angle of orientation is plotted, the lowest strength corre- 
sponds to the one with an angle of orientation of about 32 
deg with respect to the horizontal. 

Morgenstern and Tchalenko (1967) performed a drained 
direct shear test on kaolinite samples which have been 
trimmed at various angle of orientation. For that specific 
kaolinite, samples with various orientations were found to 
have little difference in drained strengths. Based on polar- 
ized microscope observation, they concluded that perfect 
particle alignment is necessary in a kinematically admissible 
direction to obtain the residual angle of shearing resistance. 
Additionally, the irreversible deformations must be accom- 
modated by the rigid-body movements of the clay particles. 
Morgenstern and Tchalenko (1967) in yet another study 
observed that the optical determination of preferred orienta- 
tion in clays is extremely useful in interpreting the changes in 
the fabric of kaolinite samples prepared in different tech- 
niques. It is also shown that after consolidation pressure of 
10 KPa, the preferred direction would not depend on the 
method of preparation but on the history of loading. The 
degree of preferred orientation can be determined by measuring 
the birefringence I ratio for a thin section of  clay. 

Barden (1972) presented some examples of clay structure 
and its influence on engineering behavior. He concluded that 
the structure of clay is strongly related to the stress system 
operating during the initial consolidation. Anisotropic struc- 
ture leads to anisotropic deformation behavior, but in the 
case of kaolinite led to less anisotropic shear strength behav- 
ior. By using a polarized microscope the presence of oriented 
shear zones in the samples of K0-consolidated kaolinite 
under undrained shear in the plane-strain condition at about 
6.5 percent strain were observed. 

Lo and Morin (1972) performed an experimental study on 
two sensitive clays. The results of CID and CIU tests 
(Consolidated Isotropically and sheared in Drained or 
U_ndrained condition) indicate that the strength of specimens 
trimmed in different directions are strongly anisotropic and 
the ratio of minimum strength to strength of vertical samples 
varies from 0.54 to 0.70. They also concluded that in the 
drained tests, the time to failure has an important effect on 
the peak strength 2. 

Saxena et al. (1978) conducted an experimental investiga- 
tion on Hackensack Valley varved clay. The samples were 
taken from depths of 10 to 20 meters and were trimmed in 
different orientations of 0 deg, 45 deg, 60 deg, 75 deg, 90 deg 
with vertical direction. The specimens were sheared in 
undrained conditions under different confining pressure. The 
results of tests on specimens from a depth of 17 meters (and 
laboratory confining pressure of 108 KPa) indicated that the 
minimum strength belonged to the specimen with an angle of 

1This method is described in the Appendix. 
2One may conclude that  in a drained test the particles have enough 

t ime to reorient  themselves in a more stable condition. 

orientation of 60 deg. This minimum strength was 31 percent 
of the vertical specimen's strength. However, horizontal spec- 
imen exhibited a strength equivalent to 78 percent of that in 
the vertical direction. They reported the results of yet an- 
other extensive study, (MIT, Ladd and Wissa, 1970), on 
varved clay specimens from the Connecticut Valley and 
Welland, Ontario with similar results; that is, the horizontal 
specimens had an average strength of 88 percent, and 60-deg 
oriented samples yielding strengths of only 33 percent of the 
vertical specimens, respectively. Djavid (1991) conducted a 
series of triaxial static and dynamic tests on kaolinite. Blocks 
of kaolinite were prepared by consolidation of slurry under 
K o (~o/~rh-~ 2) condition. Specimens were trimmed from 
blocks in different orientations of 0 deg, 30 deg, 60 deg, and 
90 deg with a vertical direction. It is shown that 60 deg 
specimens had the minimum strength and maximum axial 
deformation in undrained static and dynamic loading. Re- 
garding the consolidation regime, the particles are mainly 
oriented in the direction of 60 deg with vertical. 

From these studies, it may be concluded that there is a 
tendency for particles to become oriented parallel to the 
plane on which the effective principal stresses act. That is at 
any given time, the particles orientation is in the direction of 
maximum effective stress obliquity (Fig. 1). Since the effec- 
tive stress ratio is not generally equal to one, the soil sample 
would possess anisotropy and, i.e., the major principal stress 
direction should be an axis of radial symmetry of the 
anisotropy. 

Basic Assumptions for Preferred Angle of Orientation 
In view of the above-related experimental works, the fol- 

lowing can be concluded. The clay particles under effective 
stress conditions distribute themselves in a manner which 
tend to align their largest dimensions in the direction of 
maximum effective stress obliquity. Let us introduce now an 
angle 0, which is the angle of preferred orientation of platy 
clay particles at each side of the algebraically greater princi- 
pal stress with respect to the plane of action of the major 
principal stress as shown in Fig. 1. This angle has three 
important characters: 

(i) Angle 0 is effectively stress-dependent. 
(ii) Due to isotropic consolidation 0 = 45 deg, that is; 

clay particles are oriented "ideally random." 
(iii) Due to increasing ~1 (or ~3), 0 begins to decrease 

(or increase) in a manner that all times tan(0)  = ~3/~1 (~1 
and ~3 are effective major and minor principal stresses). 
This is confirmed by the experimental study reported by 
Duncan and Seed (1966), Djavid (1991), and other previous 
studies described in the preceding section. 

Accordingly, one may introduce the existence of two dif- 
ferent characteristic fields called a lines and /3 lines, which 
coincide with 0 lines. The angle between two characteristic 
fields is bisected by the direction of an algebraically greater 
principal stress. In undrained shearing condition, a lines and 
/3 lines coincide with slip lines. Furthermore, the velocity of 
particles in the field are proposed as any change in velocity of  
two successive points on the a line that is in the direction of the 
13 line and vice versa. 

Velocity Equations 
The development of the velocity equations (based on the 

slip line theory) presented in this study parallels the develop- 
ment presented by Spencer (1964) wherein a theory of the 
kinematics of ideal soils under plane-strain conditions was 
developed. Following Spencer (1964), Mehrabadi and Cowin 
(1978) extended the same concept for dilatant granular mate- 
rials using angle of dilatancy. Nemat-Nasser (1981) in yet 
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Fig. 1 Schematic representation of clay particles end particle ori- 
entation due to effective stress 

another different approach obtained similar relations for the 
dilatancy case as well as a densification case of granular 
materials. Jahedi et al. (1990) also developed the Spencer's 
theory for granular materials by using the idea of angle of 
contact normals. In the present investigation, a similar ap- 
proach is followed for clay materials with the exception of 
defining the characteristic lines as the preferred orientation 
of clay particles based on various experimental investigations. 
A set of characteristic lines are passing through a typical 
point Q shown in Fig. 2 and each characteristic line makes 
an angle of O with a major principal stress plane (characteris- 
tic lines are assumed to be slip lines if no compression or 
dilation occurs). At the point Q, a local rectangular cartesian 
coordinate system (~', '7) may be introduced which is in 
motion relative to the reference x,y-system, Fig. 3. Then the 
following velocity equations for clayey materials were devel- 
oped similar to those for granular material described in 
Mehrabadi et al. (1978) and Jahedi et al. (1990) (compression 
is taken positive). 

(Dim + D33 ) = - 2 0  cot (20) 

(Dim " D33)0"13 - 2D13(o ' lm - 0.33) 

( 0 " 1 1  - -  0 . 3 3 ) 0 . ; 3  - -  0 . m 3 ( 0 " ; m  - -  0 " 3 3 )  

<(0"11 -- 0"33) 2 + 4o'~ 
cos (20) (1) 

where 

c9 V x c~ Vy 
Dll = ' ~ "  D33 = 3y ' (2) 

and Uij , 0"i j, and 0"i~ are components of velocity (versus x, y), 
stress, and Jauman stress rate, respectively. 
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Fig. 2 Schematic of slip lines 
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Fig. 3 Slip lines and velocity equetlons 

Equations (1) in indicial notation can be written as 

Dii = - 2 0  cot (20) 

D i k O ' k j -  0.ikDkj 

COS (20) 

= (0.ik0.1~j -- O'i~¢0.kj) < ( 0 . 1 1  -- 0"33) 2 + 40"123 ( 3 )  

The only material parameter in Eqs. (1) and (3) is the angle 
of preferred orientation of particles 0 which is required to be 
known at the initial stage and measured at the required 
course of load application. The degree of preferred orienta- 
tion can be determined by measuring the birefringence ratio 
for a thin section of clay which has been successfully con- 
ducted by Morgenstern and Tchalenko (1967). Also one may 
suggest that the initial value of single 0 and the deviation 
thereof may be related to the initial void ratio and change of 
void ratio during load application, respectively. Conceptually, 
this theory based on angle 0 (preferred angle of particle 
orientations) presents a powerful tool for incorporating the 
change in material behavior due to change in stress path. 
According to the velocity equations (Eqs. (1)) if the angle 
0 = 45 deg, the first part of Eq. (1) represents the incom- 
pressibility condition (Dml + D 3 3  = 0 )  similar to the Spencer's 
Equations (1964). However, from the second part, the coaxi- 
ality of stress and strain rate may be obtained. On the other 
hand, due to rotation of major principal stress direction clay 
particles will tend to reorient themselves resulting in the 
change of 0 and consequently volume change of the soil (in 
drained condition) and induced pore water pressure in the 
undrained condition. 

A complete stress-deformation theory for clay materials 
can be defined by the system of equations consisting of Eqs. 
(1), the continuity equation, the stress equations of motion 
(the equilibrium equations), and yield stress criterion. This 
system of equations contains six unknowns as v x, Vy, o"11, o'33, 
0.13, and pore water pressure (u). According to the test 
results in previous studies mentioned in the preceding sec- 
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tion (particularly Duncan and Seed (1966), Broms et al. 
(1965), Hvorslev (1960), and Djavid (1991)), the stress crite- 
rion may be defined as 

~33 
tan (0 )  = ~ - - .  (4) 

O'll 

On the other hand, continuity equation is simplified 
(Djavid, 1991) in the following form for estimation of pore 
water pressure in an undrained condition: 

( L /  %=b u.log + C p . u . n + C , . u . ( 1  - n )  

(5) 

where the left side of Eq. (5) is the volumetric strain, b,, is 
the slope of the curve of an unloading path in a consolidation 
test, o-is is the mean total stress, n is porosity, and C_ and Cs 
are coefficients of compressibility of pore fluid ~nd soil 
particles, respectively. This relation is obtained by compari- 
son of soil behavior in a drained and undrained condition 
under identical stress paths. 

The first equation of Eqs. (1) can be rewritten as 

~o = D l l  + 033 = - 2 0  cot (20) .  (6) 

By integrating this equation (time rate of change of volumet- 
ric strain) with respect to time and the assumption of small 
deformations, one may write 

% = -Ln[cosec  (20)] .  (7) 

Thus, by replacing volumetric strain from Eq. (7) in Eq. (5), 
the latter equation may be written as 

o~i 

3 -Ln[cosec  (20)]  = 0.43b u • Ln 
--~- - u 

+ C v ' u ' n + C , ' u ' ( 1 - n  ) (8) 

which relates the induced pore water pressure (u) to pre- 
ferred orientation of clay particles (0) in a closed-form 
solution. 

Summary and Conclusions 
Directional property of soils, particularly clays, is directly 

related to the particle orientation. Also any change in ap- 
plied stress results in reorientation of particles towards the 
most stable condition. Accordingly, for clay behavior in a 
drained and plane-strain condition, a constitutive equation 
has been developed and modified for an undrained condi- 
tion. The model is defined as a function of particle orienta- 
tion called average angle of orientation or preferred angle of 
orientation. Preferred angle of orientation of clay particles is 
effectively stress-dependent and its change is proportional to 
the ~33/~1t ratio. Conceptually this theory based on angle 0 
(preferred angle of particle orientations) presents a powerful 
tool for incorporating the change in material behavior due to 
a change in the stress path. 

The only material parameter in this model is the angle of 
preferred orientation which is required to be known at the 
initial stage (degree of anisotropy) and measured in the 
course of a load application for model calibration. The mea- 
surement of angle 0 has been possible and successfully 
determined even in 1967 by measuring the birefringence ratio 
of a thin section of clay at the various course of load 
application (Morgenstern and Tchalenko, 1967). 

The author is working to establish a relation between 
angle 0 and void ratio by defining 0initial, 0critical , and 
0instantaneou s and relating them to corresponding well-known 
terms for void ratio terms as elnitial, ecritical , einstantaneou s. 
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A P P E N D I X  

Birefringence 
Morgenstern and Tchalenko (1967) reported "A single 

kaolin crystal is birefringent, and when viewed under crossed 
nicols in a polarizing microscope with its basal plane parallel 
to the viewing direction, it behaves like a uniaxial negative 
crystal. That is, as the crystal is rotated with respect to the 
direction of the vibration of the wave front emerging from 
the polarizer it may be seen to transmit zero light intensity 
when one of the optical axes is parallel to this direction and a 
maximum light intensity when an optical axis is at 45 deg to 
it. Since the optical axes are orthogonal and coincide for all 
practical purposes with the crystallographic axes, this means 
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that when the trace of the basal plane of the crystal is 
parallel or orthogonal to the polarizing direction, the crystal 
is in an extinction position, and when it is at 45 deg to this 
direction maximum illumination is observed. As a single 
crystal is rotated through 360 deg there are four extinction 
positions and four positions of maximum illumination. It is 
also known that a single kaolin crystal displays positive elon- 
gation and hence any ambiguity regarding the inclination of 
the trace of the basal plane may be resolved by viewing with 
a suitable retardation plate." 

They have also shown that the birefringence of an aggre- 
gate of clay particles depends solely upon the intrinsic bire- 
fringence of the constituent particles and their spatial config- 
uration. When a random structure is viewed in a thin section 
under crossed nicols, no variation in transmitted light inten- 
sity is observed as the section is rotated. If the aggregate has 
a preferred orientation, the minimum and maximum light 
intensities will depend upon the degree of orientation. These 
intensities may be measured and interpreted to give a quanti- 
tative measure of the preferred orientation of the aggregate. 

Milos Novak 

Dr. MILOS NOVAK, Professor of Civil Engineering at 
the University of Western Ontario in London, Ontario, 
Canada, died on April 28, 1994, in the seventieth year of his 
life. 

He was a frequent contributor to our Journal, our frequent 
reviewer, and a valuable member of several committees. 

He received his civil engineering degree in 1949 from the 
Czech Technical University in Prague (CVUT). In 1957, he 
earned a Ph.D. in mechanics from the Czechoslovak Academy 
of Sciences (CSAV) in Prague. Then, he conducted research 
in the Institute of Theoretical and Applied Mechanics of 
CSAV, reaching the position of Principal Scientist. In 1967, 
during a period of relaxation of the communist dictatorship, 
Novak was allo~ed to take a one-year leave at the University 
of Western Ontario, where he worked in the Boundary Layer 
Wind Tunnel Laboratory. In 1968, after Russian tanks 
crushed the Prague Spring, he accepted an offer of a perma- 
nent faculty position. He proceeded to earn the reputation of 
a truly outstanding teacher and researcher. 

Considered one of the foremost world experts in dynamics 
of civil engineering structures and foundations, Novak pub- 
lished over 160 refereed papers. He was a member of the 
editorial boards of Journal of Soil Dynamics and Earthquake 
Engineering and of International Journal of Software and 
Engineering Workstations. He was active as a member of the 
American Society of Civil Engineers and of the Society of 
Professional Engineers of Ontario. He made important con- 
tributions to earthquake engineering, particularly to dynamic 
structure-soil interaction, to wind engineering, where he in- 
vestigated the galloping instability, and to wave action on 
structures. He developed powerful computer programs for 
suspension bridges, transmission lines, guyed masts, tall 
chimneys, nuclear power plants and offshore oil rigs. He 
taught 18 short specialized courses at leading universities and 
research laboratories in Canada, the United States, Japan, 
China, India, Australia, New Zealand, and other countries. 
He consulted on nuclear power plants in Germany, Switzer- 
land, Brazil, Finland and Yugoslavia; on large offshore tow- 
ers in Texas, Venezuela, China and Canada; and on founda- 
tions for turbine generators, compressors and paper mill 
machines. He served as consultant to the United Nations on 
projects in India and Yugoslavia, as well as on the Chinese 
University Development Project. Recently he went to Arme- 
nia as a U.N. expert to advise on earthquake-resistant struc- 

tural design. In 1986, Japan Society of Building Research 
held a 'Novak Symposium' on Dynamics of Embedded Foun- 
dations and Piles. The Czech Technical University, Novak's 
alma mater, awarded him an honorary doctorate in 1993. He 
also received the Medal for Research and Development from 
the Association of Professional Engineers of Ontario, the 
Medal of Merit from the Czech Society for Mechanics, and a 
Gold Medal from the Czechoslovak Academy of Sciences, 
and at his university was inducted to the Gzowski Society 
Honor Roll. In August of 1994, the Canadian Geotechnical 
Society had chosen him as the first recipient of the G. 
Geoffrey Meyerhoff Award. Dr. Novak's last paper in the 
Journal of Applied Mechanics, coauthored with F. Guan, and 
entitled "Transient Response of an Elastic Homogeneous 
Half-Space to Suddenly Applied Rectangular Loading" ap- 
peared in Vol. 61, pp. 256-263, June 1994. 

Our engineering mechanics community lost a great scholar, 
researcher, and engineer. 

Z. P. Bazant, Northwestern University, 
and G. J. Dvorak, Rensselaer Polytechnic Institute, 

Fellows, ASME. 
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Comparison of Experimental and 
Simulated Grain Flows 
Fully three-dimensional computer simulations of identical spheres flowing in an 
inclined glass-walled channel only slightly wider than a particle diameter successfully 
reproduce profiles of mean velocity, bulk density, and particle rotations as well as 
profiles of fluctuating quantities measured from high-speed motion pictures of 
physical experiments. All simulation parameters are measured experimentally. Both 
full simulations of the geometry of the physical experiments and simulations using 
periodic boundary conditions in the downchute direction are used to gather micro- 
mechanical information. For these collision-dominated flows, quantitative predic- 
tions of  the simulations are relatively insensitive to details of the particle-interaction 
model and particularly the particle stiffness, but are relatively sensitive to extraneous 
fluM drag forces and the chute geometry. 

Introduction 
Particle-scale observations of flowing granular materials are 

exceedingly difficult to make, and the paucity of such obser- 
vations poses a serious obstacle to understanding and pre- 
dicting the mechanics of industrial and geophysical grain flows. 
Computer simulations have been used to great advantage in 
testing kinetic theories for granular flow, but those theories, 
limited to collision-dominated flows (e.g., Lun et al., 1984), 
address only a small subset of the rich variety of granular flow 
phenomena. Particle-scale comparison of simulations with 
physical experiments is required to confidently extend simu- 
lation-based techniques for general study of granular flows. 
This paper compares particle-scale information derived from 
a set of physical experiments with the results of a fully three- 
dimensional computer simulation model for collision-domi- 
nated granular flows of spherical particles. The comparison 
thus serves as a necessary first step toward extending calcu- 
lations to friction-dominated flows. Below we briefly describe 
the physical experiments and the calculational scheme for sim- 
ulating them. We pay particular attention to the particle-con- 
tact models used in the simulations and the role of such 
extraneous forces as fluid drag. Comparison of results for two 
physical experiments with simulated flows reveals several fea- 
tures of interest. Additional simulations demonstrate the sen- 
sitivity of the calculations to parameter variation within a 
selected small subset of the parameter space. 
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Description of Physical Experiments 
Flows of 6-ram diameter spheres were generated in a glass- 

walled chute 3.7 m long, 0.5 m deep, and just 6.7 mm wide, 
confining the motion of the particles to essentially two di- 
mensions, except for their spins (Fig. 1). The chute could be 
inclined at any angle; and within it the bed could be moved 
independently to fine tune the inclination. The cellulose acetate 
spheres used in the experiments were smooth, white, highly 
spherical, and uniform in both size and density. Each was 
randomly imprinted with about 15 small black dots to enable 
the measurement of particle spins. Over the range of experi- 
mental conditions the coefficient of restitution ~ = 0.84 ± 
0.01. The Appendix lists the material properties of the exper- 
imental spheres. 

The fixed bed, which was intended to simulate naturally 
occurring beds of geophysical interest, consisted of immovable 
6-ram spheres identical to those in the flows glued to the top 

Fig. 1 Schematic view of the experimental glass-walled chute. The fixed 
bed consists of 6.mm diameter cellulose acetate spheres like those in 
the flows glued on a rigid aluminum bar centered between the glass 
sidewalls. Gaps between bed particles are uniformly distributed on the 
Interval 0 to 5 mm so that moving particles could not touch the bar. 
Coordinate system for measurements in the glass-walled chute inclined 
st an angle 0 to the horizontal; g Is the gravitational acceleration. The 
bed.normal y-coordinate originates at the centarllna of the fixed bed 
spheres, the x-coordinate extends downstream parallel to the bed, and 
the z~coordlnata is perpendicular to the glass sidewall such that a par. 
Ucle rolling downhill has rotation ~z < O. 
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of a stiff aluminum bar with randomly spaced gaps between 
them uniformly distributed over the range 0-5 mm, so that 
the moving particles could not touch the bar. 

Flows were generated by placing about 15,000 to 30,000 
spheres in a wide, V-shaped hopper above and to one side of 
the upstream end of the chute. They fed onto a slightly inclined, 
smooth tray, where they organized into a single layer that 
spilled over the edge of the tray and fell vertically between the 
glass walls to the chute bed. The flux of particles was controlled 
by blocking portions of the layer on the tray. 

The flows were photographed about 0.7 m upstream of the 
chute outlet using a high-speed 16-mm camera operating at a 
nominal rate of 1440 frames per second, or 60 times the normal 
projection speed. The particles were frontally illuminated 
against a black background. The films were analyzed frame 
by frame to determine positions of the centers of  the spheres 
and dots in machine-readable form by projecting the film image 
onto a digitizing tablet. Further details of  data-gathering and 
analysis can be found in Drake (1988). 

Detailed profiles of mean and fluctuating quantities were 
obtained from films of two nominally steady, uniform flows 
having fluxes of about 1280 and 2230 particles-1. The flows 
exemplify the disperse and dense end-member cases treated by 
kinetic theories of grain flow (e.g., Lun et al., 1984). For both 
flows the chute inclination was 42.75 deg, which provides rel- 
atively long-duration flows which are nearly steady and uni- 
form and have an optimal combination of moderate bulk 
density and high total flux. The mean-free path corresponding 
to such moderate bulk densities allows measurement of inter- 
collision velocities, while a high total flux increases the number 
of measurements and thereby decreases statistical uncertainty. 
A complete description of the physical experiments and dis- 
cussion of the issues surrounding experimental acquisition of 
particle-scale information can be found in Drake (1991). 

D e s c r i p t i o n  o f  C o m p u t e r  S i m u l a t i o n s  

Particle-dynamics computer simulations (e.g., Cundall and 
Strack 1979; Walton and Braun, 1986a,b) explicitly solve the 
equations of motion for an assemblage of particles under the 
influence of body and interparticle forces. Because fluid drag 
affects fast-moving particles in the glass-walled chute (Drake, 
1991), we also incorporated a simple fluid-drag model in the 
simulations. 

Particle-Interaction Models.  The particle-interaction model 
used in the calculations is based on a model for identical, 
homogeneous spheres described in detail in Walton and Braun 
(1986a, b) and Walton (1993a, b). The normal force Fn between 
contacting particles is given by F~ = gltX for loading, and F,~ 
-- K2 (a - tx0) for unloading, where a is the overlap of  particles 
after initial contact, s0 is the value of c~ where the unloading 
curve goes to zero, and K~ and K2 are constants. No negative 
values are allowed for Fn. For binary collisions, the coefficient 
of normal restitution is e = (Ki/K2) 1/2. 

The tangential friction force model is based on approxi- 
mations (Walton and Braun, 1986a; Walton, 1993a) to theo- 
retical models for friction between Hertzian elastic spheres 
developed by Mindlin and Deresiewicz (1953). The full Walton 
model inco.rporates a computationally intense calculation for 
the effective tangential stiffness, K ,  and also requires one 
additional variable to be stored in memory for each contact 
pair. In the present simulation the new tangential force cal- 
culated at each explicit time step is Ft = Fro + K#Xs, where 
~s is the new tangential displacement, Fro is the total tangential 
force from the previous time step, and Kt = Ks(1 - Fto/izF,) ~, 
where ~ is the coefficient of friction (no distinction is made 
here between static and sliding friction coefficients), Ks is the 
initial value of the tangential stiffness, and 7 = 1/3 for Her- 
tzian spheres. 

10. 

8 -  = , " 

~ 6. 

5 10 15 20 25 

Displacement (pro) 

Fig, 2 Force.displacement curve for 6.ram diameter cellulose acetate 
spheres. Particle stiffness is the slope of the least.squares line through 
data points having normal force greater than 0.SN (from Mulller et al., 
1991). 

Experimental measurements of the particle properties en- 
tering into the simulations were made by MuUier et al. (1991). 
For normal loads of interest (typically a few N and ranging 
up to about 10N) the spheres exhibit a nearly linear force- 
displacement relation, although for normal loads less than 
about 0.5N (corresponding to displacements of a few microns), 
the force-displacement curve deviates from the simple linear 
relation due to the complex interaction of asperities on the 
sphere surfaces. A linear fit through their data for normal 
loads greater than 0.5N gives a normal stiffness of 380,000 
Nm- ~ (Fig. 2). For the collision-dominated flows studied here, 
the calculations were insensitive to the value of the normal 
stiffness, and we used a value of  38,000 Nm-~ for computa- 
tional efficiency. However, in dense, compact flows or quasi- 
static calculations in which particles may be in nearly contin- 
uous contact (e.g., Drake, 1990), changes in the normal stiff- 
ness directly affect wave speeds and other quantities of  interest; 
and thus caution must be exercised in decreasing the normal 
stiffness for computational efficiency. Using these parameters, 
the interaction model yields a (fixed) time step of 1.31 × l0 -5 
s, using 40 time steps per collision, and virtual overlaps of 
particles did not exceed one percent of the particle radius during 
collisions. The experimentally measured ratio of the initial 
tangential to normal stiffnesses is about 0.1 for normal loads 
greater than about 1.5N (Mullier et al., 1991, p. 69). Mindlin's 
theory for the tangential force gives 7 = 1/3 for Hertzian 
spheres; we used 7 = 1 after comparisons with micro-dis- 
placement versus tangential force measurements (Mullier et 
al., 1991) showed better agreement than the 7 = 1/3 model. 
Finally, the measured interparticle coefficient of sliding fric- 
tion is 0.41 and the particle-glass coefficient is 0.24, again 
restricting attention to normal loads greater than 0.SN. 

Extraneous Forces. Such extraneous forces as fluid drag 
may unavoidably arise in physical experiments, though they 
are rarely incorporated into grain flow theories. Experiments 
to determine the effects of fluid drag within the chute yielded 
a drag coefficient of 3.4 ± 2.2 for single particles tracing long 
trajectories in relatively still air (Drake, 1991). The drag coef- 
ficient for 6-mm-diameter spheres in an unbounded fluid at 
comparable particle Reynolds numbers is about 0.6. A rough 
rule-of-thumb for collision-dominated flows in the glass-walled 
chute is that the velocity of  the entrained air is about half the 
mean particle velocity at any given level in the flow. Flows 
having high bulk densities entrain air more effectively, reducing 
the relative velocity between particle and air, and are thus 
relatively unaffected by fluid drag. Although the restrictive 
geometry of the glass-walled chute greatly enhances drag ef- 
fects, results from the chute experiments imply that such effects 
may be important in other collision-dominated flows of small 
particles in air or more viscous fluids. In the simulation, fluid 
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drag effects are incorporated by assuming that the fluid within 
the chute is still, and that the drag force is proportional to the 
square of the magnitude of the velocity. The simulation as- 
sumes that particle rotations are unaffected by fluid drag. 

Simulation Chute. Major features of the physical experi- 
ments are incorporated into the simulation in the following 
way: the simulation chute consists of two parallel, vertical 
planar boundaries having the frictional properties of glass; a 
5-m long bed of fixed spheres inclined at 42.75 deg centered 
between the planar boundaries and having the same geometric 
roughness as the fixed bed; a 5-m long horizontal bed of fixed 
spheres connected to the downchute end of the inclined bed 
and a short vertical "backs top" .  The length of the simulation 
chute is thus considerably longer than the physical one to allow 
greater spatial evolution of the simulated flows than was prac- 
tical in the laboratory. 

The V-shaped hopper and inclined tray used to feed particles 
into the chute was simulated by adding groups of 100 particles 
(the width of the inclined tray was 60 cm, or 100 particle 
diameters) into the simulation at a constant interval corre- 
sponding to the two fluxes measured from the films in the 
physical experiments (0.0448 s for the 2230 particles s - l  flow 
and 0.0781 s for the 1280 particles s - l  flow). The particles, 
each having a small random velocity normal to the chute 
sidewalls, were introduced along a horizontal line positioned 
at the same elevation as the lip of the inclined tray in the 
physical experiments, and allowed to freely accelerate down- 
ward until reaching the fixed bed. 

The simulations employ different versions of vectorized For- 
tran code for Cray YMP and IBM 3090 platforms. Typical 
computation times for flows of about 10,000 particles were 
on the order of one CPU hour per second of real time, the 
actual time varying by up to a factor of ten, depending on 
material properties of the particles (computation time pro- 
portional to the square root of the particle stiffness), and bulk 
density of the flow (computation time roughly proportional 
to the number of pairs of contacting particles). Comparison 
simulations using identical input on the two platforms pro- 
duced statistically identical results. 

Comparison of Physical Experiments and Computer 
Simulations 

Computing the velocities and rotations of individual par- 
ticles and the density of the flow from the location of particle 
centers and dot positions on film frames from the physical 
experiments is conceptually straightforward, although it entails 
numerous practical difficulties. A Cartesian coordinate system 
(Fig. 1) is set up with origin located on the line of centers of 
the fixed bed spheres and axes oriented upward normal to the 
bed and downchute parallel to it. The usable field of  view in 
each film was about 8.35 cm in the bed-parallel (x) direction 
and 11.1 cm in the bed-normal (y) direction; the center of the 
field was about 70 cm upstream of the chute outlet. The flow 
is divided into bed-parallel layers or bins two particle diameters 
thick, and the desired quantities are calculated for each bin. 
All of a particular particle property (e.g., its mass) is applied 
to the bin containing the particle center. The area of the bin 
nearest the bed used to calculate the bulk density excludes that 
area unavailable to the centers of  flow particles. The excluded 
area is computed assuming the bed-sphere centers are uni- 
formly spaced a distance equal to the mean of the true spacing 
distribution. 

We employed full simulations of  the glass-walled chute to 
study the spatial and temporal evolution of both disperse and 
dense flows. A second set of calculations using periodic bound- 
ary conditions in the downchute direction was used to study 
the flow response to variations in selected parameters. 
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Fig. 3 Time evolution of mean downchute velocity (top), bulk density 
(middle) and mean In-plane rotation ~(bottom) profiles for full simulation 
of 2230 particles s- l f iow at chute location corresponding to filming 
area for physical experiments. Chute Inclination Is 42.75 deg, and sim- 
ulation drag coefficient set at 3.4, the mean value measured in ancillary 
experiments. Data for t = 5s and  t = 6s (not shown) overlies data for 
t = 4s, indicating nearly steady, uniform flow for t _> 5s° Error bars for 
near-bed rotation data points omitted for clarity; typical error bar is 
shown. 

Full Simulations. Particle-scale comparison of full simu- 
lations with the physical experiments is a synergistic, iterative 
process to establish the dominant physics of the flows that 
must be captured in the computer models. For example, quasi- 
two-dimensional simulations in which the centers of flow 
spheres were confined to lie in a vertical plane (thus preventing 
any sidewall interactions) accelerated down the length of the 
chute, unless fluid drag forces were increased well beyond the 
measured values obtained from the chute experiments. Like- 
wise, simulations faithfully reproducing the chute geometry 
(including frictional sidewalls) while neglecting fluid drag forces 
also produced accelerating flows. We directly simulated both 
the disperse and dense flows using the mean value of the fluid 
drag coefficient as determined from ancillary physical exper- 
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Fig. 4 Effect of drag coefficient on mean downchute velocity profiles 
from simulations of 2230 particles s -1 flow at chute location corre- 
sponding to filming area for physical experiments, using periodic bound. 
aries spaced 20-particle diameters apart in the downchute direction. 
Initial conditions for each simulation from full simulation at t = 2s (drag 
coefficient in the full simulation set at the mean value determined from 
ancillary experiments). Error bars underestimate true errors in velocity 
in highest bins due to repeatedly sampling the same particles passing 
through the periodic control volume without collisions. 

iments. Figure 3 depicts the time evolution of profiles of the 
mean downchute velocity, bulk density, and mean in-plane 
rotations from the simulation and the corresponding profiles 
from the physical flows for the dense flow (2230 particles s-  t); 
the corresponding mean profiles for the disperse flow are in 
similar agreement. 

The simulated flows are somewhat slower and more compact 
than the physical flows. We ascribe the differences to the simple 
fluid-drag model used in the simulation. In particular, the 
simulation does not properly account for air entrained by the 
flows, which reduces the relative velocity of the particles with 
respect to the fluid and thus the fluid drag forces. A more 
realistic simulation might determine the fluid velocity profile 
produced by the flowing particles and iterate to find the cou- 
pled fluid-particle motion (e.g., Anderson and Haft ,  1988). 
In the next section, we describe a suite of simulations using 
periodic boundaries in the downchute direction that permit an 
economical approach to determining the sensitivity of the sim- 
ulations to variations in such parameters as the fluid drag. 

Simulations Using Periodic Boundaries. The number of 
particles used in simulations of normally steady, uniform flows 
can be reduced to a computationally tractable number by the 
artifice of periodic boundaries. In the case of nominally steady, 
uniform, inclined-plane flow, computations include only par- 
ticles within a small control volume; when a particle passes 
through the downchute boundary of the control volume, it is 
reintroduced at the upstream end with identical position and 
velocity. From the full simulations we extracted positions, 
velocities, and rotations of flow particles from a 20-particle 
diameter length of the chute centered on the filming area from 
the physical experiments. Using these initial conditions, we 
restarted the simulations with periodic boundaries separated 
by 20 particle diameters (hereafter designated 20tr). In separate 
periodic boundary simulations we both doubled and halved 
the velocities of all particles to see the flow response to per- 
turbations; in each case the flow properties reconverged to 
those obtained from the full simulations. Furthermore, con- 
vergence to nominally steady, uniform flow occurred in 2-4 
seconds, which is similar to that observed in the physical ex- 
periments. 

Using the same 20tr initial conditions, we set the fluid drag 
coefficient one standard deviation above and below the ex- 
perimentally measured value; the resulting simulated profiles 
bracket the corresponding ones from the physical experiments. 
Figure 4 depicts drag effects on the mean downchute velocity 
profile for three simulations of the dense flow. Simulations in 
which the chute width was decreased from the experimental 
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Fig. 5 Root-mean.square fluctuating downchute (u') and bed-normal 
(v') velocities from physical experiments and simulations using periodic 
boundaries spaced 20 particle diameters apart In the downchute dlrec. 
tlon. Initial conditions for each simulation from full simulation at t = 
2s, with drag coefficient set at the mean value determined from ancillary 
experiments. Downchute component is consistently larger than the bed. 
normal component because particles transported without collisions 
across the mean-flow velocity gradient in u acquire greater u' than v'. 

value exhibited higher mean velocities, particularly within a 
few particle diameters of  the bed, but the increase in total flux 
was small. Increasing the chute width decreased the total flux. 
Simulations of disperse flows were generally more sensitive to 
variations in fluid drag and chute geometry than simulations 
of the dense flows. 

We used periodic boundary simulations to generate statistics 
of fluctuating quantities for comparison with the physical ex- 
periments. Although the distributions of the fluctuations form 
the foundation for micromechanical theories of grain flow, 
they are among the most difficult quantities to obtain exper- 
imentally because the sample size is typically small, and thus 
the concomitant uncertainty in the desired fluctuating quan- 
tities is large. Also, in flows having large gradients in mean 
quantities, partitioning the flow into bins can produce erro- 
neous estimates of fluctuating components (Drake, 1991). We 
typically sampled the simulated flows at 0. I s intervals, a period 
long enough to ensure statistical independence of samples at 
heights less than about 25 particle diameters above the bed. 
Higher in the flows, however, the collision rate can be com- 
parable to the sampling rate, and thus particles on long col- 
lisionless trajectories may pass through the periodic volume 
many times, producing spurious estimates of fluctuating quan- 
tities. Because of these considerations, we concentrated our 
simulation efforts on the 2230 particle s-1 flow because the 
statistical uncertainties in experimentally measured fluctuating 
quantities for the disperse, 1280 particles s -1 flow preclude 
meaningful comparison with the fluctuating quantities ob- 
tained from the simulations. 

Fluctuating quantities from the simulated flows exhibit many 
of the distinctive features measured in the physical experi- 
ments. For example, the downchute (u')  and bed-normal (v ' )  
fluctuation velocities are distinctly anisotropic (Fig. 5). The 
anisotropy is particularly prominent in low-bulk density, high- 
shear regions of the flow (Richman, 1989) and arises because 
particles transported parallel to the mean-flow velocity gra- 
dient in u acquire greater u '  relative to v' merely by virtue of 
collisionless travel. 

Conc lus ion  

Comparison of physical experiments with results of com- 
puter simulations of collision-dominated granular flows reveals 
several important points and caveats for future work. The 
glass-walled chute flows considered here provide an extremely 
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stringent test of the simulations, and emphasize the sensitivity 
of the flows to details of the chute geometry and entrance 
conditions, and in particular, the nature of such extraneous 
forces as fluid drag. A useful rule of thumb for collision- 
dominated flows in the glass-walled chute is that the velocity 
of the entrained air is about half the mean-particle velocity at 
any given level in the flow. Flows having high bulk densities 
entrain air more effectively, reducing the relative velocity be- 
tween particle and air, and are thus relatively unaffected by 
fluid drag. Although the restrictive geometry of the glass- 
walled chute greatly enhances drag effects, our results imply 
that such effects may be important in many applications in- 
volving collision-dominated flows of small particles in air or 
more viscous fluids. 

Computationally efficient, robust particle-interaction models 
incorporating only measurable parameters successfully de- 
scribe the statistics of the motion of individual particles in the 
glass-walled chute flows. For collision-dominated flows the 
normal stiffness can be decreased considerably (thus increasing 
the fixed calculational time step) provided that the concomitant 
increase in particle overlap is acceptable within the context of 
the simulation. In dense flows or quasi-static calculations in 
which particles may be in nearly continuous contact, changes 
in the stiffness directly affect wave speeds and other quantities 
of interest; and thus caution must be exercised in decreasing 
the stiffness for computational efficiency. 
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A P P E N D I X  

Material properties of cellulose acetate spheres 
Diameter o 5.99±0.03 mm 
Mass m 0.1481 :~0.002 g 
Density p 1.319 g c m  -2 
Poisson's ratio v 0.28 
Young's modulus E 3.2 × 10 ~° dynes cm -2 
Shear modulus G 1.3 × 10 ~° dynes cm -2 
Strength Y 3.3 × l0 s dynes cm -2 
Hardness H 9.3 × l0 s dynes cm -2 
Friction coefficient/z 0.41 ± 0.02 
Friction coefficient/zg 0.24 ± 0.07 

Micrometer measurement 
Direct measurement 
Calculated from cr and m 
Free-oscillation method (estimate) ~ 
Free-oscillation method (estimate) ~ 
Calculated from E and v 
Eastman Bulletin MB-34C 
Calculated from 1.1Y = 0.39 H 2 
Slow slider measurement 3 (particle/particle) 
Kinematic sliding measurement (particle/glass) 

IFree-oscillation method (e.g., Soga and Anderson, 1967) has not been reliably tested for plastics 
2johnson (1985) 
~T6zi.in (personal communication, 1987) 
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A Three-Dimensional Unit Cell 
Model With Application Toward 
Particulate Composites 
A formulation of a fully three-dimensional unit cell model is presented for uniform 
general deformation at a point in a composite material The unit cell model is 
constructed as a finite element discretization of the unit cube. General displacement 
periodicity boundary conditions are prescribed such that the cell may be considered as a 
representative volume element of material. As a particular application of the model, the 
problem of determining the least anisotropic periodic model of  a particulate composite 
is considered, and comparisons are made with bounds for elastic two-phase composites 
possessing cubic symmetry. 

I Introduction 
This paper is concerned with the development of a three- 

dimensional unit cell model for multiphase materials that can 
represent arbitrary particulate microgeometries. An assump- 
tion of periodicity is made such that the entire solid may be 
considered as a replication of the unit cell. Conceptually the 
development of the model is similar to the periodic hexago- 
nal array (PHA) model of Teply and Dvorak (1988) for 
deformations of a continuous fiber composite. In their model, 
the unit cell geometry is an equilateral triangle whose ver- 
tices coincide with adjacent fiber centers such that each unit 
cell contains one-sixth of three fibers. General periodicity 
boundary conditions are prescribed so that during deforma- 
tion, the cell will continually tile space. For continuous fiber 
composites, the PHA model has the advantage that it is the 
only periodic arrangement of fibers that yields an elastically 
transversely isotropic response. Thus, in this sense the PHA 
represents an ideal microgeometry. Although the PHA model 
of Teply and Dvorak (1988) was restricted to periodic ar- 
rangements of fibers, arbitrary spatial arrangement of fibers 
which correspond to actual microgeometries are of interest. 
With this in mind, Brockenbrough et al. (1991) formulated a 
square unit cell model and studied the response of an alu- 
minum-boron continuous fiber composite containing random 
arrangements of boron fibers. At a fixed volume fraction of 
fibers, it was found that under transverse loading, the spatial 
arrangement of fibers can have a large effect on the overall 
material response. Also it was found that a hexagonal array 
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of circular fibers behaves more like a random array of fibers 
than any other periodic model. Recently extensions of this 
work that incorporate actual microstructural geometry within 
a two-dimensional unit cell model have been reported by 
Sautter et al. (1992) and Brockenbrough et al. (1992). 

The three-dimensional unit cell geometry of a truncated 
octahedron has been used by Dib and Rodin (1991) in studies 
of creep of polycrystals due to grain boundary sliding. While 
this unit cell could be adopted for the study of multiphase 
materials, a simpler unit cell geometry is the unit cube. Unit 
cell models based on a unit cube have been used by Hom and 
McMeeking (1991), and Nemat-Nassar et al. (1982). These 
formulations were restricted to simple loading states and 
simple cubic arrangements of the second phase. Although the 
unit cube is a particularly bad representation of a grain for 
polycrystal models, it is well suited to the study of multiphase 
materials. It can represent both random microgeometries and 
those based on cubic symmetry. The arrangements based on 
cubic symmetry have a distinguished position in that they are 
the least anisotropic periodic arrangements. It is the develop- 
ment of the unit cube as a unit cell for arbitrary microgeome- 
tries under general deformations that forms the subject of 
this paper. 

2 Unit Cell Formulation 
Here we formulate the unit cell boundary conditions for 

finite periodic deformation within a full Lagrangian frame- 
work. Let Xt,  X2, and X 3 be rectangular Cartesian coordi- 
nates such that the undeformed unit cell occupies the unit 
cube [0, 1] × [0, 1] × [0, 1] at time t = 0. Let u(X,t)  be the 
displacement of the material point initially at X. To consider 
the unit cell as a representative volume element of material, 
boundary conditions need to be applied that enforce general 
periodic deformation. For two-dimensional deformation, gen- 
eral periodic boundary conditions have been given by Nagpal, 
McClintock, Berg, and Subudhi (1972). Conditions for gen- 
eral periodic deformation of a two-dimensional hexagonal 
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array have been derived by Teply and Dvorjak (1988) and 
used to construct a finite element unit cell of a continuous 
fiber composite. For the three-dimensional deformation of 
the cube, periodicity can be expressed as constraints between 
displacements on opposing faces of the cube. Material points 
initially on the positive X1 face are constrained according to 

u(1, Xz, X3, t) = u(0, X 2, S3, t) 

+ u ( l ,  0, 0, t ) -  u(0, 0, 0, t).  (1) 

While material points initially on the positive X 2 face are 
constrained according to 

U(Xl, l, X3,t ) = U(Xl,0, X3, t ) 
+ u ( O , l , 0 , t )  - u(O, O, O, t) ,  (2) 

and material points initially on the positive X 3 face are 
constrained according to 

u(X~, X2,1,  t) = u (X l ,  X2,0 ,  t) 

+u(0 ,0 ,1 ,  t)  - u(0 ,0 ,0 ,  t) ,  (3) 

material points initially on more than one face are not over 
constrained because Eqs. (1)-(3) are redundant for those 
points. The boundary conditions of Eqs. (1.)-(3) are equiva- 
lent to the condition that the deforming unit cell remain 
space-tiling. The vertices of the unit cell remain vertices of a 
parallelepiped and opposing faces of the unit cell remain 
surfaces that are translations of each other. Note that the 
faces need not remain flat. Rigid-body motions are elimi- 
nated by requiring 

u(O, t) = o, 

and 

U2(1,0,0, t ) = U3(1,0,0, t ) = u3(0,1,0,  t ) = 0. (4) 

and v(t) is its current volume. Quantities of interest in the 
current configuration are the averages of the Cauchy stress, 

and its work conjugate strain measure, the rate of defor- 
mation, D. Let x = X + u(X, t) be the position of the mate- 
rial point initially at X and let v(x, t) be velocity in the unit 
cell. The boundary of V(t) is a surface A(t) with outward 
unit normal n(x, t). The volume integral defining D can be 
transformed to a surface integral as 

1 . / O v \  
b = ~ j v S y m ( T x ) =  vl--fAsym(v®n) (6) 

where ® denotes the tensor product, and sym(T) is the 
symmetric part of any second-order tensor T. The area A is 
composed of six surfaces A±i  which are the images under 
x(X, t) of the ±X i faces of the undeformed unit cell. Let 
il = Ou/c~t = v(x(X,t), t). Also let a = u(.1,0,0, t), b = 
u(0, 1,0, t), c = u(0,0, 1, t), fi = / f f l ,  0,0, t), b = u(0, 1,0, t), 
and /~ =/l(0, 0, 1, t) denote the displacements and velocities 
of the free vertex points. If the integral over A is broken up 
into integrals over the A ± i and boundary conditions of Eqs. 
(1)-(4) are employed, then Eq. (6) reduces to 

= +b®aA +i:® sym /~ ® fA+~ 
The periodicity conditions imply that v(t) is equal to the 
volume of the parallelepiped defined by the vertices of the 
unit cell. The integrals in Eq. (7) are evaluated by using the 
periodicity conditions and the statement that the integral of 
the unit normal over a simple closed surface is zero. The 
result is the integral of n over A +~ is equal to the area of the 
parallelogram defined by the vertices of A+~ times a unit 
normal to that parallelogram. Thus the six degrees-of-free- 
dom of the unit cell vertices determine the overall rate of 
deformation as 

b = 

dl (al + 1)ha - b l a  1 

a 1 + 1 2 ( a  1 + 1 ) ( b  2 + 1) 

b2 

b 2 +  1 

SYM 

(blC 2 -- ctb 2 - ¢ l ) a l  - ( a l c  2 + c2)b  I + ( a l b  2 + a I + b 2 + 1)61 

2(a l + 1)(b 2 + 1)(c 3 + 1) 

( b  2 + 1)6 2 - czb 2 

2(b 2 + 1)(c 3 + 1) 

63 

c 3 + 1  

(8) 

For purposes of calculating the overall response of the mate- 
rial at a point that is represented by the unit cell, the 
volumetric averages over the unit cell are of interest. These 

b z 0 

63. l =  0 bl 0 

6 2 0 

_61J 0 

averages will be denoted by an overbar. Thus for any func- 
tion f, 

1 
f = 7 fv fdV' (5) 

where V(t) is the current region occupied by the unit cell and 

Conversely, the overall rate of deformation determines the 
six degrees-of-freedom of the unit cell vertices. This is shown 
by rewriting Eq. (8) as 

0 0 0 0 0 " a l ]  Dll 

D22 0 0 0 0 b2 [ D22 

0 D33 0 0 0 c 3 D33 

2D12 0 b l l  0 0 bl [ 2D12 

0 2923 0 D22 0 c2 I 2D23 

0 2D13 0 2D12 Oil .Cl .J 2Dl3 

(9) 

Equations (8), (9) are valid for finite strains under the special 
case of the periodicity conditions, Eqs. (1)-(4). 

Under uniform far-field rate of deformation, the average 
Cauchy stress ~ in the unit cell is computed by using the 
relation that the average of the deformation power is equal 
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Fig. 1 BCC mesh, refinement level 1 

to the power computed from the stress and deformation 
averages, that is 

o "  D = ~" D .  (10) 

The deformation power in the unit cell equals the power 
delivered to the unit cell by the forces conjugate to the 
degrees-of-freedom of the vertices. Let f,1 be the force 
conjugate to a 1 etc. Then 

~"  O = falall -F fblbl -b fb2b2 "q'- fc lCl  "~-fc2d'2 -'bfc3C3 (11) 

(a 1 + 1)(b 2 + 1)@ 3 + 1) 

In particular, Eq. (11) holds when all but one of the free 
vertex velocities are zero. Thus (11) provides six equations 
that determifie the six components of overall stress, 

f = 0.01 

f = 0.30 

f = 0.15 

Fig. 2 BCC mesh, refinement level 2 

spheres in microgeometries that possess cubic symmetry. 
Thus the undeformed microstructure is modeled as spheres 
in each array of cubic symmetry: simple cubic (SC), face- 
centered cubic (FCC), and body-centered cubic (BCC). In 
each model, the undeformed unit cell is the smallest cube 
that has a particle center at each vertex. Convergence of the 
solution to the overall elastic response was shown by succes- 
sive mesh refinement. Figure 1 shows refinement level 1 of 
the BCC mesh at three volume fractions, f, and f =  1 
percent, f = 15 percent, and f = 30 percent. Figure 2 shows 
refinement level 2 of the same mesh. At refinement level 1, 
the SC, BCC, and FCC meshes contain 448, 1280, and 2048 
elements, respectively. Refinement level 2 increases these 
numbers by a factor of (3/2) 3. The meshes are automatically 

(a 1 + 1)fal + blfbl + clfel 

(all + 1)(b 2 + 1)(c 3 + 1) 

(b 2 + 1)fbl + c2f~1 

(a I + 1)(b 2 + 1)(c 3 + 1) 

L,  

(a 1 + 1)(b 2 +  1) 

(b 2 + 1)fbl + C2fcl 

(a 1 + 1)(b 2 + 1)(c 3 + 1) 

(b2 + 1)£2 + c2)~2 

(a, + 1)(b 2 + 1)@ 3 + 1) 
G 

(a 1 + 1)(b 2+  1) 

fcl  

(all + 1 ) ( b  2 + 1)  

fc2 

(a, + 1)(b 2 + 1) 

L3 
(a I -'b 1)(b 2 + 1) 

(12) 

3 Numerical Implementation 
A numerical implementation of the above unit cell formu- 

lation was considered within the context of a finite element 
discretization of the unit cube. The boundary conditions of 
Eqs. (1)-(4) are set up with constraints on pairs of nodes 
which are initially located in similar positions on opposite 
faces. A given overall deformation history is modeled by 
integrating Eq. (9) to determine the appropriate vertex node 
displacement history. Overall stress history is then given by 
Eq. (12). 

To implement the unit cell model for a specific problem 
and to make contact with other results, consider the problem 
of determining the overall elastic response of a particulate 
composite where the particles can be idealized as equisized 

constructed at any volume fraction between 1 percent and 30 
percent by a command file procedure written in PATRAN 
(1990). Each mesh is composed of single integration eight- 
noded bricks, and the finite element code ABAQUS is used 
for analysis. ABAQUS limits the singular deformation modes 
of these elements with an artificial stiffness equal to 0.005 
times the elastic shear modulus. Spurious modes are thus 
rendered negligible in elastic analysis and in small strain 
elastoplastic analysis. The periodicity conditions of Eqs. 
(1)-(3) are enforced by using linear multipoint constraints 
between degrees-of-freedom of nodal points on opposing 
faces of the cube. The implementation of these constraints 
within ABAQUS requires identical meshes on opposing cube 
faces. In fact the meshes used possess cubic symmetry. 
ABAQUS uses a wavefront scheme to solve equations and a 
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Table l ( a )  Elastic constants for cubic arrays of rigid spheres 

~/E 

f SC FCC BCC 
0.10 1.184 1.181 1,188 

0.20 1.409 1.412 1.406 

0.30 1.702 1.687 1.696 

~g 

SC FCC BCC 

1.219 1,244 1.270 

1.457 1,594 1.565 

1.760 1.976 2.029 

~*/ILt 

SC FCC BCC 
1.298 1.226 1.257 

1.737 1.526 1,469 

2.416 1,824 1,823 

Table 3(a)  Comparison of elastic constants for BCC rigid spheres 

~,/I< 
i 

f UC R A-Ib 

0.10 i 1.188 1.180 1,179 
i 

0.20 I 1.405 1.404 1.403 

0.30 I 1.696 1.693 1.69t 

~ g  
! 

UC R 

1.270 1.240 

! 1.585 1.552 

2.020 1.983 

A-Ib UC R 

1.166 1.287 1.224 

1.374 1.409 1.488 

1.641 1.823 1,821 

A-tb 

1.166 

1.374 

1.641 

Table l ( b )  Elastic constants for cubic arrays of voids 

f SC FCC BCC 

0,10 0,778 0,776 0.774 

0.20 0.605 0.611 0.604 

0.30 0.468 0.464 0.469 i I 

~g 

SC ! FCC BCC 

0.814 0.830 0.840 
I 

0.642 I 0.695 0.684 

0.494 I 0.553 0.552 

~'/I.t 

sc FCC BCC 

0.847 0.821 0.834 

0,724 0.675 0.660 

0.616 0.519 0.521 

Table 3 ( b )  Comparison of elastic constants for BCC voids 

"~,JK 

f UC R A-ub 

0.10 0.774 0.774 0.774 ! 
0.20 0.604 0.604 0.604 

0.30 0.469 0,471 I 0.471 

UC R A-ub 

0.840 0.829 0.854 

0.684 0.686 0,722 

0.552 0.564 I 0,603 

~'/I.t 

uc R ! A-ub 

0.834 0,819 0.825 

0.660 0,662 0.677 

0.521 0.527 0.550 

Table 2 Anlsotropy measure for cubic arrays of rigid spheres and 
voids 

a* - Voids 

f SC FCC BCC ] 

0.10 0.023 0.007 0.005 

020 0.072 0.019 0.023 

0130 0.139 0,040 0.037 

a* - Rigid Spheres 

SC FCC BCC 

0.037 0.009 0.007 

0.109 0.027 0.031 

0.212 0.050 0.064 

measure of the CPU time required for solution is the square 
of the average wavefront. For the level 1 BCC mesh shown in 
Fig. 1, the implementation of the periodicity conditions causes 
the wavefront to increase by a factor of 1.42 over the motion 
of the cube without the periodicity constraints. Thus the 
implementation of general periodicity conditions doubles the 
necessary solution time. 

Since each model possesses cubic symmetry, the overall 
elastic _response is. governed by the three elastic constants 
Cml ,  CHz 2, and C~212. These constants computed with a 
level 1 mesh differ by less than one percent from the same 
constants computed with a level 2 mesh. The discrepancy is 
less than one percent regardless of constituent materials and 
regardless of volume fraction up to thirty percent. Solutions 
for the elastic constants with the level 1 mesh will be used to 
make contact with other results. For purposes of comparison, 
the bulk modulus and the two shear moduli are employed. 

1 _  2 _  
= -~Cml + ~Cl122 

= (C1212 
1 _  1 _  

~* = ~C1111-  -~Ci122. (13) 

4 Results and Comparisons 
Table 1 contains the elastic constants computed with the 

unit cell model for the limiting states of rigid inclusions and 
voids at volume fractions of f = 10 percent, f = 20 percent, 
and f = 30 percent. The matrix Poisson's ratio is fixed at 
u = 0.3. Elastic constants in the table are normalized with 
respect to the elastic constants of the matrix. Rigid inclusions 
were modeled as isotropic elastic material with 1000 times 
greater moduli than the matrix. Correspondingly, voids were 
modeled as isotropic elastic material with 1000 times smaller 
moduli than the matrix. These moduli ratios for voids and 

rigid spheres were found to provide converged results for 
overall moduli. The bulk moduli of all three cubic arrays are 
similar for all the cubic arrangements. The FCC and BCC 
array possess similar shear moduli for both rigid particles and 
voids. The SC array has a softer response in the first shear 
modulus, ~,  and a stiffer response in the second shear 
modulus, ~,*. 

To determine the periodic arrangement with the least 
anisotropy, an anisotropy measure is introduced as, a*, 
a* 

= max Cll 11(°/' ]~' 'y) -- C1122( O/,cm,(a,/3,/3, y)y) - 2C'2 '2(° t ' /3 ,  y )  

(14) 

where the maximum is over all rotations of the lattice. This 
parameter is a generalization of one introduced by Nemat- 
Nasser, Iwakuma, and Hejazi (1982) in the study of the 
anisotropy associated with SC arrays of inhomogeneities. 
Table 2 lists the anisotropy measure for each cubic array. 
The anisotropy associated with rigid spheres is greater than 
that for voids for all cases. For rigid spheres it is seen that 
the anisotropies associated with the FCC and BCC arrays are 
nearly equal while the SC anisotropy is about 3-4  times 
greater. The situation is similar for voids. Since the FCC and 
BCC arrays possess about the same degree of anisotropy, the 
BCC array is preferred as the simpler model. 

Table 3 compares the elastic behavior predicted by the 
unit cell model (UC) for the BCC array to recent calculations 
of Rodin (1993), (R), and bounds derived for two phase 
materials possessing cubic symmetry by Avellaneda (1987), 
(A-b). Rodin's results were obtained by an Eshelby-type 
equivalent inclusion method which accounts for particle in- 
teractions. Always the calculated moduli lie within the Avel- 
laneda upper bounds (A-ub) and the Avellaneda lower bounds 
(A-lb). For rigid spheres and voids, the calculated results for 
the bulk modulus are nearly equal to the revelant bound. For 
the shear moduli there is close agreement between the unit 
cell calculations and those of Rodin. 
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Mode Localization Phenomena 
in Nearly Periodic Systems 
The normal mode localization in nearly periodic systems with one-degree-of-freedom 
subsystems and a single subsystem departing from the regularity in one, two, and three 
dimensions has been studied. The closed-frequency equations may be derived by using 
the U-transformation technique. It is shown that in one- and two-dimensional problems 
any amount of  simple disorder (for stiffness or mass), however small, is sufficient to 
localize one mode and in three-dimensional systems, a finite threshold of disorder is 
needed in order to localize one mode. These conclusions are in agreement with those 
predicted by Hodges. 

1 Introduction 
Recently, periodic systems have been shown to be sensitive 

to certain types of periodicity-breaking disorder, resulting in 
a phenomenon known as normal mode localization. This 
phenomenon was first predicted by Anderson (1958) in the 
field of solid-state physics. It was shown that the electron 
eigenstates in a disordered solid may become localized. 

The localized vibrations in periodic structures with some 
degree of disorder have been investigated by several authors. 
Hodges (1982) showed that in one dimension, all modes are 
localized for arbitrarily small extended disorder. Bendiksen 
(1987) investigated theoretically and numerically the local- 
ized modes of vibration in large space structures. A perturba- 
tion method (Pierre and Dowell, 1987), (Pierre, Tang, and 
Dowell, 1987) was developed to obtain the localized modes 
of the disordered system. Keane and Price (1989) considered 
a single defect in an otherwise periodic system. The results 
showed that all the modes extend throughout the structure 
except for the one where the natural frequency lies in the 
stop band. The ensemble-averaging procedure was used to 
study the dynamics of structurally irregular mechanical sys- 
tems (Hodges and Woodhouse, 1989a) providing some analyt- 
ical results, while the complementary results from a numeri- 
cal study were provided (Hodges and Woodhouse, 1989b). 
However, the methods presented in the aforementioned liter- 
atures are limited to one-dimensional problems. In two-di- 
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mensional problems, the localization behavior is believed to 
be similar to that in one dimension insofar as the arbitrarily 
weak and extended disorder localizes all modes, whereas in 
three dimensions, it is thought that a finite threshold of 
disorder is needed in order to localize all modes (Hodges, 
1982). 

In the present paper, the nearly periodic systems with 
one-degree-of-freedom subsystems and a single subsystem 
departing from the regularity are considered. The closed- 
frequency equations for the nearly periodic systems in one 
and two dimensions, may be derived by using the U- and 
double U-transformation methods which have been applied 
to the static and dynamic analysis of structures with periodic- 
ity in one and two directions (Cai et al., 1988; Cheung et al., 
1989; Cheung et al., 1988; Chart et al., 1989; and Cai et al., 
1990). Incidentally, a modal transformation which is identical 
to the U-transformation has been used to analyze the re- 
sponse of an infinite periodic chain (Goodman, 1972). In 
order to analyze the mode localization in three-dimensional 
periodic systems with a single defect, the U-transformation 
method has been extended to the triple U-transformation 
method. In three dimensions, the closed-frequency equation 
may also be derived by the triple U-transformation method. 
It is shown that in order to localize one mode, the threshold 
of disorder is actually in existence. 

2 One-Dimensional System 
The essential behavior of mode localization in nearly peri- 

odic structures is best demonstrated using a simple model. A 
general model is illustrated in Fig. l(a), where each substruc- 
ture is modeled with one degree-of-freedom and only one 
substructure is departing from the regularity in both stiffness 
and mass. In order to apply the U-transformation to uncou- 
ple the governing equation, an equivalent system with cyclic 
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x[ x 2 x n 

bi M M M+AM M M 

711 1 
i 2 j*-i j* j*+1 n 

(a) Actual System 

M M 

j* n 1-~-I n+2 2n - j*+ l  2n 

(b) Equivalent System 

Fig. 1 One-dimensional system 

periodicity must be created. In a similar manner to that 
described (Cheung et al., 1989), the actual system with linear 
periodicity and n substructures can be replaced by an equiva- 
lent system with cyclic periodicity and 2n substructures, 
where the structure is symmetrical but loads are antisymmet- 
rical about the center line as shown in Fig. l(b) where the 
first and last (2nth) masses are imaginarily jointed by a 
spring with stiffness kl which is not subjected to any load for 
antisymmetric vibration modes. Therefore, the antisymmetri- 
cal modes of the equivalent system are identical to the modes 
of the actual system. The dynamic equations for all substruc- 
tures of the equivalent system may be expressed as 

M.~j + ( K  + 2 k l ) X  j -- kl(Xj+ 1 + x j _ l )  = Fj 

j4=j* ,  2 n - j *  + 1 (1) 

( M  + A M ) £ j  + ( K  + A K  + 2 k t ) x  j - kl(Xj+ 1 + x j _ l )  = 15 

j = j *  or 2 n - j *  + 1 (2) 

where M, K denote the mass and stiffness of ordered subsys- 
tem; AM, &K denote the magnitude of disorder for mass 
and stiffness, and k 1 denotes the coupling stiffness, j* de- 
notes the ordinal number of the disordered subsystem; x,,  15 
denote the displacement and load of the jth subsystem. ~hey 
must satisfy the antisymmetry condition, i.e., 

Xj = X2n_j+ l 

Fj=F2n_ j+  , j =  1,2 . . . . .  n (3) 

where n denotes the total number of subsystems for the 
actual system. 

The equations of natural vibration for the equivalent sys- 
tem may be written in the same form as 

( K  + 2k  I - M w 2 ) x j  - k l ( x j+  ~ + x j _ l )  = 15 

j = l , 2  . . . . .  2n (4) 

where o) denotes the natural frequency and 

(AMo) - -  A K ) x j ,  j = j* ,  2n -- j* + 1 

15= 0 j4=j* ,  2 n - j *  + 1. (5) 

One can now apply the U-transformation (Cai et al., 1988) 

to Eqs. (4) and (5). The U and inverse U-transformation may 
be defined as 

1 2n 
X] = 2 ~  E ei(j-l)rOqr ( 6 )  

r=l 
and 

1 2n 
qr = ~ j=~=l e- i (J-  l)rtpxj (7) 

where q~ ( r = l ,  2 . . . . .  2n) is the image of xj: ( j =  1, 
2 . . . .  ,2n) by U-transformation and tp = ~r/n, i = "~Z-T. 

Equation (4) may be expressed in terms of qr (r = 1, 2, 
. . . .  2n) as 

( K +  2 k  1 - M o ) 2 ) q ~  - 2kacosr~q r = f r  r = 1,2 . . . .  2n 
(s) 

in which 
1 2n 

fr = 21~ j=iE e-i(J-1)r@Fj. (9) 

Substituting Eq. (5) into Eq. (9) yields 
F.* 

fr - ~ n  (eiJ*r@ + e- iO*-m*) '  (10) 

The qr in Eq. (8) may be formally expressed as 

qr = f r / (  K + 2k,  - M w  2 - 2k  1 cos r0) .  (11) 

Substituting Eqs. (11) and (10) into Eq. (6)yields 

F* zn c o s ( j + j * - 1 ) r q * + c o s ( j - j * ) r t )  *] 

= Y + i f ,  2-/Tcos-g- • (12) 

It is obvious that the displacements of the equivalent 
system satisfy the antisymmetry condition (3). Since the sys- 
tem with infinite number of subsystems (i.e., n ~ 0o) is to be 
considered, therefore, with no loss of generality, it is as- 
sumed that the disordered subsystem is situated in the mid- 
dle of the actual system with n number of subsystems; i.e., let 
n = 2j* - 1. For this case, Eq. (12) becomes 

142 I Vot. 62, MARCH 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Yl 

Fig. 2 D(o~ ~) and f (~2)  

F]~ 2n c o s ( j  - j * ) r q J  
x j  = -  

n r= 2,4... K + 2k 1 - M 0 )  2 - 2k I cos r~0 

where 

(13) 

cos ( j  - j*)2r~b 
1 g+2e77 ' : ,cos2 * ' (14) ~ J = n r = l  

Now the frequency equation may be obtained by substituting 
Eq. (5) and j = j* into Eq. (13) 

1 
d~Mw 2 - -  AK = - -  (15) 

where 

1 
~Sf' = -~ Y] 1 / ( K  + 2k  1 - M w  2 - 2k ,  cosZr~0). (16) 

,"=1 

For the ordered system, i.e., AM = AK = 0, the frequency 
equation may be simplified to 

K + 2 k l  - M ~ o  2 -  2 k l c o s 2 r ~ O = O  r =  1 ,2  . . . . .  n. (17) 

The frequencies may be expressed as 

&z+a = K + 2 k  1 - 2 k  1cos / M  
/2 

r = 0 , 1 , 2  . . . . .  n -  1 (18) 

where 6r (r  = 1, 2 . . . . .  j* )  denotes the rth frequency for 
ordered system. Noting that &,_~ = &~, the number of dif- 
ferent frequencies is j*.  The lower and upper limits of the 
pass band are obtained as 

0)2 = K / M ,  w 2 = ( K  + 4 k l ) / M  (19) 

where 0)L and ¢o v denote the lower and upper limits, respec- 
tively. 

Substituting Eq. (18) into Eq. (16), yields 

= ± ( 2 0 )  
n r = l  

and then the frequency Eq. (15) may be rewritten as 

f(0)2) = D (  0)2) (21) 

where 
n 1 

f ( ~ 2 )  = ~ M 0 ) 2  _ ~ K ,  D ( 0 )  2 )  = r i M / ~  &r 2 - 
¢.0 2 '  

(22) 

The functions f and D of 0)2 may be qualitatively expressed 
as the curves shown in Fig. 2. The transverse coordinates of 
the intersections represent the roots for 0)2 of the frequency 
Eq. (21) and Eq. (22). The function D ( w 2 ) ,  shown in Fig. 2, 

- I  - -  

4c l 

2 

l ~ E m 

I 

---- 2ci 

-] 

Fig. 3 Four  regions for d isordered parameters  E m and ~k 

is made up of J* number of continuous and monotonic drop 
curves. By observation from Fig. 2 it may be concluded that if 
f (  goi z) > O, w i < &i, and if f (&/2 )<0 ,  w i >  ~oi, where w i 
denotes the ith frequency for the disordered system. If and 
only if ¢o lies in the stop band, i.e., 0 )  2 < K / M  or 0)2 > (K + 
4k~) /M,  the mode with frequency 0) is localized. Four differ- 
ent cases may be obtained from Fig. 2. 

1 f(&L z) > 0 and f ( b ~ )  _> 0, there is one localized mode 
with 0) less than 0)L' 

2 f(&L 2) < 0 and f ( b ~ )  < 0, there is one localized mode 
with ¢o greater than 0)u, 

3 f ( ~ )  > 0 and f ( ~ ) <  0, there are two localized 
modes with 0) less than ¢% and greater than w~, respec- 
tively. 

4 f(&L z) < 0 and f ( ~ )  >_ 0, there is no localized mode. 
Noting the definition of f(0)2) given in Eq. (22), the above 

four cases are equivalent to four regions for the disordered 
parameters as shown in Fig. 3 where the nondimensional 
parameters em, e,k, and eel are defined as 

AM AK k 1 
e'm= m ' eek= K ' e, 1 = - ~ .  (23) 

The region 4 may be expressed, in terms of the parameters 
G,, e'k, and e,l, as 

0 _< e, k - e, m < 4e, l E m . (24) 

When the parameters satisfy the above equation, the small 
level of disorder is not enough to localize one mode. Systems 
having a strong coupling but with weak disorder fall into this 
category. However, for the simple case of disorder, i.e., 
e" k ~ 0, e, m = 0 or e, m +a O, e k = O, any magnitude of disorder 
can cause localization of one mode. It is interesting that if 
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E m < 0 and e k = e,,, i.e., the frequencies of all subsystems 
are the same, the localized mode still occurs, because the 
behavior of the disordered subsystem in high-frequency vi- 
bration is different from that of the ordered subsystem. 

In order to find the solution for w 2 of Eqs. (15) and (16) 
consider the limiting ease when n is approaching infinity. By 
letting n ~ oo, the limit of the series summation in the 
right-hand side of Eq. (14) becomes the definite integral 
(Cheung, Chan and Cai, 1989), i.e., 

1 err cos ( j  - j * ) O d O  

lim /3i= ~J0  K + 2 k  1 - M w  2 2k 1cos0 (25) 
//--~ oo 

If the w lies in the stop bend, the definite integral is in 
existence and can be expressed by an elementary function. 
For example, 

( 1 / (2kl~/r~-~-I  ") when 7/> 1 
/V (26) 

- 1 / \ 2 k l ,  , } ( , ~ 2 / 7 ~ -  1]  when rl < - 1  

+ 1  

- 1 +  ~ w h e n r l >  1 

- 1 ~ when ~ < - 1 

(27) 
where ~t denotes a frequency parameter defined as 

rl = ( K  + 2 k  t - M o ~ Z ) / Z k t ,  (28) 

if tO<wL, r />  1 ; a n d i f  o J > o o v , ~ <  - 1 .  
Substituting Eq. (26) into Eq. (15) and eliminating to 2 by 

Eq. (28) yields the frequency equation in terms of the ele- 
mentary functions 

-Em~+ ~ + 1 E m 2E1 

for Inl> 1 (29) 
where the symbol sgn denotes the sign function. 

The frequency parameter corresponding to the localized 
mode, i.e., ['0l > 1, may be obtained from Eq. (29) as 

~7 = (-ema + sgn(N)¢a; + 4(1- e~))/2(1- G2,) (30) 

where sgn(~) can be determined by using Fig. 3 and 

O~ = ( E  m - -  E k '-t" 2emel) /e  ,. (31) 

The attenuation rate f of localized modes is defined as 

X j* + 1 ~ j *  + 1 
= - (32) *j, & 

Substituting Eqs. (26) and (27) into the above equation re- 
suits in 

ff = ~7 - sgn(rl)l /~ z - 1 for Ir/I > 1. (33) 

It is obvious that ~ and ~ are of the same sign. Equation (33) 
may be rewritten by using Eq. (29) as 

# = (1 + em)~ - + 1 %  + ~ for [~1 > 1 (34) 

where rl has been defined by Eq. (30). 
Let us consider a simple case, i.e., ek ~ 0 and % = 0. For 

this case, Fig. 3 shows that if % < 0, one localized mode with 
rl > 1 (i.e., ~o < o%) occurs and if e k > 0, one localized 
mode with ~ < - 1 (i.e., to > ~o U) occurs. Substituting e m = 0 
into Eqs. (30) and (31) yields 

sgn( e k) ~ / (  .~. ]2 + 4 (35) 
rl 2 \ E l )  

and then substituting Eq. (35) and % = 0 into Eq. (34), 
yields 

# = 2 | - sgn(e,)  V \ fil] + 4 • (36) 

The attenuation rate # is the odd function of the ek/~ 1 ratio 
as shown in Fig. 4. Similarly, the attenuation rate may be 
obtained for other cases. 

3 Two-Dimensional System 
The system to be considered is made up of both a rectan- 

gular cable network with m X n uniform mesh and m x n 
number of mass-spring systems distributed uniformly as shown 
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in Fig. 5 where each lumped mass is attached to a node of 
network. The nodes at the four boundary edges are fixed. 
The pretensioned cables will act as the coupling springs but 
their masses will be neglected. 

In a similar manner to that given by (Cheung et al., 1988, 
and Chan et al., 1989), the equivalent system with cyclic 
periodicity in the x and y directions may be obtained as 
shown in Fig. 6. The equivalent system is an extended system 
whose length and width are twice the actual size. Moreover, 
we regard the extended system as one having cyclic periodic- 
ity in the x and y directions. The loading pattern is antisym- 
metric with respect to two symmetric planes of the equivalent 
system so that the deformation is also antisymmetric. The 
fixed end conditions for the actual system will be satisfied 
automatically. 

Consider now the harmonic vibration of the equivalent 

z 
L (1.i) M (1,2) H (i.p*) M (l.n) H 

x ( 2 . i ) ~ 7 ~ . / / ~  / y "K' '"  -'I~\`'``//~ / / m / ~ I 4 / ' ' ~ x K x "  . . . . . . . . . . . .  K' '"  

7 
.,, S / / /  

~ ' ~ : \ ~ & , . Z \ \ L \ L \ \ / ~  / yields 

Fig. 5 Two-dimensional system~actual  system 

system. The dynamic equation for all subsystems may be 
expressed as 

(K  + 2k, + 2k 2 - mc..o2)W(j,p) - kl(W(j+l,p ) -{- W(j_l ,p , )  

-k2( W(j,.+ l ) ~ W(j,p_i) ) = F(j,p) 

j = 1 , 2  . . . . .  2m p = 1 , 2  . . . . .  2n (37) 

where K, M denote the stiffness and mass of the mass-spring 
system; W~S o) and F(s p) denote the amplitudes of the dis- 
placement 'dnd loading for the lumped mass of subsystem 
(j, p); and 

T~ T 2 
k I = -  k 2 = -  (38) 

a b 
in which T 1, T 2 denote the pretensions of the cables in the x 
and y directions, and a, b denote the spacing of y and x 
cables. 

In order to uncouple the simultaneous Eq. (37), the double 
U-transformation (Cheung et al., 1988; and Chan et al., 1989) 
is applied. Let 

1 I 2m 2n 
W(j,p) ~ 2~ r=lE s~=l= el(J- 1)rqqei(P- 1)S02q(r, =) (39a) 

or 1 1 2m 2n 
E E e-i(i-l)r~°le-i(p-l)s°2~(j, 

q(r,s) ~ -  2 ~  j=l p=l P) 
(39b) 

in which qq = ~r/m, @2 = ~r/n. 
Applying the double U-transformation (39) to Eq. (37) 

( K  + 2k 1 + 2 k  2 - M w  2 - 2k 1 c o s  r @ l  

- 2 k  2 cos S~Z)q(r.s ) = f(r,s) (40) 

(i.i) (1.2) (i, P¢O (l.n) 
0 ~y ,~ ~ ~ 

1 = . I = M 
x (2.t) "S 

i 
: (t .n+l) (l.2n-P*+2) (l.2n) 

M M 

(1,1) 

(j*.L) 

(m, I) M 

(j*, W~ 
M M+AM (j,p) F(j.p, -F(j .] 

(j, 2n.-P+2) 

M+~M 

M 

M 

(2m-j*+2.1) 
M M+AM 

; 
(2m-j +2. P) (2m-j +2.2n-P+2) 

M+~M 

(2m.1) 

(i.i) (1.2) i 
Fig. 6 Two-dimensional system--equivalent system 

2m.2~! T,, (2m.1) 

(l.2n) 
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where 

1 1 2m 2n 
E E e-i(j-l)rOle-i(p-l)sq':F(j,p)(41) 

f ( r , s )  2 ~  ~ j = l  p = l  

and then 

q(r,s) =f(r,s)/( g + 2 k l  + 2k2 - Mw2 - 2kl cos r01 

- 2 k  2 cos s02  ) .  ( 42 )  

The frequency equation for an ordered system may be 
obtained from Eq, (40) 

K + 2k I + 2 k  2 - Mo) 2 - 2kl cos r~O 1 - 2k 2 c o s s  I//2 = 0 

r =  1,2  . . . . .  2m, s = 1 ,2  . . . . .  2n. (43) 

The lower and upper limits of the pass band may be ex- 
pressed as 

w ~ = K / M ,  w 2 =  ( K + 4 k  I + 4 k 2 ) / M .  (44) 

Now let us consider the disordered system where only one 
subsystem is departing from the regularity. With no loss of 
generality, let ( j * , p * )  denote the ordinal number of the 
disordered subsystem whose stiffness and mass are of K + 
AK and M + AM. For this case, the "loads" satisfying the 
antisymmetry condition may be given as follows: 

F(j*,p*) = F(2m_j, + 2,2n_p, + 2 ) = F 

F(j*, 2n - p *  + 2) = F(zm - j *  + 2, p*) = - F  

F =- (AMw 2 - A K ) W o * p *  ) (45) 

with other loads being equal to zero. 
Substituting Eq. (45) into Eq. (41) yields 

- 4 F  
f ( r ,s)  = ~ ~ sin ( j*  -- 1)r~ 1 sin (p*  - 1)sO 2. (46) 

Substituting Eqs. (42) and (46) into Eq. (39a) results in 

lim 

where 

¢s(j,,~,) = ~2 Jo J0 

W ( j ,  +Jl, p* +pO = Ffl(Jl,  pt) 

cos J181COS P182d81d82 

(50) 

(51) 
K + 2k 1 + 2k 2 - Mw 2 - 2k 1 cos 81 - 2k 2 cos  02 " 

Substituting Eq. (45) and Jl = P l  = 0 into Eq. (50), the 
frequency equation for the disordered system may be ob- 
tained as 

1 
A M w  2 - AK = - - -  (52) 

fl(o, o) 

where 

1 - w  -~r 
f l (0,0)= 7 j 0  j 0 [ K + 2 k 1 + 2 k 2  -M°°2  

- 2 k l c o s  01 - -  2k2cos  82]-ld81d82 . (53) 

The Eqs. (52) and (51) are similar to Eqs. (15) and (25). 
Therefore, their roots may be obtained by graphical method. 
The relationship of the disorder, coupling parameters, and 
localized modes may also be expressed by Fig. 3 in which the 
coupling parameter el must be defined as (kl + k 2 ) / K  in- 
stead of k J K .  The conclusion is the same as in the case of 
the one-dimensional problem: i.e., arbitrarily small levels of 
disorder (E k or e m) can cause localization of one mode. 

The attenuation rates in the x and y directions are of 
different values which may be expressed as 

el = "(0,0--------7 and e2 = 130,0----- 7 • (54) 

W ( j ' P )  = m n  r= 1 s= 1 

sin ( j  - 1)r0,  sin ( j*  - 1)r01 sin ( p  - 1)sq., 2 sin (p*  - 1)s02 

K + 2k 1 + 2 k  2 - Moo 2 - 2k I cos rqq - 2k 2 COS sI/t 2 
(47) 

It is obvious that the displacements shown in Eq. (47) 
satisfy the boundary condition, i.e., 

Wo, l) = 0, W(/,n+l ) = 0 ( j  = 1, 2 . . . . .  m + 1); 

W(1,p ) : 0 ,  W(m+l,p ) = 0 ( p  = 1, 2 . . . . .  n + 1). 

By letting m and n approach infinity, the above equation 
becomes 

4 Three-Dimensional System 
The system considered consists of l number of two-dimen- 

sional systems as described in the previous section in which 
the corresponding nodes of any two adjacent networks are 
coupled with spring k 3 and the nodes in the top and bottom 
layers are free in the z direction as shown in Fig. 7. At the 
outset, let us consider the extended system whose length, 

4Fr~r~rsin(Jl l  - 1 ) <  s in ( j*  - 1)81 s i n ( p  - 1)02 s i n (p*  - 1)02d_ 
W(j,p) = ~T,o "o ~ ; ~ ---- - - - ' =  . . . . . . . . . .  01d82. (48) + 2k z - M w  ~ - 2k l cos O 1 - 2 k  2cos02 

If and only if the o) in Eq. (48) lies in the stop band, i.e., 
o) < o) L or o) > m~, the definite integral shown in the right- 
hand side of Eq. (48) is in existence. 

Let (Jl, Pl)  denote the new ordinal number when the 
disordered subsystem acts as the origin, i.e., j = j *  +J l ,  
P = P* + Pl, Eq. (48) may be rewritten as 

width, and height are twice that of the actual ones as shown 
in Fig. 8. Moreover, we regard the extended system as one 
having cyclic periodicity in the x, y, and z directions. The 
corresponding nodes of both the top and bottom layers must 
be imagined to have been jointed by an additional spring 
with stiffness k 3. In order to satisfy automatically the bound- 

= __F [ ~ . [ ~  [cos J181 -- COS (2J* '-Iv J l  -- 2)012][cos p102 . . . . .  - cos (2p* + Pl - 2)82] dO 1 dO z. (49) 
W(j*+Jl'P*+[)I) *TJ "2  "o "o K 7 2-~l -+-'2--£2--'-M-~wz--- 2k- -~s  81 - 2k2cos 02 

In general, the disordered subsystem is located at an infinite 
distance from the boundary (at infinity). Letting j* and p* 
approach infinity and applying the well-known Reiman 
Lemma to Eq. (49) yields 

ary conditions of the actual system, the loading pattern must 
be antisymmetric with respect to three symmetric planes of 
the equivalent system as shown in Fig. 8. 

In a similar manner as in analyzing the two-dimensional 
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system, the governing equation for harmonic vibration of the 
equivalent system may be given as 

( K  + 2k 1 + 2k 2 + 2k 3 - Mto2)Wu, p,h) 

- k l (  W(j+ l,p,h ) ..}- W(j_ l,p,h) ) - - k 2 ( W ( j , p + l , h  ) -.~- W(j,p_ l,h) ) 

- k3 (W(Lp ,h+,  ) + Wo, p,h.-l)) = F(j,p,h I 

j =  1 ,2  . . . . .  2m, p =  1,2 . . . . .  2n, h = 1,2 . . . . .  2l (55) 

where the subscripts j, p, h in the round brackets denote the 
ordinal numbers of the subsystem along the x, y, and z 
directions, respectively, and the other notations have been 
defined previously. 

In order to uncouple the simultaneous Eqs. (55), the triple 
U-transformation has to be developed from the U-transfor- 
mation. Let 

1 2m 2n 21 

r = l  s = l  t = l  

Xei(j-1)r'lqe i(p l)sqJ:ei(h- l)tq*3q(r,s,t) (56a) 

stiffness K + ,SK and mass M + zXM. For such a case, the 
loads with antisymmetlry may be given as 

F(j*,p*,h*) = F(2m-j* + 2,2n-p* + 2,h*) = F(j*,p*,21-h* + 1) 

F(2m_j,+2,2n_p,+2,21_h,+l ) = f 

F(2m_j* + 2, p,,h* ) = F(j , ,2n_p, + 2, h* ) = F(2m_j, + 2, p*,21_h* + l ) 

F(j,,2n_p*+2,2l_h*+l ) = - F  

F = ( A M t o  2 - A K ) W ( j , , p , , h ,  ) (62) 

with the other loads being equal to zero. 
Substituting Eq. (62) into Eq. (58) yields 

4F 
f{r, s, ,) = ~ -  ~ -  ~/27/sin ( j*  - 1)r01 

×sin (p*  - 1)s~2(e  -i(h*-a)t~ + eih*'q"). (63) 

Substituting Eqs. (59) and (63) into Eq. (56a) results in 

2F k k  2' 
Wo';"h) m o n . l  

r = l  . s= l  t = l  

sin ( j  - 1)rOl sin ( j *  - 1)r01 sin ( p  - 1)sqJ2sin ( p *  - 1 ) s O 2 ( c o s  ( h  - h * ) t @  3 + cos  ( h  + h* - 1 ) t 0 3 )  
× (64) 

K + 2k 1 + 2k 2 + 2k 3 - Mto 2 - 2k 1 cos r~O 1 - 2k 2 cos s~b 2 - 2k 3 cos tab 3 

Or  1 2m 2n 2l 

= E E E  
q( ..... t) 2 ~  2~. ~ f  j=l  p = l h = l  

Xe-i(j-1)rOle-i(p-I)S@2e-i(h-l)t@3W(j,p,h) (56b) 

where 01 = rr/m, qJ2 = ~'/n and 03 = rr/l. 
Applying the triple U-transformation (56) to Eq. (55) re- 

suits in 

It can be verified that the displacements shown in (64) 
satisfy the antisymmetric condition (62) and the boundary 
condition of the actual system. By letting m, n, and l ap- 
proach infinity, the right-hand side of Eq. (64) becomes a 
triple definite integral, i.e., 

4 F  ~Tr ~Tr ~qr 

sin ( j  - 1)81 sin ( j*  - 1)0 a sin ( p  - 1)02 sin (p*  - 1)02(cos(h - h*)03 + cos(h + h *  - 1 ) 8 3 )  
× dSld82dO 3. (65) 

K + 2 k  1 + 2 k  2 + 2 k  3 - M t o  2 - 2 k  l cosO 1 - 2 k  2 c o s 0 2 - 2 k  3cos03 

[ K + 2 k  1 + 2k 2 + 2 k  3 - M t o  2 -  2klcosr~b 1 

- 2 k  2 c o s  s~b 2 - 2k 3 cos tq.,3]q( .... t) = f (  .... t) 

where 

(57) 

Letting j = j* + J a ,  P = P* + Pa, h = h* + h a and then j*,  
p*, h* ~ % Eq. (65) becomes 

W((j* +jl,p* +pa,h* +hl) = F/3(jl,p,,& ) (66) 

where 

1 ~" ~r ~r c o s j l S l C o s p a 8 2 c o s h 1 8 3  

/3(jt,Pl,hl) = ~.3 fo fo fo K +  2 k a  + 2 k 2  + 2 k 3 - m t o 2 -  2k l  c o s  81 - 2 k 2 c o s  82 - 2 k 3 c o s  83 "d81d82683. 
(67) 

1 2m 2n 21 

E E E  

x e - i ( j -  a)rO*e-i(p-1)S~2e-i(h-1)t'l'3F(j,p,h) ( 5 8 )  

and then 

q( .... o =f(  .... o / [  K + 2kl + 2k2 + 2k3 - M o o  2 

- 2 k l  cos r~01 - 2k2 cos s~02 - 2k 3 cos t03]. (59) 

The frequency equation for an ordered system may be 
obtained from Eq. (57): 

K + 2 k  a + 2 k  2 + 2 k  3 - M w  2 - 2 k  1costa01 

- 2 k  2 c o s s ~  2 - 2 k  3 c o s t 0 3 = 0 .  (60) 

The lower and upper limits of the pass band are 

t o Z = K / M ,  t o2=  [ K + 4 ( k  a + k  2 + k 3 ) ] / M .  (61) 

Now, let us consider the disordered system with only one 
subsystem departing from the regularity. Let ( j*,  p*, h*) 
denote the ordinal number of the disordered subsystem with 

Substituting Eqs. (62), (67), and Jl = P l  = hi = 0 into Eq. 
(66), the frequency equation for a disordered system may be 
given as 

1 
AMw 2 - -  ~ K  = - -  (w < toL, and to > toG) (68) 

/3(0,0,0) 

in which 

1 ¢r 7r 7r 

/3(0, 0, 0) ~r 3 

- 2 k  1 cos 01 - 2k z cos 0 z - 2k 3 cos 03]-IdOldO2d03 . (69) 

It is of interest to note that the frequency equations in 
one, two, and three dimensions are of the same form; how- 
ever, they have an essential distinction, i.e., when oo in the 
stop band approach o% and Wu, the dynamic flexibility 
/30 0 0) in a three-dimensional system approaches a finite ( , , . . . . .  
value as a limit but /3(0 0) and /3., approach infinity 

, J 

/3(0,0,0 ) for both cases of o) = o% - 0 and to = w U + 0 are 
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of the same magnitude with opposite sign. Considering the 
specific case of k~ = k 2 = k 3, 

/3(o,o,o)i~=~L_ o = -/3(o,o,olt~_~u+O 

- 2kl rr 3 J0 J0 J0 c o s  01 - C O S  0 2 

0.504" 
-COS 03) -  t dOldOzd03 = - -  (70) 

2kl 

(*This value is obtained by numerical integration.) 
It indicates that in three dimensions, when the ordered 

system is subjected to a harmonic force with frequency w L or 
O)u, the amplitude of the forced mass approaches a finite 
value as a limit. Let 

1 
D(o92)  - - -  whenw 2 w U, w < w L (71) 

fl(o, o, o) 

where D denotes the dynamic stiffness of the ordered sys- 
tem. 

It may be proved that if 

A M 6 o ~ - A K < D ( o o ~ )  and A M t @ - A K > D ( w ~ ) ,  

(72) 

the frequency Eq. (68) does not have any solution in the stop 
band, i.e., it is impossible for any localized mode to occur. 

Substituting Eq. (61) into Eq. (72) yields 

E m - -  e k < D ( o o ~ ) / K  and era[1 + 4(e,  + e 2 + e3) ] 

- ' k  > D ( ~ @ ) / K  (73) 

where Ej = k J K  ( j  = 1, 2, 3), e m = A M ~ M ,  e k = A K / K ,  
and 

D ( o o ~ ) / K  = - D ( w Z u ) / K  

fo~fo~fo~[ e1(1 e 2 ( 1 -  cos 02) = 2 ~ 3 /  -- COS 01) + 

+e3(1 - cos 0 3 ) ] - l d O f l O z d 0 3  . (74) 

For the special case of k 1 = k 2 = k3, Eq. (73) becomes 

e m - e k < E1/0.252 

and 

(1 + 1 2 e l ) e  m - e k > - - e 1 / 0 . 2 5 2 .  (75)  

If ffffm = 0, Eq. (75) is equivalent to 

I~kl < E1/0.252 = 3.97E1. (76) 

It is shown that a finite threshold of disorder is needed for 
a given magnitude of coupling in order to cause localization 
of one mode. For the present case, the ratio of the disorder 
(~k) to coupling (e t) must be greater than 3.97 in order to 
localize one mode. 

If E k = 0, Eq. (75) becomes 
3.97 e 1 

- -  < e m < 3 .97e j ,  (77)  
1 + 12e l 

then the same conclusion may also apply. 

5 Conclusion 
In one, two, and three dimensions, the nearly periodic 

systems with one-degree-of-freedom subsystems and a single 
disordered subsystem have been analyzed by using the U- 
transformation method. The conditions to cause localization 
of one mode are discussed in detail. The following conclu- 
sions have been arrived at: 

(a) In one- and two-dimensional systems, any amount of 
disorder (e k or e m) can localize one mode. Even for the 
special case of E k = e,n < 0, i.e., the frequencies for all 
subsystems are the same, one mode can be localized. 

(b) In a three-dimensional system, a finite threshold of 
disorder is needed in order to localize one mode. When all of 
the parameters are given, the threshold may be calculated 
accurately. As an example, for the case of k I = ke = k3 and 
% = 0, the threshold of disorder E k is approximately equal 
to four times the coupling el. 
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Scattering of Longitudinal Elastic 
Waves From an Anisotropic 
Spherical Shell 
An exact solution for scattering of ultrasound from a spherically orthotropic shell is 
presented. The shell is assumed to be embedded in an isotropic elastic medium, and the 
core surrounded by the shell is also assumed to be isotropic. The shell itself is assumed 
to be "spherically orthotropic, "with five independent elastic constants (the spherical 
analog of a transversely isotropic material in Cartesian coordinates). Field equations for 
this material are presented, and these equations are shown to be separable. Working 
with the displacement vector, we find that the radius dependent part of  the solution 
satisfies coupled second-order ordinary differential equations. This system of equations 
is soloed using the method of Frobenius, and results in four independent series 
determined by material properties to within a multiplicatiue constant. Use of boundary 
conditions expressed in terms of  stresses and displacements at the inner and outer shell 
radii completes the solution. Numerical results for a range of shell elastic constants 
show that this solution matches known analytic results in the special case of isotropy 
and matches previously developed finite difference results for anisotropic elastic 
constants'. The effect of shell anisotropy on far-field scattering amplitude is explored for 
an incident plane longitudinal wave. 

Introduction 
Motivation for this study arises from the profound effect 

that grain boundary composition has on the engineering 
properties of commonly used structural materials. Adverse 
microstructural conditions may be the result of improper 
processing, or may develop during the service life of the 
material, as by radiation embrittlement (Perks et al., 1989). 
Detection and characterization of anomalous grain boundary 
conditions by nondestructive means is of great practical im- 
portance in many major industries such as shipping, aviation, 
and power generation. 

Previous studies of the effects of thin interface layers on 
discrete scatterers have generally been approximate, replac- 
ing a complete description of the field in the interface layer 
by suitable relationships between traction and displacement 
fields inside and outside the layer. This aspect of the "inclu- 
sion problem" was recently reviewed by Martin (1992), with 
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attention given to several models of an imperfect matrix/in- 
clusion interface. Notable among them are the Baik-Thomp- 
son model (Baik and Thompson, 1984), which includes a 
generalized spring constant and a generalized inertial term to 
relate the jump in traction (displacement) to the average 
displacement (traction) across the interface layer. For plane 
interfaces, at least, the Balk-Thompson parameters are de- 
rived from the global effect of the interface under quasi-static 
conditions. Rohklin and Wang (1991) present a variation on 
this approach with linear relationships between the jump in 
traction or displacement to the interior traction and displace- 
ment fields. These approximate descriptions of the interface 
layer are well suited to boundary integral equation methods, 
and therefore to obstacles of arbitrary form. 

The spring model for compliant interface layers offers 
computational simplicity, and has been pursued by numerous 
researchers (viz., Kitahara et al., 1990). At the expense of 
complexity, but with considerable improvements in accuracy, 
O(h) models (where h is layer thickness) described by Olsson 
et al. (1990) have been used. Bostr6m et al. (1992a) compare 
exact O(h) and spring model results for spherical scatterers, 
and show that spring model results are often contrary to 
exact and O(h) results. Bostr6m et al. (1992b) extend this 
work to prolate and oblate spheroids, with similar conclu- 
sions. Despite the shortcomings noted for spring and more 
generalized linear models, they do offer a means of incorpo- 
rating fairly arbitrary interface layer anisotropy for which an 
exact solution may not be available. 

In this paper we present theoretical studies of ultrasonic 
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scattering from one form of interface layer anisotropy that 
does allow an exact solution in the case of spherical scatter- 
ers. The anisotropic interface layer described is thought of as 
a greatly simplified grain boundary model. The grain bound- 
ary is viewed as a distinct shell, although the exact relation- 
ship between grain boundary constituents and equivalent 
anisotropic elastic constants has yet to be developed. The 
interior, or core of the grain, and the surrounding host 
material are modeled as isotropic elastic solids using the 
notion of an effective isotropic medium (Stanke and Kino, 
1984). Properties of the shell are thought of as being isotropic 
in any tangential direction, but different in the radial direc- 
tion; we have called this condition "spherical orthotropy." 

The presumption of isotropy for the host and core is an 
approximation, since even single metallic crystals are gener- 
ally somewhat anisotropic (Musgrave, 1959; Bhatia, 1967). 
This approximation is better for aluminum than for steel, for 
example, but is quite reasonable in any case when the shell is 
taken to be grossly anisotropic. We use "effective" properties 
for the host material (derived by averaging single crystal 
properties over all rotations); these are isotropic in a poly- 
crystalline material without texture (Hirsekorn, 1982). Model- 
ing the grain boundary as a spherical shell is also an approxi- 
mation, but a convenient one in developing exact, separable 
equations. Finally, we recognize that the solution for a single 
scatterer is but the first step in dealing with a material 
composed entirely or in part of such microstructural ele- 
ments (Lax, 1951; Lax, 1952; Twerskky, 1962; Rose, 1992). 

Exact equations for this grain boundary model were re- 
cently developed and solved numerically by the authors (Mit- 
tleman et al., 1992). This work rests on the same differential 
equations but presents an exact solution in the form of a pair 
of power series which may be calculated by coupled recursion 
equations. 

Analytic Solution for Isotropic Media 
Ying and Truell (1956) solved the problem of a plane 

longitudinal wave scattered from a spherical, isotropic elastic 
scatterer in an infinite isotropic elastic medium. Our choice 
of variables and the general geometry of the problem, which 
is symmetric about the 23-axis , is shown in Fig. 1. 

Ying and Truell exploit the symmetry of the problem 
through the following decomposition of the displacement 
vector: 

= - W ,  + V x (V x ~ n ) .  (1) 

This leads to two Helmholtz equations for the potentials, 
and 17, which are associated with longitudinal and transverse 
components of the fields in either isotropic medium. Time- 
harmonic solutions 2 in spherical coordinates are expressed in 
spherical harmonics as 

2In this paper we follow the convention used by Ying and Truell, 
assuming a n  e i¢°t time dependence, as opposed to the commonly used 
a l t e rna t ive ,  e - i °° t .  

co 

* = ~ Lmfm(kr)Pm(COS 4,) 
m=0 

oc 

and lII= ~ Tmfm(Kr)Pm(COS4, ) (2) 
m=0 

where 

m is the separation constant (an integer); 
Pm is the ruth order Legendre polynomial; 
fm is an ruth order spherical Bessel function inside the 

scatterer, and an mth order spherical Hankel function 
of the second kind outside the scatterer. 

k and K are wave numbers for longitudinal and shear 
waves. 

A crucial point to be observed is that the angular depen- 
dence contained in the Legendre polynomials is entirely 
independent of material properties. This means that stresses 
and displacements can be matched at the boundary between 
the two media by matching only those parts of the separable 
solution which depend on radial position. 

The complex coefficients L m and Tin, which give longitudi- 
nal and transverse wave component amplitudes, may be 
different in the outer (host) material and the inner (core) 
material, resulting in four sets of independent coefficients 
that completely define the solution. Their values are found 
for each order, m, independently, from the four equations 
(Eqs. (20) and (22) in Ying and Truell (1956)) that match 
displacements and stresses (u~, u~, O'r~ , and G~) at the 
boundaries between the two media. 

This method of solution can be applied to a spherical 
inclusion surrounded by concentric isotropic shells by ex- 
pressing the radially dependent part of the field in each of 
the shells as a superposition of spherical Hankel functions of 
the first and second kind (corresponding to inward and 
outward traveling waves). This results in four unknown com- 
plex coefficients in each shell, two in the host and two in the 
core; the four equations available at each interface are suffi- 
cient to solve the problem analytically. We refer to this as the 
"extended" Ying and Truell solution and use it to validate 
the present anisotropic solution when shell constants are 
isotropic. 

We also note that for a spherically orthotropic material, 
the angular dependences found for the isotropic case are still 
valid. This statement can be verified by simply following 
the assumption that u m depends on Pm(cOs 4') and u~,' on 
OPm(COS 4')/a4' through the field equations presented below, 
but a more physical argument provides motivation for doing 
this. If we look at a composite plate, composed of alternating 
layers of two dissimilar isotropic materials, effective elastic 
constants can be calculated by requiring that strains perpen- 
dicular to the thickness direction, and stresses in the thick- 
ness direction be constant through the thickness of the plate. 
Then stresses and strains, averaged across the plate thick- 
ness, are related by elastic constants that are derived from 
the two sets of Lam6 constants in the isotropic layers, and 
the fraction of total thickness occupied by each material. 
These five independent quantities combine to form a matrix 
of effective elastic constants that displays transverse isotropy, 
the planar analog of our spherically orthotropic material 
(Postma, 1955). If the homogeneous, spherically orthotropic 
shell is thought of as a limiting case of a shell composed of 
very thin isotropic layers, then we would expect results from 
the extended Ying and Truell solution to apply; specifically, 
the same angular dependence should hold in both cases. 

Exact Differential Equations for Anisotropic Media 
In this section we derive exact differential field equations 

for waves in a medium with spherically orthotropie proper- 
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ties, when the problem is symmetric about the ~3-axis. Like 
Ying and Truell, we have solved the scattering problem for 
an incident plane L-wave traveling in the .~3-direction 3. 

Spherically orthotropic materials are characterized by in- 
variance of under rotation around any axis through an origin 
taken at the center of the sphere, and have five independent 
elastic constants. When writing the constitutive relationship 

( ~ ,  = C,k, ,~,) ,  (3) 

the nonzero elastic constants are Crrrr , Crrcq b = Crroo , C¢&qsq5 
= Coooo, C6o¢o , C ~ ¢  = C~oro, and C64oo. We introduce con- 
densed notation and one relationship among constants: 

C l l  = Crrrr C12 = Crr~b ¢ C22 = C¢~bO~b 

C44 = C~0¢0 C66 = C~6~O and Cz3 = C22 - 2C44. 

The strain/displacement relationship 

1 
= ~ ( V ~  + ~V) (4) 

also simplifies by virtue of the material's symmetry and sym- 
metry of the incident wave around the ,~3-axis. In particular, 
we find that derivatives with respect to 0 and the theta-direc- 
tion displacement, Uo, are zero. 

The final equation needed is Newton's second law, 

V. ~ = p~. (5) 
In working through these equations it is convenient to 

define two operators (Mittleman et al., 1992; Ying and Tru- 
ell, 1956): 

* ( f ( 4 ' ) )  = ~ ( f "  sin ~b) 

and ~2(f (&))  = ¢(af/Oqb). 

Combining Eqs. (3)-(5) results in two coupled differential 
equations in the two variables u~ and u,~: 

2 2 
= CHu .... + CH-ur'~r + pW2Ur + (Clz -- Cz2 -- C23)-~ ur 

1 1 
+ C66 r---~-~u r + (C,2 + C 6 6 ) ~ ( ~ u ¢ ) , ,  

I 
q-(C12 - C22 - C23 - C66)7(I )btq~ ( 6 a )  

( v .  + • = o 

= (c~2 + G6)-Tu.~ + (c22 + c23 + 2c66)~u~ ,~ 

2 
q- C66 u ¢,rr + C66 7 u 4a ,r -Jr pc..02 u ~ 

1 1 
+ ( C 2 2  - C23 -- 2 C 6 6 ) 7 u  6 + C 2 2 7 ( d P u , / , ) , ¢  ( 6 b )  

where f,~ = Of/Ox and ~ denotes a unit vector in the x 
direction. 

Guided by the relationship between layered isotropic and 
transversely isotropic materials discussed above, we assume 
that, for each spherical harmonic, displacements can be ex- 
pressed as the product of an angular function (the Legendre 

3Details of this derivation are found in Mittleman et al. (1992). 

polynomial or its derivative) and an unknown function of 
radius: 

Ur m = Pro(cos  c~)Fm(r ) a n d  u~' = ( P r o ( c o s  dp)),cGm(r ). 
(7a) 

Substituting these forms into Eq. (3) gives expressions for 
stress, which will be used later in matching stresses at the 
interfaces: 

o'r7 = Pro(cos 4~){CuF~(r)  

+C12 ( ~ F m ( r )  - ~ m ( m  + l )Gm(r ) )  } (7b) 

~rr~' = (Pm(cos ~)),45 {C66 (~Fm(r)+G~(r)--lrGm(r))) 
(7c) 

where primed quantities are differentiated with respect to r. 
Substituting Eq. (7) into Eq. (6) and using the recursion 
relationship for Legendre polynomials OPm = - m ( m  + 
1)P m gives the following two equations in which the radial 
and angular dependencies are separated: 

0 = Pro(cos q)) CllFffz q- 7 C l l l f f n  

( 2 1 ) 
+ °°°2 + 7 ( c , 2  - c22 - c23) - 7 m ( m  + 1)c66 F,~ 

1 
- - m ( m  + 1)(Cm + C66)G~ 

r 

1 } 
+ ~ m ( m  + 1)(C22 + C23 + C66 -- C12)a m (8a)  

OPm(COS 40 C66G,~ + - G 6 G ;  
0 o4~ r 

( 1 ) 
+ p~o 2 + ~7((1 - m ( m  + 1))C22 - C23 - 2C66 ) G m 

1 1 } 
+-(C12r + C66)F; + 7 ( C 2 2  + C23 + 2C66)Fm • (Sb) 

These anisotropic field equations can be specialized to the 
isotropic case by setting C11 = C22 = (h + 2~), C12 = C23 = 
A, and C66 = (C11 - C 12 ) /2  = p.. 

Solutions in the Isotropic Host and Core 
Substituting Eq. (2) into Eq. (1) gives the general form for 

the radially dependent parts of Eq. (7a) for the isotropic 
case: 

1 
F~ = Lrn(fm(kr)).r - Tm(m(m + 1 ) )~ fm(Kr  ) 

1 1 
Glm = gmr fm(kr  ) - Tm( r fm(Kr)  + ( fm(Kr)),r) 

where L m and T m are constants associated with the ampli- 
tudes of longitudinal and transverse wave solutions in the 
isotropic media, denoted by the superscript I. 

The functions fm(kr) and fm(Kr) a r e  spherical Bessel 
functions in the core and spherical Hankel functions in the 
host. 
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Solutions in the Anisotropic Shel l  

To concentrate our efforts on generating a solution in the 
anisotropic shell, the "r"-dependent  parts of the anisotropic 
field, Eqs. (8a) and (Sb) will be written as 

0 = rZF" + A11rF' + Alo F + K2r2F + BlirG' + BioG (9a)  

0 = A21rF' + A20F + K2r2G + r2G " + B2,rG' + B20G, 
(9b)  

where values of the coefficients can be read directly from 
Eqs. (8a) and (8b) after multiplication by r2/Cn . 

According to the method of Frobenius (Hildebrand, 1962) 
normally used for obtaining series solutions to second-order 
linear differential equations, we may assume solutions of the 
form 

oo oo  

F =  ~ , f i  ri+p and G = ]~g i  ri+p 
i = 0  i = 0  

and differentiate term by term. The resulting series, substi- 
tuted into Eqs. (9a) and (9b), give rise to a pair of algebraic 
equations for each power of " r"  in order to satisfy the 
equations at all radii. The lowest power, obtained with i = 0, 
gives 

0 = f o r P ( p ( p  - 1) + A t , p  +&o) +gorP(BltP + Blo) 

(10a) 

0 = forP(A21P + A2o ) + gorP(p(p - 1) + B2t p + B2o ) 
( lOb) 

which may be written in matrix form, for r # 0, noting that 
Aal = B 2 1 = 2 :  

/ 
(A2, +A2o ) (p2  + p  + B2o) 

For nontrivial solutions we deduce the indicial equation by 
setting the determinant of the left-hand side matrix to zero: 

0 = p 4  + 2 p 3  + p 2 ( A l o  + B20 _ A 2 1 B 1 1  + 1)  

+p(Alo  + B2o - A21Blo - A2oBll ) + ( A l o B 2 o  -- A 2 o B l o  ) .  

The four roots to this equation, 

M(x) = ( ( x 2 + x + A l o )  (BllX + Blo) ) 
( A 2 1 x  q- A20  ) ( x  2 + x -f- B20 ) 

and K = 
K 

The field equations may now be written: 

() E r i + P ( M ( i + p ) + K r 2  ) fi = ( 0 ) .  
i = 0  gi p 

Requiring that this hold for all values of radius means that 
each power of " r"  may be treated separately; indeed, the 
indicial equation corresponds to i = 0. For i = 1 we must 
satisfy 

p 

which will only have a nontrivial solution for De t (M(p  + 1)) 
= 0. However, having already fixed values of p by solving the 
indicial equation, we know that this determinant will be 
nonzero, unless two of the roots differ by exact unity. In 
general this will not be the case, and we must choose fl  and 
gl equal to zero 4. This implies that the series will be either 
even or odd, as initiated by r p. 

For i >_ 2 and r -~ 0, values of f/r  i and giri are calculated 
iteratively: 

(¢ ri-2 
fi ri. = _ M _ l (  i + p)Kr2 si-z | ( l l a )  

Igir' p gi_2ri-2]p" 

In the special case of isotropic elastic constants we have 
already noted that the  four roots of the indicial equation are 
m + 1, - ( m  + 2), m - 1, and - m .  Attempts to invert the 
matrix M for i = 2  and p = m -  1 or p =  - ( m  + 2 )  will 
fail since Det(M(m + 1)) and D e t ( M ( - m ) )  are zero (their 
arguments, i + p, also being roots of the indicial equation). 
Nonetheless, for p l  = (m - 1) or Pl = - ( m  + 2), one may 
show that 

g2 Pl x ~ p l + 2  Pl 

• x/1 + ) 
p = 

are related in pairs, such that if Pi is one of the roots, then 
- ( P i  + 1) is another. For isotropic elastic constants the 
roots are rn + 1, - ( m  + 2), m - 1, and - m ;  these values 
lead to power series representations of the spherical Bessel 
and Hankel functions that appear in the Ying and Truell 
solution. 

Associated with each root are values of f0 and go which 
may be determined (to within a rnultiplicative constant) by 
considering either Eq. (10a) or (10b). Once these are deter- 
mined, other terms in the series are calculated by the itera- 
tive procedure described next. 

For each order, rn, of the indicial equation, we define 

exists even though M - l ( p l  + 2) is indeterminate (explicit 
expressions are given in Appendix A). It should also be 
pointed out that for the roots P2 = (m + 1) and P2 = - ( m ) ,  

4When roots do differ by unity (for example, in an isotropic material,  
when m = 0 the roots are 1, 0, - 1 ,  and - 2 ,  or when m = 1 two of the 
roots are 0 and - 1 ) w e  will have D e t ( M ( p a ) ) =  0 and Det (M(p2 + 1)) 
= 0 where both Pl  and P2 are roots of the indicial equation and 

P2 + 1 = Pv  In these cases, the series corresponding to the root P2 will 
contain both even and odd powers of r. However, those initiated by the 
term r p2+1 will be the same as the series generated by the root Pv  
Hence, without  loss of generality, we can set f l  and g1 to zero. 
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while for the roots Pl = (m - 1) and Pl = - ( m  + 2), 

Therefore, when P2 = Pl + 2, the values calculated by Eq. 

(llb) f o r ( f 2 )  maycontainanaddit ivemult ipleof  ( f ° )  
g 2  Pl  g 0  P2 

and the series corresponding to the root Pl may contain a 
multiple of the series corresponding to the root P2. When 
boundary conditions are matched, however, the coefficients 
of each series will account for this uncertainty. 

We are therefore led to a complete solution for displace- 
ments in the anisotropic shell formed by a linear combination 
of the four series 

() {Fr~" I iCrnkrPmk~o fi • (12) 
1 a ~ ]  = k = l  .= g ,  Pmk r ' '  

where the superscript "S" (denoting the shell) and subscripts 
have been fully restored ("m" denotes the order of the 
equation and "k" indicates which root of the indicial equa- 
tion is involved in each series). This solution may now be 
differentiated term by term, as needed, to calculate stresses 
according to Eq. (7). For each value of m, the eight available 
boundary condition equations (matching two stresses and two 
displacements at each shell surface) are used to solve for the 
four coefficients in Eq. (12) and the four coefficients associ- 
ated with the L-waves and T-waves in the isotropic host and 
core. 

Far-Field Scattering Amplitude 
Far-field longitudinal wave scattering amplitude and scat- 

tering cross-section may be calculated from the field equa- 
tions in the isotropic host material, according to formulae 
presented by Ying and Truell: 

7r 

SA(qb) = -  ~ Pro(cos qb)(Lm)ei7 m 
m = O  

= 4~r 5 . Lm)*(Lm) = 0 2 m + l  

where SA(~b) is the longitudinal wave far-field scattering 
amplitude, 3~ is the total scattering cross-section, and the 
coefficients L m and T m describe L-wave and T-wave compo- 
nents of the scattered field in the isotropic host. 

Numerical  Validation 

Numerical results for calculations based on the exact 
anisotropic solution (shown as "Series" in Table 1) for scat- 
tering from an anisotropic shell were verified by comparison 
with existing results for isotropic and anisotropic shells over a 
wide range of thicknesses and values of ka 1. In the limiting 
case where shell thickness approaches zero, comparison was 
made to the Ying and Truell solution, and in the case of a 
shell of finite thickness, but with isotropic properties, results 
were compared to those calculated by the extended Ying and 
Truell method, shown as "Y-T shell" in Table 1. (This latter 
method was itself validated by comparison to analytical re- 

Table 1 Scattering cross-sections (mm ~) calculated by the exact 
and finite difference methods for isotropic shells 

ka =0.01 

Thickness (tara) 

Ying&Truell 
Y-Tshell 

Finitc Diff. 
Series 

0.00 

.73073E-08 

.73070E-08 

.73072E-08 

.73072E-08 

0.001 0.01 

.72341E-08 .65933E-08 

.72334E-08 .65922E-08 

.72332E-08 .65922E-08 

0.1 

.22573E-08 

.22262E-08 

.22075E-08 

ka =0.1 

Thickness (ram) 

Ying & Truell 
Y-T shell 

Finite Diff. 
Series 

0.00 

.72480E-04 

.72480E-04 

.72480E-04 

.72480E-04 

0.001 

.71749E-04 

.71749E-04 

.71749E-04 

0.01 

.65409E-04 

.65409E-04 

.65409E-04 

0.1 

.21988E-04 

.22173E-04 

.21988E-04 

ka = 1.0 

Thickness (ram) 0.00 

Ying & Truen .25443E+00 

0.001 0.01 

Y-T shell .25443E+00 .25279E+00 .23837E+00 
Finite Diff. ,25443E+00 .25279E+00 .23837E+00 

Series .25443E+00 .25279E+00 .23837E+00 

ka = 10.0 

Thickness (ram) 0.00 0.001 0.01 

Ying & Truell .11237E+02 
Y-T shell .11237E+02 .11199E+02 .10845E+02 

Finite Diff. .11237E+02 .11199E+02 .10845E+02 
Series .11237E+02 .11199E+02 .10845E+02 

0.1 

.12102E+00 

.12156E+00 

.12102E+00 

0.1 

.76792E+01 

.76674E+01 

.76792E+0l 

Host 
ShelI 
Core 

MATERIAL PROPERTIES 

Densi!~ ] L-wave velocity T-wave velocity 
(gin/era) (kin/see) (km/sec) 

7.00 6.00 3,00 
8.00 6.50 3,20 
6.00 5.00 2,50 

Outer radius for all shells: 1 mm 

Table 2 Comparison and maximum scattering amplitudes calcu- 
lated by the finite difference method and the exact series solution 
for spherically orthotropic shells 

Constituent Material Properties 
Density (host & core) 

L-wave velocity (host & core) 
T-wave velocity (host & core) 

Outer shell radius, al 
Inner shell radius 

ka~ 

Density (inclusion) 
L-wave velocity (inclusion) 
T-wave velocity (inclusion) 

2.706 gm/cm 3 
6.39 kin/see 

3.141 kin/see 

1.00 mm 
0.99 mm 

10.0 

3.181 gm/cm 3 
12.21 kin/see 
7.69 kin/see 

Shell Properties 

1.00 
Density (grn/cm 3) 3.181 

C,  (GPa) 474.2365 

Cz~ (OPa) 474.2365 

C~6 (GPa) 188.1119 

C12 (GPa) 98.0126 

C23 (OPa) 98.0126 

Maximum Scattering Amplitudes (ram) 

Volume Fraction Inclusion 
1.00 .90 .66 

Finite Difference Method 1.4860 1,3645 1.0518 

Exact Series Solution 1.4865 1.3653 1.0527 

Volume Fraction/ncinsion 
,90 .66 .10 

3.1335 3,195 2.7535 

356.7819 223.7704 119,6705 

436.8362 I 348.9590 146.5221 

117.2317 i 61.56,11 29.2029 

84.8010 69.8394 58.1300 

92.8953 82.4973 60.8449 

.10 

.17935 

.17954 

suits given by Datta et al., 1988). For anisotropic shells 
results were compared to earlier work based on a finite 
difference solution to the anisotropic field equations (Mittle- 
man et al., 1992), as will be reported below. Because the 
finite difference solution is essentially a Taylor series solu- 
tion, which is distinct from a Frobenius series solution, these 
two calculations are quite independent. 

In Table 1, scattering cross-sections calculated in four 
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different ways (i.e., Ying and Truell, "Y-T Shell", Finite 
Difference, and "Series'9 are compared for shells with 
isotropic properties. Thickness is given as a fraction of outer 
shell radius, and ka~ is based on the incident longitudinal 
wave number and the outer shell radius. 

In Table 2, the exact series solution is compared to the 
finite difference method for anisotropic shells. The elastic 
constants used for these calculations were taken to be the 
same as those of a transversely isotropic material having 
varying volume fractions of silicon carbide in aluminum and 
having the infinitesimally thin isotropic layered structure 
discussed in connection with the separation of variables. The 
excellent agreement between the finite difference and exact 
methods of solution is a result consistently obtained for thin 
shells such as this one, for which k A a  = 0.1; however, as 
shell thickness becomes comparable to wavelength, the finite 

difference solution outlined by Mittleman et al. (1992) deteri- 
orates. 

Results for Anisotropic Shells 

The effect of shell anisotropy on scattering was studied by 
calculating the scattering amplitude for a variety of shells 
embedded in aluminum and surrounding an aluminum core. 
In a previous paper (Mittleman et al., 1992), elastic constants 
were arbitrarily varied to test the validity of finite difference 
calculations, and it was found that both the magnitude of 
scattering and the angular distribution of energy were sensi- 
tive to variations in C~ ,~ .  In this study, elastic constants are 
varied according to theories for transversely isotropic com- 
posite materials consisting of a mixture of aluminum and a 
second material representing precipitates which decorate the 

-- I -- ~ Dashed Line ahows 
~ ~ normalizld SA = i 

f 
J 

J 

SA SA(0) =0.180 

' ,  / /11 ,' 

! i t u d e n o r m a l i z e d  by SA(Pi) I normalized by SA(O) 

Fig, 2 Scattering amplitude for 10 percent SIC/90 percent AI shell in aluminum. Maximum 
scattering amplitude = 0 , 1 8  mm. 

SA(Pi) =0. 054 / ~ / / / "  " ~" 

Back Scattered Amplitude 
normalized by SA(Pi) 

Fig. 3 Scattering amplitude for 90 percent SIC 
scattering amplitude = 1.37 mm. 

~ ~ Daahed D ine  ahow~ 

~ ~. ~ normalized SA ~ I 

%% 

"s~ (0)=1.37 

/ /  

Forward Scattered Amplitude 
normalized by SA(0) 

lO percent AI shell In aluminum, Maximum 
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grain boundaries. For these second phase precipitates, silicon 
carbide was chosen as a material having a density similar to 
that of aluminum, but very different wave speeds, while iron 
was chosen as a material having similar wave speeds but a 
different density. 

Results shown in Table 2 are excerpted from a more 
complete set of calculations where scattering cross-section 
and maximum scattering amplitude were computed for shells 
composed of varying volume fractions of silicon carbide pre- 
cipitated in aluminum. Figures 2 and 3 show polar plots of 
scattering amplitude for the shells presented in Table 2 that 
contain 10 percent and 90 percent SiC, respectively. To 
emphasize the angular distribution of scattered energy, the 
right half of each of these figures is normalized by the 
maximum forward scattering amplitude, while the left half is 
normalized by the maximum back scattering amplitude. While 
there is little variation in the forward scattered fields' angular 
distribution (this being the shadow-forming scattering), there 
is considerable variation in the distribution of back-scattered 
energy. Similar calculations for iron precipitated in alu- 
minum showed similar results for the angular distribution of 

energy in the forward scattered lobe, but variations in the 
backscattered lobes were far less pronounced than was the 
case for second phase SiC. 

Transverse isotropy in plates (or spherical orthotropy in 
shells) may be generated by the layered structure previously 
discussed; we call this the "plate model." In fiber-reinforced 
composite materials, however, transverse isotropy can also be 
produced in a number of other ways, one of which is to 
arrange the long axis of all fibers perpendicular to the 
thickness direction of the material (contrary to normal prac- 
tice in laying up thin composite materials); we call this the 
"fiber model," and analytic results for elastic constants are 
available (Christensen, 1979). Principal elastic constants (CH, 
C2z, and C66) are shown in Fig. 4(a), for a shell composed of 
silicon carbide dispersed in aluminum. Note that the roles of 
Cx~ and C22 are reversed when the plate model is compared 
to the fiber model. The off-diagonal elastic constants (not 
shown) are quite similar for both models. Figure 4(b) com- 
pares anisotropy, C H - C12 - 2 C 6 6 ,  for the plate and fiber 
models, under these same conditions, and shows a substantial 
difference, primarily due to the reversal roles of C H and C22 

Ci 
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Elastic Constants for SiC in Aluminum 
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Fig. 4 (a )  Elastic constants for silicon carbide In aluminum 
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Fig. 4 (b )  Anleotropy for SIC in aluminum 
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Backscattered Amplitude for a Shell 
composed of SiC in Aluminum 

Freq.=10MHz a=l.00 mrn t=0,99 mm 
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Fig. 5 Backscattered amplitude for a shell composed of SIC In aluminum 

noted above. We now look at scattering amplitude in the 
backscattered direction, as a function of second phase con- 
centration, for the two spherically orthotropic morphologies, 
as shown in Fig. 5. For each, we find a nearly linear depen- 
dence of scattering amplitude on concentration, with enough 
similarity in their magnitudes to suggest that for practical 
purposes, using either model for predictive calculations would 
be adequate. Numerical results for iron in aluminum showed 
a similarly linear dependence of backscattered amplitude on 
second phase concentration for both the plate and fiber 
models. 

Conclusions 
Exact differential equations for elastic wave scattering 

from spherical shells with transversely orthotropic properties 
(five independent elastic constants) have been derived. These 
equations, which are written in terms of displacement, are 
separable. As with scattering from an isotropic sphere, the 
angular equations are satisfied by Legendre polynomials 
which are independent of material properties. Unlike the 
isotropic case, the radial equations are not satisfied by spher- 
ical Bessel functions, but exact series solutions were obtained 
by the method of Frobenius. We found that the iterative 
procedure for calculating series' coefficients requires special 
treatment when elastic constants are isotropic and present 
the appropriate expressions. 

Scattering amplitude and cross-section results were vali- 
dated by comparison with exact solutions in the case of 
vanishing shell thickness and in the case of isotropic elastic 
constants. Agreement was excellent over a wide range of 
shell thicknesses and values of ka. Calculations were also 
performed for a variety of anisotropic cases and excellent 
agreement with a previously validated finite difference solu- 
tion was found. 

Numerical results for shells composed of SiC or Fe in 
aluminum showed a reasonably linear dependence of scatter- 
ing amplitude (in the backscattered direction) on concentra- 
tion. This dependence was found to be insensitive to the shell 
morphology assumed. Absolute amplitude measurements may 
therefore be useful in characterizing grain boundaries deco- 
rated by second-phase precipitates. 
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Free Vibration Studies on 
Stress-Free Three-Dimensional 
Elastic Solids 
A comprehensive investigation on free vibration of  throe-dimensional e&stic solids of  
rectangular planform is reported. The continuum is considered to be free Jkom normal 
and in-plane stresses on the facets. Functions representing the spatial displacement 
fields of  the continuum in a complete Cartesian coordinate system are expressed in 
terms of  sets of  orthogonal polynomial functions in the x, y, and z directions. The energy 
functional derived based on the three-dimensional elasticity theory is minimized to 
arrive at the governing eigenvalue equation. In this paper, the vibration of stress-free 
elastic solids in the forms of  short columns, thick plates, and solid cubes are studied. 
Frequency parameters and the first known three-dimensional deformed mode shapes 
have been generated for these stress-free elastic solids. 

1 Introduction 
Despite the practical needs for three-dimensional elastic 

solutions to engineering problems, literature on this topic are 
very scarce. One of the earlier attempts to study the vibration 
motion of elastic solids using a three-dimensional analytical 
approach can be traced back to the work of Mindlin and Fox 
(1960). An important analytical study on the infinitely long 
bar of rectangular cross-section with traction-free faces by 
means of general elasticity equations has been performed. 

A decade later, Fromme and Leissa (1970) have con- 
tributed a well-cited work on the free vibration of completely 
free rectangular parallelepipeds. The associated-periodicity 
extension of the Fourier analysis was used to obtain an 
approximate solution to the three-dimensional elasticity 
problem. By degenerating the three-dimensional characteris- 
tics equations into a two-dimensional one, Fromme and 
Leissa (1970) presented many interesting frequency results 
for planar vibration (plane-strain) of stress-free continuums. 
After another decade, an excellent study on the free vibra- 
tion analysis of rectangular parallelepiped was reported by 
Hutchinson and Zillmer (1983) who extended the series solu- 
tion scheme (Hutchinson, 1981) to a stress-free elastic solid. 
But no detailed study on the in-plane and transverse mode 
shapes has been reported. 

This paper is a complement to the above works by provid- 
ing a more general and comprehensive study on the free 
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vibration characteristics of three-dimensional elastic solids. 
In the present study, the energy functional of the continuum 
is derived based on the three-dimensional elasticity theory. 
The solution spaces to this problem are approximated by sets 
of beam characteristic orthogonal polynomials. The Ritz pro- 
cedure is subsequently applied to derive the governing eigen- 
value equation. By solving this eigenvalue problem, sets of 
natural frequencies and mode shapes for a three-dimensional 
elastic solid column, plate, and cube are obtained. These 
results, where possible, are compared with the various exist- 
ing solutions from the approximate theories and three-di- 
mensional analytical methods. The three-dimensional mode 
shapes for these elastic solids presented herein are first 
known in the open literature. 

2 Theoretical Formulation 

2.1 Three-Dimensional Elasticity Formulation. Con- 
sider a homogeneous elastic solid, as shown in Fig. 1, bounded 
by the edges - a / 2  < x < a/2, - b / 2  <__ y < b/2, and - c / 2  
< z < c/2. The origin of the coordinate system is assumed to 
be located at the geometric center of the continuum. The 
surfaces of the elastic solid are assumed to be stress free, i.e., 
O" x = O: = O" z = q'x = " r x z  = T y  z = O .  

Y Y . . 
For small-amphtude vibratory mohon, the strain energy of 

the continuum can be expressed as 

U=.~-  A ( 1 -  v ) U , + 2 v U  2 +  ? U 3 dv (1) 

where 
2 +  2 U 1 = e x E.; + E 2 (2) 

U 2 = exey + Exe z + Ey G (3) 

= "G + G + G (4) 
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Fig. 1 Reference coordinates and dimensions of an elastic solid 
continuum 

and 

k = e / [ (1  + v)(1 - 2v) ]  (5) 

in which E is the modulus of elasticity and v the Poisson 
ratio. 

The kinetic energy for free vibration is expressed as 

"fol T = - ~  -~ ) \ dt ] \ at ) ] (6) 

where p is the mass density per unit volume of the contin- 
uum. 

The displacement components u, v, and w for a linear, 
small-strain, simple harmonic motion assumed the following 
forms: 

u = u ( x , y , z , t )  = U ( x , y , z ) e  it°t, (7) 

v = v ( x , y , z , t )  = V ( x , y , z ) e  i°°t, (8) 

w = w ( x , y , z , t )  = W ( x , y , z ) e  i~t, (9) 

in which t is time and to denotes the angular frequency of 
vibration. 

2.2 Method of Solution. For simplicity and generality, 
the coordinates are normalized with respect to the elastic 
solid dimensions as ~ = x/a; rl = y/b,  and ~ = z/c. In the 
present analysis, the displacement functions U(~C,r/,~), 
V( ~:,'q, ~" ), and W( ~:,'O, ~" ) are approximated by separable or- 
thogonal polynomial functions in ~:, 77, and ~', respectively, 

I J K 
= E E (lO) 

L M N 

V ( ~ , ' ~ , : )  = E E ECulmn¢v l (~ )¢orn (~ )Xon(~)  ( 1 1 )  

P Q R  
W ( e , n , C )  = E E ECwpqr~)wp(~)~etwq(n)Xwr(~) ( 1 2 )  

where Cu~.k, Corm,, a n d  Cwpqr are the undetermined coeffi- 
cients any 4), ~0, and X are the corresponding polynomial 
functions generated using the Gram-Schmidt process (Liew 
et al., 1993a). This is illustrated for ~b(~) as follows: 

~bk+l(~ ) = { g ( ~ ; )  - Ok} ~)~k(~: ) -- ,~k~bk_l(~:) ;  

k = 1,2,3 . . . . .  (13) 

The polynomial 60(~) is defined as zero and the constants 
@k and ,~k are chosen so as to satisfy the orthogonality 

/-0.5 ~bi(~) ej(~)  d~ = 6ij. From the recurrence relation in 
0.5 

Eq. (13), we derived the constants ®k = ~A~/2A ~ and , ~  = 

Table 1 Basic functions for u, v ,  and w components at different 
symmetry classes 

Symmetry V W 

Class (~ul(~) ~l/ul (1~) (~vl(~) Vv l('q) ~wl(~) Vwl(1~) 

SS fo fe f, fo fe f, 
SA fo fo 5 f~ fe fo 
AS f, fe fo fo fo fe 
AA f, fo fo fe fo fo 

L ( ~ ; n )  = (~; 'q);ff.(~;n) = z; ~ , ( ; )  = z . , ( ; )  = ~ . , (~ )  = 1 
Gene ra t i ng  funct ion g(~ ;q ;~)  = (~2 ;112;~) 

2Aj3Ak - l, in which 

l~l k = f_°o55g( 6 )6~( ~ )d~ ( 1 4 )  

3a _, = (16) 

The generating function, g(~),  in Eq. (13) is chosen for 
the higher terms to satisfy the essential geometric boundary 
conditions at the facets. A detailed proof on the orthogonal- 
ity of these polynomials is given in the Appendix. Following 
the same procedure, functions in ~(~) and X(~) can be 
generated. 

In this analysis, the deflection mode shapes are divided 
into four symmetry classes with respect to the xz and yz- 
planes. The basic function in the z-direction, X( ~ ), is chosen 
to be unity [X(g') = 1]. This choice satisfies the essential 
geometric requirements of stress-free surfaces at z = - c / 2  
and c/2. In the x and y-directions, depending on the symme- 
try classes of vibration, the basic functions in these directions 
take on different forms. Table 1 summarizes the respective 
basic functions chosen for each symmetry class. 

Let the energy functional of the elastic solid be 

= Umax -- "[]-max ( 1 7 )  

in which Uma x and "ll-ma x are the maximum strain and kinetic 
energies, respectively. 

Substituting the spatial displacement functions given in 
Eqs. (10-12) into the energy functional and minimizing ac- 
cording to the Ritz procedure, 

~/OCui jk  = O, ~/OCvlmn = 0 and ~//~Cwpqr = O, (18) 

leads to the governing eigenvalue equation 

(K - *2M){C} = {0} (19) 

where K and M are the stiffness and mass matrices. The 
explicit expressions of K and M can be found in the work of 
Liew et al. (1993). The frequency parameters, A = 
~ a ( p / E )  1/2, are obtained by solving the characteristic eigen- 
value problem defined by Eq. (19). 

3 Results and Discussion 
3.1 Convergence Studies. Nondimensional frequency 

parameters, h = ooa(p/E) 1:, for an elastic solid of rectangu- 
lar platform with stress-free boundaries were computed. It is 
well known that eigenvalue problems formulated using the 
Ritz procedure have the desired embedding property in 
which the stiffness and mass matrices of a smaller size 
problem (corresponding to fewer terms in the admissible 
functions) are embedded in the larger matrices formed by 
using higher terms in the admissible functions. This property 
ensures a monotonic converging pattern that leads to an 
upper bound solutions. The rate of convergences of the 
present Ritz formulation is demonstrated in Table 2 for a 
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cubic elastic solid. In this analysis, vibration mode shapes are 
categorized into the doubly symmetry mode (SS), symmetry- 
antisymmetry mode (SA), antisymmetry-symmetry mode (AS) 
and doubly antisymmetry mode (AA) about the xz and yz- 
planes. It it observed that reasonable convergence up to four 
decimal places can be achieved with 5 x 5 x 9 terms in the 
displacement functions. Hence, in the subsequent calcula- 
tion, the results are computed from displacement functions 
of 5 x 5 x 9 t e r m s .  

3.2 Comparison Studies. Table 3 compares the present 
three-dimensional solutions with that of the approximate 
theories for elastic columns of different lengths. The Timo- 
shenko beam predictions (Huang, 1961) which consider both 
the shear deformation and rotary inertia effects are in excel- 
lent agreement with the present three-dimensional elasticity 
solutions. However, the two-dimensional elasticity solution by 
the method of associated periodicity (Fromme and Leissa, 
1970) gives slightly higher frequency estimates than the Tim- 
oshenko beam theory (Huang, 1961) and the present three- 
dimensional results. 

In Table 4, the vibration frequencies for thick plates 
computed from the classical plate theory (CPT), the Mindlin 
plate theory (also known as the first-order shear deformable 
plate theory (FSDT)) and the three-dimensional elasticity 
solutions are presented. It is observed that at thickness ratio 
c/b = 0.1, the frequency parameters predicted from the 
Mindlin plate formulation (Liew et al., 1993b) agrees very 
well with the present three-dimensional elasticity solutions. 
The classical plate theory (Leissa, 1973), however, gives much 
higher values than those of the Mindlin theory and the 
present three-dimensional elasticity solutions. This is ex- 
pected since the classical plate theory ignores the shear 
deformation and rotary inertia effects which are significant 
for moderately thick plate analysis. The Mindlin's plate for- 
mulation, on the other hand, has implicitly accounted for 
these thickness effects which are inherent in the present 
three-dimensional elasticity formulation. 

Table 2 Convergence of frequency parameters A = ~a(p /E)  112 
f o r  a stress-free elastic cubic solid ( a / b =  1.0,  c /b  = 1.0, and 
v = 0 .3 )  

Mode Number of terms, ixjxk 
3x3x4 4x4x6 4x4x8 5x5x8 5xSx9 

SS-1 2.3926 2.3852 2.3852 2.3852 2.3852 
SS-2 2.7554 2.7554 2.7554 2.7554 2.7554 
SS-3 2.7587 2.7554 2.7554 2.7554 2.7554 
SA-1 t 2.4286 2.3856 2.3852 2.3852 2.3852 
SA-2t 2.4421 2.4259 2.4257 2.4257 2.4257 
SA-3t 2.9651 2.8375 2.8360 2.8359 2.8359 
AA-1 1.7733 1.7713 1.7713 1.7712 1.7712 
AA-2 1.7762 1.7714 1.7713 1.7712 1.7712 
AA-3 2.4265 2.4257 2.4257 2.4257 2.4257 

t For a stress free continuum with a/b=l.O, the SA and AS modes have identical 
frequencies. 

Referring to Table 4, at a higher thickness ratio c/b = 0.2, 
the eigenvalues predicted in the Mindlin theory are in close 
agreement with the three-dimensional solutions. Except that, 
at this thickness ratio, the refined theory fails to identify 
certain modes. For SA mode of vibration, the three-dimen- 
sional solution gives an intermediate mode (h = 2.5889) 
which cannot be found in the Mindlin solution. The other 
missing mode occurred at the second AA mode of vibration 
(c/b = 0.2). This observation agrees with the comment given 
by Srinivas et al. (1970) who stated that if one is seeking only 
the flexural, thickness-twist and thickness-shear fi'equencies, 
Mindlin's approximation and simple theory are fully justified. 
However, it the full spectrum of modes need to be established, 
the exact three-dimensional analysis is necessary. 

To facilitate a comparison with the work of Hutchinson 
and Zillmer (1983), the frequency parameters from different 
sources were plotted in Fig. 2 for thickness ratios varying in 
the ranges from 0.0 to 0.5. The comparison has shown that 
the present predictions and that of Hutchinson and Zillmer 
(1983) are found to be in excellent agreement. 

3.3 Three-Dimensional Model Shapes. The deflection 
mode shapes of elastic solids at each symmetry classes are 
depicted in three-dimensional contour plots that arc ar- 
ranged in terms of displacement components, u, v, and w, 
respectively. The corresponding three-dimensional deformed 
mode shapes are also included. 

It should be noted that for a stress-free continuum, the 
first six modes are the rigid-body modes corresponding to the 
translation in and rotation about the x, y and z-directions. 
All these rigid-body modes are not shown in the present 
mode shape diagrams. 

(a) Short Columns. The displacement contour plots and 
three-dimensional deformed mode shapes of an elastic solid 
column with a/b = 1.0 and c/b = 3.0 are presented in Fig. 3. 
The first SS mode can be clearly identified as the longitudi- 
nal extension and compression motion of the elastic solid 
column. The first SA modes (also the second and third AS 
modes), on the other hand, exhibit transverse bending mo- 
tions. Axial torsional motions are observed in the first, sec- 
ond, and third AA modes of vibration. Apart from these, the 
other modes of vibration are more complex and involved the 
combinations of elongation, bending, and torsional motions. 

Table 3 Comparison of fundamental frequency parameter A 1 = 
~ la (p /E)  1/2 f o r  an elastic s o l i d  c o l u m n  with stress-free b o u n d -  
a r i e s  (a /b  = 1.0 a n d  ~,= 0 .3 )  

Huang Fromme & Leissa Present 3-D 
c/b (1961) (1970) Solutions 

3 0.547 0.567 0.5487 
4 0.339 0.350 0.3393 
5 0.229 0.237 0.2291 
6 0.164 0.171 0.1644 
8 0.096 0.099 0.0958 

Table 4 Comparison of frequency parameters A = ~a(p /E)  1/2 f o r  s moderately 
thick plate with stress-free boundaries (a /b  = 1.0 a n d  . = 0 .3 )  

c/b 

0.1 

0.2 

Symmelry class and mode number 

Source SS-1 SS-2 SS-3 

CP'I ~ 0.5988 0.7393 

FSD~ 0.5733 0.7058 1.6860 

Present 0.5736 0.7065 1.6902 

CPT ~ 1.1977 1.4787 

FSDT o 1.0531 1.2827 2.7299 

Present 1.0551 1.2862 2.7423 

SA-1 SA-2 SA-3 

1.0599 1.8619 

0.9660 1.6750 

0.9673 1.6793 2.5904 

2.1197 

1.6688 2.7376 

1.6733 2.5889 2.7560 

AA- 1 AA-2 

0.4082 

0.3849 1.8348 

0.3851 1.8389 

0.8164 

0.7082 

0.7087 2.4325 

AA-3 

2.0479 

2.0542 

2.9182 

2.9326 

aClassical plate theory (Leissa, 1973) 
bFirst order shear deformable theory (Liew, Xiang and Kitipomchai, 1993b) 
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Fig. 2 Compar i son  o f  frequency parameters for an elastic solid plate 
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Symmetry Classes and Mode Number 

SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 

W 

3-D 

Frequency 
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1.0380 2.0051 2.5195 0,5487 1.1243 1,7211 0,5962 1.1908 1,7826 

Fig. 3 D isp lacement  con tou r  p lo ts  o f  an elastic so l id  co lumn (a / b = 1.0, c / b = 3.0 and v = 0.3) 

(b) Thick Plates. The deflection mode shapes of the 
thick elastic plate with aspect ratio a/b = 1.0 and thickness 
ratio c/b = 0.5 are presented in Fig. 4. Flexural motion is 
found in the SS-1 and SS-2 modes. Pure in-plane vibratory 
motion occurs in the third SS mode. The first SA mode, is 
also predominantly an in-plane motion with negligible out- 
of-plane (w-component) deformation. The second and third 
SA modes exhibit flexural motions with distinct nodal lines 
appearing in the w-component. Warping motions with maxi- 
mum deflection occurring at the corners are found in the first 
and third AA modes. The second AA mode is undergoing an 
in-plane shearing motion. The planar torsional motion about 
the z-direction is observed in the third AA mode of vibration. 

(c) Solid Cubes. The contour plots of a solid cube are 
depicted in Fig. 5. It is interesting to observe that the first SS 
mode and SA mode (also the AS mode) have an identical 
frequency value. The modes of vibration are also found to be 
identical with displacement pattern interchangeable in the u, 
u, and w components. The second and third SS modes show 
a very similar deformed pattern. In addition, the frequencies 

of the SS-2 and SS-3 modes for a cubic solid are identical to 
the SS-3 modes for the plate in Fig. 4. These modes are the 
lowest of a series of modes which were obtained by Lam6 as 
the exact solutions of the three-dimensional equation of 
elasticity and, therefore, are called Lam6 modes (Lam6, 
1866). 

The frequencies for Lam6's equivoluminal modes are given 
by Mindlin (1955) as w = (nTr/a) × (2G/p) 1/2 where a is the 
width of the plate, G = E/[2(1 + v)] is the shear modulus; 
n = odd for symmetric modes, and n = even for antisymmet- 
ric modes, and the frequencies are independent of the di- 
mension, c. In terms of the present frequency parameter, 
h n = (n~r)/(1 + v) 1/~, which gives h 1 = 2.75536 for n = 1 
and v = 0.3. 

The second SA mode is identified to be the planar-shear 
mode in the xz-plane (y = constant). Fromme and Leissa 
(1970) presented a frequency value of 77,700 Hz as compared 
to the upper bound value of 80,300 Hz reported by Ekstein 
and Schiffman (1956), whereas the present three-dimensional 
elasticity method gives 77,060 Hz (calculated for 1-in. cubic 
steel with E = 30 × 10 6 psi, u = 1/3 and p = 0.735 × 10 -3, 
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Symmetry Classes and Mode Number 
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Displacement contour plots of an elastic thick plate ( a / b  = 1.0, c / b = 0.5 and v = 0.3) 

Symmetry Classes and Mode Number 
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Fig, 5 Displacement contour plots of a cubic elastic solid (a / b = l .0,  c / b = l . 0 a n d  v = 0 . 3 )  

lb secZ/in.4). This planar-shear motion is also found in the 
third AA mode of vibration. The third SA mode has been 
named the podium mode in the work of Kidger and Smith 
(1992). The first and second AA modes have the same 
frequency value, however, the deformed mode shapes are 
different. The first AA mode resembles the bow-tie mode 
presented by Kidger and Smith (1992) using an eight-node 
brick element. The second AA mode, on the other hand, 
shows coupling between the in-plane stretching motion in the 
x and y-directions and the axial torsional motion about the 
z-direction. 

4 Conclusions 
A comprehensive study of the free vibrations of three-di- 

mensional elastic solids with stress-free boundaries was pre- 
sented. The governing eigenvalue equation for the continuum 
was derived from the three-dimensional elasticity theory and 
Ritz minimization procedure. The spatial displacement corn- 

ponents in the x, y and z directions were expressed in terms 
of sets of orthogonally generated polynomial functions. Vi- 
bration frequencies and first known mode shapes for the 
elastic solids in the forms of short column, thick plate, and 
solid cube were obtained by solving the resulting eigenvalue 
equation. 

Convergence and comparison studies have been carried 
out to validate the applicability and accuracy of the present 
three-dimensional formulation. Frequency parameters and 
mode shapes for elastic solids of different volumetric sizes 
have been computed and their characteristics have been 
discussed in detail. Comparisons with the established approx- 
imation theories for the beams and plates have shown close 
agreement for limited ranges. For a plate with higher side to 
thickness ratios, it is believed that the present method pro- 
vides more accurate results. Displacement mode shapes in 
three-dimensional were plotted to enhance our understand- 
ing on the vibratory motions of an elastic solid. A wider 
spectrum of mode shapes has been obtained by means of the 
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three-dimensional elasticity formulation. This finding is be- 
lieved to be very useful for researchers who are developing 
the simpler and more economical refined theories, and also 
to engineers who need a better description on the vibratory 
motion of the structures that does not fall into the categories 
of slender beams and thin plates. 

The present three-dimensional formulation based on the 
Ritz method will be extended to analyze the vibrations of 
composite laminates. By performing appropriate coordinate 
transformations, the method can also be employed to predict 
the frequency response of a wide range of elastic solids of 
practical shapes and sizes. 
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A P P E N D I X  
Given here is the proof for the orthogonality of the poly- 

nomials constructed from the recursive relation in Eq. (13). 
For simplicity, the functions g(~)  and qSi(~) are replaced by 
g and $~. The integration limit is taken from -0.5 to 0.5. 

The orthogonality between any three consecutive members 
can be deduced directly from Eqs. (13)-(16), i.e., 

fqSkqSk+2d ~ = 0; k = 1,2,3 . . . . .  (A1) 

Mathematical induction is used to prove the general or- 
thogonality between n consecutive members, where n _> 3. 
The procedures are outlined as follows. 

First, we assumed that the orthogonalitty relation is valid 
for any n(n ~_ 3) consecutive members; i.e., 

f4)r4~sd~ = O,r >_ k - n + 1,s _< k and Vr -~ s. (A2) 

Next, we proceed to prove that when n(n >_ 3) consecutive 
members are orthogonal, (n + 1) consecutive members are 
also orthogonal to each other. In other words, we are to 
prove 

fqbk_n+lqSk+ld~ = 0, Vn >_ 3. (A3) 

Combining Eq. (A2) with the orthogonality relation be- 
tween three consecutive members in Eq. (A1), we shall prove 
that the orthogonality relation is valid for any arbitrary 
consecutive members. 

Consider the following integral: 

fqSk_n+i6k+ld ~ = f c h k _ , + t { ( g -  Ok)qb ~ - ~kChk_i}d~ 

= fgqbk_n+lqSkd ~ - Okfqbk_n+lqbkd ~ 

- -Ekf4)k- -n+16e_ld~.  (A4) 

Based on the assumption of Eq. (A2), we have 

fckk_,,+lqbkd~ = fq~k_n+lqbk_td~ = 0 (A5) 

and Eq. (A4) becomes 

fqbk_n+lqSk+ld~= fgqSk_,,+lqSkd ~. (A6) 

From the recurrence relation of Eq. (13), 

thk-,+2 = ( g - -  Ok-n+l)dPk-n+l -- Ek--,,+lSk--~ (A7) 

with re-arranging, we have 

g q b k - . + l  = ~ k - n + 2  + O k - n + l  + O k - n + l  + ~ k - n + 1 4 ) k - n  ' 

(a8)  

Introducing Eq. (A8) into Eq. (A6) gives 

f4)k_,+ lchk+ ld~ = fqbk_n+ Zqbkd ~ + @k_,+ l fchk_,,+ ld~ 

+~--k_n+lfbk_,,C~kd~. (A9) 

From Eq. (A2) again we have 

fqSk_,,+14)kd ~ = fqbk_n+ 2qSkd ~ = 0 (A10)  

and Eq. (A9) becomes 

f~bk_n+tSk+ld~: = Ek_,+afCkk_,,4akd ~. ( A l l )  

Expanding Eq. (A11) further in a recursive manner gives 

fg)k_n+ aq~k+ ld~ = ~ k _ n +  l ~ k _ n ~ k _ n _ l  "" ~q~lq~n+ld~. 

(A12) 

The right-hand integral, fckt4~,,+ad~, of Eq. (A12) can be 
rewritten as 

f th lqbn+ld~ = fq~l{(g -- On)(an -- ~ . q S n - a } d i d  

= fgghcb, d ~ -  ®,,fq~ad),,d~- ~nfdPadPn_ld ~. (A13) 

Using the assumption of Eq. (A2) with k taken as n, we have 

fqb~cksd~ = O; r >_ 1, s _< n and Vr 4~ s (A14) 
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and so 

f(alcb, d ~ = fcb14,,_ ld~ = O. 

Hence, Eq. (A13) becomes 

f616.+ id~ = fgqb16ndl~ 

= f(62 + 01q51)~bnd~ 

= fc~2c~nd¢+ O l f ~ l ~ n d ~ .  

From Eq. (A14) we have 

f 626nd~  = O, 

(A15) 

(A16) 

(A17) 

which proves f~)l~Jn+ ld~: = 0. Substituting this integral into 
Eq. (A12) yields 

fqbn_n+ l qbk+ l qbk+ ld ~ = O. (A18) 

Equation (A18) implies that if n(n > 3) consecutive mem- 
bers are orthogonal, then (n + 1) consecutive members are 
also orthogonal to each other. Since the orthogonality rela- 
tion holds for n = 3, this together with Eq. (A18) verifies the 
overall orthogonality of the polynomials generated from the 
recurrence relation of Eq. (13). 
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A Study of Embedded 
Piezoelectric Layers in 
Composite Cylinders 
A power series solution is presented for the static equilibrium equations of an 
axisymmetrie composite cylinder under loadings due to surface mounted or embedded 
piezoelectric laminae. Both uniform and nonuniform distributions of the piezoelectric 
effect are studied and results are verified using a finite element model based on 
axisymmetric two-dimensional elasticity theory equations. A cylindrical truss element 
actuator is developed which may be used for damping vibrations of truss-type structures. 
Finally, the effects of a piezoelectric patch have been investigated. The axial forces 
generated at the fixed ends of  a cylinder are found to be proportional to the length of  the 
patch. 

1 Introduction 
One of the most recent advancements in the field of 

piezoelectricity is the discovery of the piezoelectric effect in a 
polymer based material called polyvinylidene fluoride (PVDF) 
(Kawai, 1979). Compared to other materials, PVDF is flexi- 
ble, rugged, available in thin sheets and easily manufactured 
in large quantities and at a low cost (Sessler, 1981). For these 
reasons, PVDF is currently being studied for use as dis- 
tributed sensors/actuators in flexible structures. However, 
before piezoelectric materials can be successfully used for 
control, the mechanical interaction between them and the 
structure being controlled must be well understood. 

In this paper, two analytical tools are used to study the 
effects of embedded PVDF laminae in an axisymmetric com- 
posite cylinder. A power series solution is presented for the 
static equilibrium equations and verified using the finite 
element method. These tools are used to develop a cylindri- 
cal truss element actuator to damp vibrations of truss-type 
structures. Fanson and Garba (1988) have proposed damping 
for truss-type structures based on the same concept but 
different actuator design. Another application is an investiga- 
tion of the effects of a piezoelectric patch. This topic has 
been investigated by Crawley and Luis (1987). In the case of 
surface bonded actuators, they presented an elasticity solu- 
tion based on the assumption of pure one-dimensional shear 
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in the bonding layer which is used to attach the piezoelectric 
material to the substructure, and pure extensional strains in 
the piezoelectric layer and substructure. The solution pre- 
sented here differs in several respects. First, there are no 
assumptions on stresses and strains except that the governing 
equations and constitutive model is linear, and the solution 
may be used to model both bonding and piezoelectric layers 
including shear deformations. In addition, the piezoelectric 
effect is induced in a lamina over a finite area, by varying the 
polarization profile of the particular piezoelectric layer. 
Crawley and Luis (1987) modeled a piezoelectric layer of 
finite length bonded to a substructure with the piezoelectric 
effect uniformly distributed over the patch of piezoelectric. 

Finally, it is necessary to comment on the scope of the 
current study concerning electromechanical coupling. In the 
present study, as in other published works in smart struc- 
tures, Crawely and Luis (1987), C. K. Kee (1990), and Tzou 
and Gadre (1989), the constitutive relation itself represents 
the only source of coupling between mechanical and electri- 
cal effects. This is justified by the intended applications and 
by the fact that the electric fields induced in thin piezoelec- 
tric layers are essentially constant through the thickness 
direction when a voltage is applied across the piezoelectric 
lamina. These type of analyses can be properly classified as 
strain-induced because applied voltages simply induce strains 
in the piezoelectric layers analogous to that found in ther- 
moelastic studies where temperature gradients induce strain 
fields. Two studies by Adelman, Stavsky, and Segal (1975) 
and Adelman and Stavsky (1975) on laminated composite 
cylinders have included the coupling both through the consti- 
tutive relation and the charge equations of electrostatics. In 
these cases, the intended applications were bandpass filters 
and high-energy ultrasonic devices using composite piezo- 
electric disks and long cylinders. Additional references on 
piezoelectric composite cylinders can be found in Karlash 
(1990) and Sun and Chen (1974). 
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2 Constitutive Relations 
In the applications of piezoelectric materials for control of 

flexible structures, mechanical as well as electrical loadings 
exist on the material. The constitutive relations of the me- 
chanical and electrical effects are superposed (assuming lin- 
earity). The combined relation is written as 

o- = c ~  - ( d c E ) T  E (1 )  

where c E represents the elastic stiffness matrix with the 
superscript indicating that the electric field E is held con- 
stant. The other variables, e, ~r, and d denote, respectively, 
strains, stresses, and the components of the piezoelectric 
tensor in matrix notation. The superscript T indicates matrix 
transpose. For PVDF, d in material coordinates is given as 

0 0 0 0 dis ! ] 

[d]  = 0 0 0 d24 0 . 

d31 d32 d33 0 0 

(2) 

PVDF is a thin film, and it is polarized and prepared for 
application of an electric field in the thickness direction only. 
Assuming that the material axes coincide with the coordi- 
nates of the problem being studied, the term (dcE)rE can be 
written as 

( d c g ) r E  = 

o o G 

o o H o 

0 0 H r 

0 C44d24 0 

d15C55 0 0 

0 0 0 

(3) 

where 

H z = d31Cll q- d32C12 + d33C13 

H 0 = d31C12 + d32C22 -t.- d33C23 

H r = d31C13 --1- d32C23 + d33C33. 

3 Equilibrium Equations 
PVDF, being available in thin sheets, is particularly suit- 

able for introduction into laminated type structures as an 
embedded actuator. The cylinder analyzed in this study is 
axisymmetric and built up with composite cross-ply type 
material layers and PVDF layers. 

For an axisymmetric cylinder, the static equilibrium equa- 
tions (Timoshenko and Goodier, 1951) are 

OG 0Gz G - % 
- - +  + - -  0 
Or Oz r 

OGz O°'z Gz 
- - + - - + - - = 0 .  

Or Oz r 

The cylindrical coordinate system for these equations'is ori- 
ented with the z coordinate along the axis of the cylinder and 
the r and 0 coordinates in the radial and hoop directions of 
the cylinder, respectively. The constitutive relation for an 
axisymmetric cylinder can be expressed as { /[ell c12 c13 0]{, / 

0"0 C12 C22 C23 0 t O 

O'r C13 C23 C33 0 ~r 

O'rz 0 0 0 C55 erz 

where E r is the electric field applied in the radial direction, 
(u, w) are the radial and axial displacements, and 

Ow u du Ou Ow 
E z = 7 7  z ,  t 0 = -  E~- = - - + - -  (8) r ' - ~ '  erz Oz Or 

Due to the axisymmetry assumption and the fact that this is a 
specially orthotropic cylinder, the shearing strains and 
stresses, fro, ezo, Go, and O-zo, are zero. The coordinate axes 
are oriented along the material axes of the cylinder and 
therefore the piezoelectric effect does not induce shearing 
strains. 

Substituting the constitutive relations (7) into Eqs. (5) and 
(6), the equilibrium equations can be expressed in terms of 
the displacements (u, w) as 

02U 0U C22 C55 2 02//'/ [ C13 "q- C55 ] 02W 
r 2 -  + t u + - - r  ~ + ~ ) r  2 

Or 2 Or C33 C33 0Z C33 3rOz 

c33 } Oz - - ~ - - - ) r e ,  (9) 

r 0r - - -Y  + 0--7 + -  - -  + [ ) r  c55 r c9Z2 k c55 OzOr 

( c 1 2 + c 5 5 ) 0 u  Hz OEr 
+ - -  r (10) 

C55 OZ C55 OZ 

For these equations, it is assumed that the electric field does 
not vary in the thickness direction r, but may vary in the axial 
direction z. This variation in the electric field is created in 
the polarization process of PVDF (Sessler, 1981). The magni- 
tude of the electric field is given as E r = V/t,  where V is 
applied voltage and t is the thickness of the PVDF lamina. 

4 Composite Cylinder and Boundary Conditions 
The cylinder analyzed here is assumed to be hollow and 

composed of n material layers. The solution for this problem 
is found by solving the equilibrium Eqs. (9) and (10) for each 
material layer and coupling the solution of each layer to 

(4) adjacent layers through continuity of displacements and bal- 
ance of stresses at common boundaries. In the present study 
it is assumed that each layer is perfectly bonded to adjacent 
layers. 

There are two different boundary conditions for this prob- 
lem, namely, interlaminar and end conditions. For the kth 
interface, the interlaminar boundary conditions are 

blklr=rk = uk+llr=rk,  Wklr=rk = wk+Xlr=rk (11a) 

O.rklr=rk ~rk+llr=rk, k = k+ 

for k = 1, 2 , . . . ,  n - 1 where the superscript k refers to the 
particular layers and r~ is the radial position of the interface. 

(5) In addition to this, inner and outer surface tractions are 
assumed to be homogeneous: 

(6) o'rnl . . . .  = 0, ~rr~lr=r n = 0, O'rll~=r0 0, = 0. 

(12) 

The ends of the cylinder are assumed to be free of shear 
stress and fixed or have uniform displacement in the z-direc- 
tion. It is also assumed that the cylinder and loadings are 
symmetric about the r - 0 plane at z = 0. These boundary 
conditions are expressed mathematically as 

Ouk z=0 Wklz=0 0, 0, k = - -  = %lz=ve  = 0, wklz=V2 = w 0 
0z 

(7) (13) 

where w 0 is the applied uniform displacement at the end. 
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5 Power Series Solution 
Solutions are assumed for u and w in the following form: 

N N 

u(r, z)  = ~] gi(r) cos Aiz, w(r, z) = • fi(r) sin hiz. 
i=1  i=1  

(14) 

These equations satisfy homogeneous boundary conditions in 
Eq. (16), if h i = 2iw/l. The solution corresponding to the 
uniform displacement of the end can be superimposed with 
the solution for the homogeneous boundary conditions. Sub- 
stituting Eq. (14) into Eqs. (9) and (10), and assuming that E~ 
can be written as 

A o  N 
er = - -  + E Ai cos (;~,z), (is) 

2 i=1 

then the dependence on r and z may be separated out by 
matching Fourier coefficients of the right-hand side with the 
left-hand side of Eqs. (9) and (10). By doing so, two coupled, 
second-order ordinary differential equations in r are ob- 
tained, corresponding to the ith term in the Fourier series. 
These equations are 

r Z g ' + r g ' -  [p l  r 2 + p 2 ] g + p 3 r 2 f  '+p4rf  = H l r  (16a) 

rf" + f '  - psrf - p 6 r g  ' - P 7 g  = H2r (16b) 

Pa = - - h 2  P 3 =  P s =  . 
C33 C33 ] C55 t 

c22 (c,3-c 2) (c13+c55) 
P2 = -  P4 = - -  hi  P6 = hi  

C33 C33 C55 

(c12+c55 t 
P7 = - -  Ai H1 = - -  A i  

C55 C33 

- H z A i A  i 
H 2 (16c) 

C55 

where a solution to these equations can be found using 
methods of power series (Boyce and Diprima, 1986) for both 
the homogeneous and nonhomogeneous parts of the solu- 
tion. 

The solution for a given problem is found by solving Eqs. 
(16) for each layer and then coupling layers through common 
boundaries. Therefore, it is convenient to look for solutions 
for each layer in the form of power series, expanding about 
one of its boundaries. The solutions for the homogeneous 
equations are taken as 

f ( r ) =  E a , ( r - r o ) " ,  g(r) = E b , ( r - r o ) "  (17) 
n = 0  n = 0  

where r 0 is the inner radius of a particular layer. Before 
substituting Eqs. (17) into (16), a change of variables is 
necessary. Let R = r - r0 then 

d2 f d2f ) df df a n d -  
dr dR dr dR 2 

we have 

+ 2FoR + r ]g" + [R +  o]g' 

- [ p , ( R  2 + 2roR + r~) + p2]g + p3[ R2 + 2roR + roZ]f ' 

+ p 4 [ R  + r 0 ] f =  H1R + Hlr o (18a) 

(R + ro)f" + f '  - p s ( R  + r o ) f - p 6 ( R  + ro)g' -P7g 

= HzR + Hzr o. (18b) 

Substituting Eq. (17) into Eq. (18) we obtain the solutions. 
Because of the complicated algebra only the procedure and 
final results are presented here. 

The procedure involves finding values for a,  and b n by 
setting coefficients of powers R,  to zero in Eq. (18) (after 
substituting Eq. (17) into Eq. (18)). However, because of the 
coupled nature of these equations it is necessary to alternate 
between the equations satisfying a,  and b, successively. 
Because these are second-order equations there are four 
arbitrary constants a 0, a 1, b 0, and b r These are nonzero 
unknowns, and the remaining coefficients a~ and b, for 
n > 2 are expressed in terms of these. For example, substitut- 
ing Eq. (17) into Eq. (18a), and considering zeroth powers of 
R, we obtain 

(P2 + P,rZ)bo - rob1 - p4roao - -  p3rZal 
b 2 = 2r 2 (19) 

Therefore, b 2 is explicitly expressed as a function of the 
arbitrary constants b 0, bt, a0, and a v Similarly, for the first 
power of R, we have 

-6 r0b  2 - (1 - P 2 - P i r Z ) b l  + 2plrobo 
b3 = 6r~ 

-2p3r~a 2 - (2p3r 0 + p4ro)al - p4ao 
+ 6r02 (20) 

It is only necessary to do this by hand to compute b 2, b3, a 2, 
and a 3, after which a general recursion relation can be 
found. These results and some further manipulations are 
given in the Appendix along with solutions to the nonhomo- 
geneous Eqs. (18). 

So far, solutions for f(r) and g(r) have been found for 
each A/, i = 1, 2, . . . ,  N. Substituting the form of these 
solutions (see the Appendix) into Eq. (14), one obtains 

N 

u(r, z)  = ~_, {aoigoi(r) + dlig,i(r) + dzigzi(r) 
i=1  

+d3ig3i(r) + g4i(r)} cos Aiz (21a) 

N 

w(r, z)  = E {doifoi(r) + d,ifli(r) + d2if2i(r) 
i=1  

+ d 3 i f 3 i ( r )  + f 4 i ( r ) }  sin h i z .  ( 2 1 b )  

Now is it necessary to consider the constant term in the 
Fourier cosine series for E r given in Eq. (15). This represents 
the case where A~ = 0, and thus, because of the form the 
solution takes, the second equilibrium equation given in Eq. 
(10) is automatically satisfied. However, to include the dis- 
placement condition for the end, it is necessary to look for 
solutions in the following form: 

u = u*(r ) ,  w = w*(z).  (22) 
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Using Eq. (22), the equilibrium Eqs. (9) and (10), which 
include the constant term from the Fourier cosine series 
expansion for E~, are given by 

d2u * du* c22b/* [ C l 3 - C l 2 ] d w *  
r 2 ~  + r - -  + r 

dr 2 dr c33 " ] \ c33 d z  

d 2 w  * 

( H~ Ho Ao 
= _ r T ( 2 3 a )  

\ C33 

= 0. (23b) 
dz 2 

The fact that the final solutions are a superposition of the 
homogeneous and particular solutions, the nonharmonic 
components of displacements for isotropic and orthotropic 
cylinders, respectively, are given by 

u*(r) c, = - -  + c2r + A r  log r ,  
r 

u * ( r )  = clr  t~ + c2r -13 + Br, 

C 3 = 

w * ( z )  = c3z (24a) 

w * ( z )  = c3z (24b) 

2w0 q~ C22 ql + q2c3 
l A =  7 3 2  = - -  B f12 C33 1 -- 

H r - H o ) M o  c12 - c 1 3  
q, . . . .  ~ q 2  (24c) 

C33 C33 

and c I and c 2 are arbitrary constants chosen to satisfy 
boundary conditions. This completes the derivation of the 
power series solution. However, for implementation, further 
manipulations are required to set up a system of algebraic 
equations which can be solved for the unknown arbitrary 
constants that satisfy boundary conditions. Boundary condi- 
tions for harmonic and nonharmonic terms are satisfied 
separately. 

First, the algebraic equations that must be solved for the 
ith mode are derived. Applying the first boundary condition 
in Eq. ( l l a )  for the kth interface yields 

k k k k k k go~(rDdo~ + g~'e(r~)d~ + g2~(r~)d2~ + g3~(rk)d3e - d~? ~ 

=--g4ki(rk)  (25) 

where superscripts indicate the particular lamina. It should 
be noted that, since all power series for each layer were 
expanded about the inner surface of the particular layer, all 
terms on the right-hand side of Eq. ( l la )  are zero except 
one. Similar situations arise for the remaining three bound- 
ary conditions in Eqs. (11), and the results are as follows: 

k k k k k k _ 
foi(rk)dol  + f l i ( r k )d l i  + f2ki(rk)d2ki + f~i(rk)d3i dokf "1 

= - f ~ ( r k )  (26) 

C13,~ifji "~- -Tzg) i (r  ) + ~33,-~r- d~ 
j = 0  r=rk 

c~3 +1 
- c ~ f  'Aidok~ - ' - _ _ d z k ?  _ c33-k+ ,ak+lu3, 

rk 

H ? A ~  - I-I~ k + ' - k  + ' 

k 
k g4i ~ 

- c~3Aif~(rk)  - C23-77-(rk) 

- c  ~ ag~ 33-'~7"- r=~k (27) 

k dy~ - -  q- c55 Aitt2i c5ksj=0E [ dr _ Aigji(rk) c~-ld~i+l _k+l, ~k+, 

-di  1(28) 
dr ~=,.k j" 

Finally, the inner and outer surface boundary conditions 
given in (12) are derived in the same way and are as follows: 

23 nz x cn dgJi 
E cl~Aif jT(r .)  + -~n-g)Ar.) + 3 3 ~ -  d~ 

j = 0  r=rn 

g~i(rn) n dg4% 
= H;A7 - c~3Aif~i(rn) - c~3 r-----~--- c33-dr'- r=~n (29) 

j=o dr r=r n 

C 1 
1 l 23 1 1 1 1 1 

Cl3,h.idoi + 7 d 2 i  + c33d3i = n r A  i (31) 

d~i - aid~i = 0. (32) 

This completes the application of the boundary conditions 
for the harmonic components of the solution. Equations 
(25)-(32) yield 4n equations in 4n unknowns d~,, d~ d~,, d~, 
for the ith mode and k = 1, 2 . . . . .  n. 

Similar derivations are required for the nonharmonic com- 
ponents u*(r)  and w*(z) .  Due to the form of these solutions, 
all shear and axial displacement boundary conditions are 
automatically satisfied. These solutions yield no shear stresses 
or strains and all layers have the same axial displacement. 
Therefore, the boundary conditions in (11)-(13) are reduced, 
leaving 2n equations in 2n unknowns: cl k and c2 k for k = 1, 
2, . . . ,  n. 

6 Results 
The power series solution developed in Section 5 is used 

to analyze the mechanical interaction between actuating lam- 
inae and surrounding structure. Two numerical examples are 
presented as possible applications of embedded actuating 
laminae, the second of which illustrates the effects of spatial 
discontinuities in actuating strains. 

Cylindrical Truss Element Actuator. In this subsection a 
cylindrical bar with embedded PVDF layers is proposed for 
use as an active member to control the vibrations of a truss. 
Such a member would be placed in the load paths of the 
truss and thus serve both as an actuator to bring transient 
deformations to zero as well as a load-carrying member. This 
concept is given by Fanson and Garba (1988) based upon a 
different actuator design. 

The actuator design consists of adding piezoelectric lami- 
nae to a composite cylinder such that axial forces may be 
generated at the ends based upon the piezoelectric effect. It 
should generate the largest possible loads while not exces- 
sively sacrificing axial stiffness. Therefore, the piezoelectric 
effect is uniformly distributed along the length of the cylinder 
in PVDF layers. This is equivalent to having a uniform 
polarization profile. On the other hand, axial stiffness de- 
pends upon ply orientations of the composite laminae. 
Therefore, various ply orientations are studied to determine 
their effects on axial stiffness and on the forces transmitted 
to the boundaries. 

The radial dimensions for the cylinder used in this study 
are similar to that proposed by NASA for the truss structure 
of the space station (Derstine, Pindera, and Bowles, 1988). It 
has an inside diameter of 50 mm and a thickness of 1.5 ram. 
Additional PVDF layers bring the total thickness to 2.1 ram. 
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Table 1 Cy l i nd r i ca l  truss element actuator results 

ld Case Stiffness Electric Stiffness 
KIN/m) PIN/V) 

I O°l*O°lO°l*O°lO ° 6.55 x l07 -1.89 x 10 "2 

I I  Ol*O°lSO°l*O°lO ° 5.38 x 10 ~ -2.07 x 10 = 

I I l  90°l*O°190°l*O°190 ° .587 x 107 -2.11 x 10 2 

IV 9001'0°190°1"0°10 ° 3.05 x 107 -2,13 x 10 a 

V 90°1'0°10°1"0°10 ° 4.25 x 107 -2.13 x 10 a 

V I  *0°10°/0°10°1"0 ° 6 ,55  x 10 r ! -1 .89 x 10 z 

V I I  *0°10°190°10°*0 ° 5,38  x 107 -2.07 x 10 ~ 

V I I I  *0°/90°190°190°1"0° .586 x 107 -2.13 x 10 "2 

I X  *0°/90°t90°/0° /*0 ° 3 .02 x 107 -2 .12 x 10 .2 

*0°190°10°10°1"0 ° 4.22 x 107 -2,10 x 10 a X 
"indicates P V D F  l amina  

RADIAL POSITION VS. AXIAL STRESS 

~ 0 / 0 / 0 / 0 / 0  ANALYTICAL SOLUTION 
* * * * *  0/0/0/0/0 FINITE ELEMENT SOLUTION 
.......... 0 / 0 / 9 0 / 0 / 0  ANALYTICAL S O L U T I O N  

* * * * *  0/0/90/0/0 FINITE ELEMENT SOLUTION 

0 . 0 2 7 2  -- 

0.026B 
E 

c 0,026.4 
o 

0,0260 

o 

0.0256 
o 

0.0262 
L 

O.024B 

0,0244 

I 

i 
' ] l l l l l l l l l  I I I I I I I I  I I I I I I I I I I l ] l l l  I I I I I I 1 1 1 1 1 1 1 1 1 1 1  

-400.00-300,00 -200,00-100,00 0,00 100.OO 
AXIAL STRESS I PA) 

Fig. 1 Radial position versus axial stress 

The passive portion of the cylinder is comprised of the 
composite material T300/5208, and is made up of three 
layers. Two PVDF layers are added giving a total of five 
layers for the cylinder. In all cases, the PVDF layers were 
3 × 10 - 4  m thick and 1.0 volt was applied, giving an electric 
field of 3.33 × 103 volts/m. Properties assumed for 
T300/5208 and PVDF are: T300/5208 (orthotropic) E 1 = 132 
X 109 Pa, E2 = E3 = 10.8 X 109 Pa, Gi2 = G13 = 5.65 x 
109 Pa,  G23 = 3.38 × 10 9 Pa, v12 = Va3 = .24, v23 = .49, 
PVDF (assumed to be isotropic) E 1 = 2.5 × 10 9 Pa, v = .392, 
d31 = 21.4 × 10 -12 coulombs/Newton, d32 = 2.3 × 10 -12 
c o u l o m b s / N e w t o n ,  a n d  d33 = - 31.5 × 1 0 -  12 
coulombs/Newton. The length of the cylinder used here was 
0.5 m. 

Results are presented in Table 1 and Fig. 1 for various ply 
orientations and positions. P represents the axial force gen- 
erated by PVDF layers and K represents the axial stiffness 
of the cylinder. Results indicate that by introducing a passive 
90-deg lamina, approximately an eight percent increase in P 
can be achieved. However, this increase is at the expense of 
axial stiffness. Additional 90-deg layers yield smaller in- 
creases in P, and the effect of placing the PVDF layers on 
the outside is negligible. 

The mechanism by which axial forces are transmitted to 
the boundary is indicated in Fig. 1. When the electric field is 
applied to PVDF layers in a positive sense, the material 

PATCH: ANALYTICAL SOLUTION 
AXIAL DISPLACEMENT vs. AXIAL POSITION 

Patch location [.1167 (m), .311133 (m)] 
PVDF Embedded 

3.0 lo  ~ °  . . . . . . . .  I . . . . . . . .  7 . . . .  ! . . . .  ' . . . .  

2.0 10-1° ...................... , ....................... i ............................................... i . . . . . . . . . . . . . . . . . .  1 ...................... J ...................... 

I I 
l "  I 

2 0 1 0 - , 0  ..................... ,=  t ..................... 

E 

-3.0 1040 . . . . . . . . . . . . .  ] . . . . . . . . . . . . . . . .  
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 

.Axial Poaltlon (m) 

Fig. 2 Ax ia l  displacement versus axial pos lUon  

1.0 10 "1° 

E 
8 0 a 

_~ -1.0 10 -I° 

expands axially. However, this expansion is constrained and 
therefore compressive forces are generated and transmitted 
to the boundary via PVDF layers themselves. It is also 
possible to generate tensile forces by applying the electric 
field in the opposite direction or the negative sense. This is 
physically realized by simply changing the polarity on the 
applied voltage. In an application (Mitchell, 1992), the forces 
generated by the actuator can be used to control transient 
vibrations of truss-type structures due to some perturbation 
of the system from its static equilibrium position. The rela- 
tion between the applied voltage and force generated devel- 
oped above can be used to judiciously select a voltage signal 
sent to active members, such that transient vibrations may be 
dampened quickly. This type of control mechanism is attrac- 
tive because it becomes an integral part of the structure, 
controlling member deformations directly. 

Polarization Patch. In this subsection, a polarization pro- 
file is taken in the form of a patch and modeled mathemati- 
cally using Heaviside step function h( z )  as 

E ~ ( z )  = h ( z  - Zo) - h ( z  - Zl) .  (33) 

Equation (10) requires a derivative for E r with respect to z. 
This is given by 

0Er 
Oz = 6 (z  - Zo) - 6 ( z  - z1) (34) 

where 6(z) is the Dirac delta function. The cylinder analyzed 
here is the same as that in Case II of the cylindrical truss 
element actuator section. The patch is centered at z = .25 m 
and has values for z 0 and z 1 as .1167 m and .3833 m, 
respectively. 

As might be expected, the number of terms taken in the 
power series is critical to obtaining good results and the rate 
of convergence depends upon Ai. For the results presented 
here, the first 100 nonzero Fourier coefficients for E / z )  
were used. Due to the patch location in this problem, all odd 
modes were filtered out and it was necessary to use up to 130 
terms in each associated power series based upon a stopping 
criteria requiring that the absolute value of additional terms 
be less than 1.0 x 10 -45. 

Results indicate that the influence of the patch on dis- 
placements diminishes with points taken farther and farther 
away. This is easily seen in Figs. 2 and 3. Since the patch has 
been placed at the center along the length of the cylinder, its 
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PATCH: ANALYTICAL SOLUTION 
RADIAL DISPLACEMENT ve. AXIAL POSITION 

Patch location [.1167 (m), .3833 (m)] 
PVDF Embedded 
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. . . . . . . . . . . . . . . . . . . . .  ] . . . . . . . . . . . . . . . . . . . . . .  : 

I i 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 
Axial Position (m) 

Fig. 3 Radial d isp lacement  versus axial posit ion 

effects result in some antisymmetric and symmetric phenom- 
ena. For instance, the patch expands axially under the elec- 
tric field and therefore points to the left of centerline (z = .25 
m) move left or have a negative displacement and points to 
the right of centerline move to the right. This is indicated in 
Fig. 2. The radial displacement is primarily due to hoop 
expansion and is an example of a symmetric result with 
respect to z and is given in Fig. 3. 

The stress distributions calculated for this case contrast 
with those in Case II of the cylindrical truss element actuator 
section in several ways. Since there are sharp discontinuities 
in the polarization profile for the patch, shear stress are 
introduced. Whereas in Case II, the polarization profile was 
uniform and therefore no shear stresses were induced. Due 
to this difference, the mechanism by which axial forces are 
transmitted to the boundaries is different for each. 

In Case II of the cylindrical truss element actuator, the 
mechanism by which forces were generated at the ends was 
very simple. All compressive forces were transmitted to the 
boundaries via the PVDF layers themselves. This contrasts 
sharply with the present case. Compressive forces in PVDF 
layers are quickly transferred to adjacent passive laminae at 
the edges of the patch, and have zero axial stresses at the 
ends. Forces are then transmitted to the boundaries via 
passive laminae, and the net axial force transmitted is pro- 
portional to the length of the patch. A simple hand calcula- 
tion using Figs. 4 and 5 and the appropriate cross-sectional 
areas bears this out. 

To understand the mechanism by which axial forces are 
transferred from PVDF laminae to passive laminae, consider 
the following equilibrium equation for an outer laminae 
whose outer surface is stress-free: 

~Zdr=~rz. (35) 
3z 

Therefore, the rate of change of axial stress with respect to z 
depends upon shear stress. For example, using Figs. 5 and 6, 
and considering a value of r o = .0265 m in the figures, the 
axial stress variation with z follows according to the above 
equation except at the edges of the patch. At these points, 
Gibbs' phenomenon affects the numerical values of axial 
stress calculated and a jag in the curve is present. However, 
because of the apparent insensitivity of interlaminar shear 
stresses to Gibbs' phenomenon, the actual trace of the axial 
stress as the edge of the patch is crossed may be visualized 
and can be seen in results obtained by the finite element 

0.0245 
-2.5 lo2 -2.o lO 2 -1.5 lO 2 -1.0 lO2 -5o 

Axial Stress (Pe) 
Flg. 4 Radlal poslt lon versus  axial stress 
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PATCH: ANALYTICAL SOLUTION 
AXIAL STRESS vs. AXIAL POSITION 

Patch location [.1167 (in), .3833 (in)] 
PVDF Embedded 
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Fig. 5 Axial stress versus  axial posit ion 
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PATCH: ANALYTICAL SOLUTION 

SHEAR STRESS vs. AXIAL POSITION 
Patch location [.1167 (m), .3533 (m)] 

PVDF Embedded 
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Fig. 6 Shear  stress versus  axial posit ion 
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PATCH: FINITE ELEMENT SOLUTION 
AXIAL STRESS ve. AXIAL POSITION 
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Fig, 7 Axial stress versus axial position 

method (see Fig. 7). The finite element solution did not 
suffer from this problem and the axial stresses follow accord- 
ing to the above equation including the points at the edges of 
the patch. At all other values of r given in Fig. 5, Gibbs' 
phenomenon does not appear and both the analytical and FE 
results match identically. 

The distribution of shear stress is connected to another 
interesting result. As might be expected, the maximum shear 
levels occur at the edge of the patch; however, their location 
does not occur at interlaminar positions through the thick- 
ness. This suggests that the axial expansion near the edge of 
the patch is not the main cause by which shear stresses are 
introduced./~dthough not given here, antisymmetric, parabolic 
shear stress distributions were found through the thickness 
(Mitchell, 1992). These results suggest bending at the edge of 
the patch. 

7 Conclusions 
A static analysis is presented for an axisymmetric compos- 

ite cylinder under loadings due to embedded piezoelectric a3 = 
laminae using a power-series-type solution to the governing 
PDE's. Using this solution, two applications were given. A 
cylindrical truss element actuator was developed and various 
cases were studied to determine optimal ply orientations. 
This actuator was shown to transmit axial forces to the bn+2 = 
boundaries via PVDF layers themselves. The second applica- 
tion was a study of the effects of a polarization patch, The 
mechanism by which axial forces are transmitted to the 
boundaries was investigated and shown to be different from 
that for the cylindrical truss element actuator. In the case of 
the polarization patch, forces are transmitted to the bound- 
aries via passive laminae and are proportional to the length + 
of patch. This was investigated and shown to be attributable 
to the nonuniformity of the piezoelectric effect. From this 
nonuniformity, it follows that shear stresses must be intro- 
duced. For cases such as this, the analytical solution indicates 
that displacements through the thickness of piezoelectric 
layers are of quadratic and higher orders. 
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A P P E N D I X  

- a  I + p s roao  + p6rob l  + p 7 b o  

a~ = 2r0 (A1) 

-4a2 + psroal +psao  + 2p6rob2 + (P6 + p 7 ) b l  

6ro 

(A2) 

- [ r o ( n  + 1)(2n + 1)lb.+ l - [n 2 - P 2  -p t rZ]b .  

ro2(n + 2)(n + 1) 

+ 
2ptrob,_a + ptb~_z -P3ro2(n + ] ) a n +  1 

rZ(n + 2)(n + 1) 

-[2p3ron +p4ro]a. - [p3(n - 1) +p4]an_ l  

rg(n + 2)(n + 1) 
(A3) 

- ( n  + 1)(n + 1)a.+ 1 +psroan +Psan_t 
a"+2 = ro(n + 2)(n + 1) 

(riP6 + P7 )bn  + p 6 r o ( n  + 1 ) b . +  1 

+ ro(n + 2)(n + 1) (A4) 

Equations (A3) and (A4) are valid for n >_ 2. This completes 
the development of the solution to the homogeneous Eqs. 
(16). However, a method for finding so, at, b0, and b I is 
needed because these are embedded in the recursion rela- 
tions (A3) and (A4). T o  circumvent this problem the solu- 
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tions are taken in the following form: 

f ( r )  = do fo ( r )  + d l f l ( r  ) + a2f2(r  ) + d3f3(r  ) (A5) b2 = 

g ( r )  = dogo(r)  + d l g l ( r  ) + d2g2(r ) + d3g3(r ) (A6) 

where the arbitrary constants ao, al,  bo, and b~ have been 
replaced by do, dl, d2, and d3. Each function fo, f l ,  f2, f3, 
go, gl, g2, and g3 has recursion relations based upon Eqs. 
(A3) and (A4) but in a special way. For example, by taking 
a l = b o = b 1 = 0 and using the recursion relations for f ( r )  
and g(r),  fo(r)  and go(r) are found as 

b 3 = 
f o ( r ) = d o  1 +  ~ a . e  n , g o ( r ) = d o ~ b . R  n. (A7) 

n = 2  .l n = 2  

This approach isolates a 0 in such a way that it may be 
calculated by a straightforward application of boundary con- 
ditions. Similarly, the remaining functions f l (r) ,  f2(r), f3(r), 
gl(r), gz(r), and g3(r) are found (Mitchell, 1992). a3 = 

The solution to the nonhomogeneous Eqs. (18) is found in 
the same way as that for the homogeneous equations. How- 
ever, the form of the power series is taken as (Babister, 1967) 

f4 ( r )  = R2 Y'. anR",  g4(r )  = R 2  E bn Rn" (A8) 
n = 0 n = 0 

Substituting Eq. (A8) into Eq. (18) and setting coefficients for 
each power of R to zero, recursive relations for the particu- 
lar solutions are obtained. The first four terms for each 
function are calculated in the same way as described before. 
These terms are given by 

H1 H2 
b° = 2r---o' a° = 2 -  (A9) 

H 1 - 6rob o - 2p3r~a o 
b I = 6r 2 (A10) a .  = 

H 2 - 4a o + 2p6rob o 
( A l l )  

a 1 = 6r ° 

- 15rob 1 - (4 - p v  2 - p 2 ) b o  

12r 2 

-3p3r2oal - (4p3r o + P4ro)ao + 
12ro 2 

- 9 a  I + psroao + 3p6rob I + (2p 6 +PT)bo 
a 2 

12r o 

- 2 8 r o b  2 - (9 - plr2o - p2 )b  I + 2plrob o 

20rg 

- 4p3rga 2 - (6p3r o + p4ro)al  - (2p3 + p4)ao + 

(A12) 

(A13) 

(A14) 
20ro 2 

- 16a2 +psroal  + psao (3p 6 + p7)b l  + 4p6rob 2 + 
20r o 20r o 

(a15)  

The general recursive relations for an and b n, for n >_ 4, are 
given by 

plbn_4 + 2plrob._  3 - In  2 - p l r ~  - p z ] b n _ 2  

bn = r2o(n + 2)(n  + 1) 

- r o ( 2 n  + l ) ( n  + 1 ) b . _  1 - [ p 3 ( n  - 1) + p , ] a . _  3 
+ 

rZ(n + 2) (n  + 1) 

- [2P3ron + p4ro]an-2 - p~r~(n  + 1)a ,_  1 
+ rZo(n + 2)(n  + 1) (A16) 

- ( n  + 1)2an_l +Psroan_2 +psa,~_3 

(n + 2) (n  + 1)r o 

(rip 6 + p7)bn_2 + p6ro(n + 1)b._l  
+ (A17) 

(n + 2) (n  + 1)r o 
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SH-Wave Interaction in a 
Harmonically Inhomogeneous 
Elastic Plate 
The study focuses on the propagation of SH waves in an elastic plate whose material 
properties are sinusoidally varying in the direction of propagation. In light of the weak 
variation of the materials properties, the perturbation method of multiple scales is' 
utilized to analyze the modal interaction which occurs upon the satisfaction of eertain 
resonant conditions. The derived coupled-mode equations together with relevant 
boundary conditions at the ends of the inhomogeneous section form a two-point 
boundary value problem, which is solved numerically. The power reflection coefficient 
is then calculated to present the reflection characteristics of the plate. 

1 Introduction 
Efforts to study elastic wave propagation in periodically 

inhomogeneous media have been spent in two directions: (1) 
modeling the propagation of waves in composites consisting 
of periodic arrays of homogeneous layers in which material 
properties are piecewise continuous and (2) investigation of 
waves traveling in structures with continuously varying mate- 
rial properties. While the mathematical treatment in (1) 
leads to equations of motion with constant coefficients satis- 
fying certain continuity and periodicity conditions, the analyt- 
ical formulation in (2) ends with a governing differential 
equation having periodic coefficients. 

The present work belongs to the second direction. Rele- 
vant literature to this includes the work by Nayfeh and 
Nemat-Nasser (1972) who discussed the wave propagation in 
an unbounded medium whose properties vary as harmonic 
functions of the coordinate variable in the direction of propa- 
gation. They found that the material cannot maintain time- 
harmonic waves in certain special cases; these waves are not 
stable. Also the paper by Watanabe (1984) who considered 
the oblique propagation of plane SH waves in an inhomoge- 
neous solid, with infinite extent, whose properties vary har- 
monically with a space variable, and discussed the effect of 
the angle of propagation on the instability phenomenon. 

The instability phenomenon is due to the fact that periodic 
structures behave like pass-band filters, which allow waves to 
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propagate only in certain frequency bands (Brillouin, 1953). 
This unique behavior of periodic systems motivates utilizing 
structures with periodic inhomogeneity as mechanical wave 
filters in order to control the oscillation levels. 

In this article, we study guided SH waves in an elastic 
plate, with material properties varying harmonically along the 
plate in the direction of propagation. Assuming weak har- 
monic variations, approximate analytical solutions in the form 
of first-order asymptotic expansions are obtained. However, 
the existence of resonant conditions, and consequently, un- 
stable regions, invalidates the expansions near these condi- 
tions. The method of multiple scales (Nayfeh, 1981) is there- 
fore employed to seek uniform expansions valid near reso- 
nance. The presence of boundary condition at the plate-free 
outerfaces necessitates imposing certain solvability conditions 
on the first-order problem. This leads to the derivation of the 
coupled-mode equations governing the modulation of ampli- 
tudes. These equations are solved numerically in order to 
investigate the filtration characteristics of the inhomoge- 
neous plate, 

2 Problem Formulation 
Consider the isotropically elastic plate shown in Fig. 1. 

The section extending from 2 = 0 to 2 = L is assumed to 
have material inhomogeneities which are described as p(.~) 
= 00(1 + • cos a2), and ~(2) = ~o(1 + 6E cos /32), where 
the subscript "0"indicates an average value; P is the material 
density; ~ is the shear modulus of rigidity; a and /3 are, 
respectively, the wave numbers of the material density and 
rigidity; • is a small dimensionless parameter much smaller 
than unity and equal to the ratio of the deviation from the 
average value of density; and 6 is a constant allowing for 
different deviation in the rigidity. 

The governing equation of horizontally polarized motion 
in terms of the displacement component in the y-direction 
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< 
P = P o  

I z =  #o 

p = Po(1 +cos~£) 

tu = Uo(1 + cos/~)  

P ~'Po 

I z = lJo 

Fig. 1 The plate wavegulde 

(D) is given by 

aT ~ ( ~ ) ~  + 3-7 ~ ( ~ ) ~  - P ( ~ ) T V  = 0 (1) 

where ~ is the time coordinate. 
We consider prol~agation of monochromatic harmonic 

waves so that ~ = V(.f, 2) exp ( - i ~ ) ,  where o) is the 
frequency of oscillation. Moreover, we introduce dimension- 
less quantities (without the carets) by using the plate thick- 
ness kt and ~-~ as the characteristic length and time, respec- 
tively. The following dimensionless governing equation is 
obtained: 

[ 32V 
(1 + ,  cos ~x ) /TUt  

o~v] 3v 
+ az 2 ] - (e/3 sin /3x) '-~- x 

+ [ k 2 ( 1  + e cos a x ) ] V =  0 (2) 

where k = &Ft(po/lZo) v2 represents the wave numbers of 
bulk waves in a material with average properties. 

Using a power series expansion, Eq. (2) can be written in 
the following approximate Hill-type form: 

32V 32V 
- -  + - -  + k2V 
3 X  2 3Z  2 

= ~ ( / 3  sin ~ x ) - ~  - [ k 2 ( c o s  aN - cos  p x ) ] V  . ( 3 )  

The boundary conditions are the vanishing of the stress 
vector at the outerfaces of the plate. Thus 

3 V  3V  
- - ( x ,  O) = O, 1) = O. 3z -~ -  (x,  (4) 

A solution of the system (3) and (4) in the form of a 
first-order straightforward asymptotic expansion is found to 
break down when a material wave number (a ,  /3) is twice 
that of the propagating mode (k~); i.e., 

2k s -~ T- a ,  -T-/3. (5) 

The above conditions are known in the literature as Bragg 
conditions (Elachi, 1976), at which steady-state harmonic 
waves are unstable (resonance occurs). Physically, a Bragg 
condition implies that two contradirectional modes interact 
strongly with each other by exchanging energy, resulting in a 
high level of attenuation. Such an interaction can be ana- 
lyzed using the method of multiple scales (Nayfeh, 1981), 
which leads to uniformly valid asymptotic expansions around 
resonance. 

3 T h e  M e t h o d  o f  M u l t i p l e  S c a l e s  

We seek a first-order perturbation expansion for V in 
powers of e in the form 

V(x, z) = Vo(Xo, x ,  . . . . .  ~) 

+ eV,(Xo,  X,  . . . . .  z )  + . . .  (6) 

where X 0 = x is a short length scale of the order of the 
wavelength in the plate and X 1 = Ex is a long length scale 
which characterizes the spatial amplitude and phase modula- 
tions due to the material inhomogeneity. 

Using the chain rule, we can write the derivatives with 
respect to x in terms of X 0 and X 1 as 

3 3 3 
- -  + e + . . .  ( 7 )  

3x 3X  o ax~ 

3 2 3 2 3 2 

+ 2 3 - -  + . . . .  (8) 
3x 2 3Xo 2 aXoaX~ 

Substituting (6)-(8) into (3) and (4), and equating the 
coefficients of e ° and e 1 on both sides, we obtain 

O(1) 

32vo 32vo 
az----y" + - ~ -  + k2Vo = 0 (9) 

3 E, a Vo 
- - - = 0 ,  a t z = 0 ,  = 0 ,  a t z = l  (10) 

3z 3z 

o(e) 

02Vl 32Vi 32V0 
- -  + + k 2 V |  = - 2 - -  
3z 2 T~o 3Xo3Xl 

~ . . 3 V o  
+ ( / 3  sin ~z l I . 0 )~0  -- [k2(cos o/X 0 -- COS /3X0)] V 0 (11) 

3v~ or, 
= 0 ,  a t z = 0 ,  = 0 ,  a t z = l .  (12) 

3z #z 

3.1 The Zeroth-Order Problem. Equation (9) admits so- 
lutions in the form of a linear combination of four propagat- 
ing modes with wave numbers kp and kq; that is 

Vo = Y2 [ A / ( X l ) e  ikjx° + A / ( X ~ ) e - i k j x ° ] ( c o s  f frz)  
j = p , q  

(13) 

where the superscript " + "  ( " - " )  indicates an incident (re- 
flected) mode, and A T ( X  l) are unknown functions at this 
level of approximation. They are determined by imposing the 
appropriate solvability condition at the next level of approxi- 
mation. 

Substitution of (13) into the boundary conditions (10) leads 
to the following well-known dispersion relation of guided SH 
modes: 

k 2 -- k 2 = (j 'n ')  2. (14) 

3.2 The Firs t -Order  Problem. Since the homogeneous 
part of the first-order problem has a nontrivial solution, then 
the inhomogeneous first-order problem has a solution if, and 
only if, a solvability (consistency) condition is satisfied. To 
determine this condition, let us seek a particular solution for 
V l in the form 

V~= E [dP / ( z ) egk j xo+¢ j - ( z ) e - ' k Jx ° ]  • (15) 
j = p , q  

To describe quantitatively the nearness of kj to resonance, 
we introduce the detuning parameters 0-1 and 0-2, such that 

2kp = a + e0. l (16) 

2kq = 13 + 30. 2. (17) 

Journal of Applied Mechanics MARCH 1995, Vol. 62 / 175 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Substituting (15) together with (13) into the governing Eq. 
(11), imposing the resonant conditions (16) and (17), and 
equating the coefficients of exp(TikjX o) on both sides, we 
obtain 

= +2ikp k2A~e ±i°qxl cos pTrz (18) 
2 

( ~ f f  + (qTr)2)qbq ~ =[+2ikp dA~: 
[ -  dX1 

-g(kl -/3kq)A e±i' x']cos q -z. (19) 
J 

Substituting the solutions (13) and (15) into the boundary 
conditions (12), we get 

@iT'(0) = O, @[v'(1) = 0 (20) 

where primes indicate derivatives with respect to the argu- 
ments. 

To this end, we multiply (18) and (19) by cos(pwz) and 
cos(qTrz), respectively, integrate the result by parts from 
z = 0 to z = 1, and invoke the boundary conditions (20). This 
leads to the following coupled-mode equations: 

dAD ik 2 
dX 1 4kpAp e-i~lxi 

dA l~ - ik 2 
- - +  i o - l X  1 

4kp Ap e dX1 

- i  

(21) 

(22) 

d , 4 ;  - - ( k  2 - -  k q / 3 ) A ; e  -i°'2Xl (23) 
d X  1 4kq 

dX, 4kq(k 2 - kq/3)A;e i°'2x'. (24) 

In the case when a = /3  = K, two propagating modes only 
can interact. Hence, the above coupled-mode equations re- 

dX 1 4 Ape-i°Xl 

dA~ --iK + i~xl 
dX---- 7 = - - T A p e  . 

(25) 

(26) 

duce to 

4 Numerical  Examples  

For the purpose of illustration, a plate with Po = 1 0 3  

kg/m3, P'0 = 1 0 1 °  N/m2, and ~t = 10 -3 m is selected. 
When a is different from /3, the resonant frequency is 

taken at oJ = 3.25 MHz. Consequently, the wave numbers of 
the material properties are a = 11.284 and /3 = 2.980. 

The modal interaction in the plate is governed by the 
coupled-mode Eqs. (21)-(24). Without any loss of generality, 
the following end-point conditions are provided on both ends 
of the inhomogeneous section: 

A T -  + - -  Aq = 1 at X 1 = 0 (27) 

A ;  =A~- = 0, at X 1 = 30. (28) 

Note that the conditions in (27) represent the excitation 
amplitudes of the incident modes, while the condition in (28) 
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Fig. 2 Power reflection coefficient R for a four-mode waveguide, 
• = 0.01 
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Fig, 3 Power reflection coefficient R for a two-mode wavegulde, 
E = 0.01 

express the fact that the reflected modes vanish at the end of 
the inhomogeneous section. 

The problem defined by (21)-(24) together with (27) and 
(28) constitutes a standard two-point boundary value prob- 
lem, which is solved numerically by an efficient code based 
on the fundamental matrix method (msfar and Hussein, 1989). 
The missing end-point conditions are obtained, and conse- 
quently, the power reflection coefficient can be calculated 
from 

E k j [ A / ( x ,  = o ) ]  

R = Ek [A;(X, = ( 2 9 )  
J J  

J 

The power reflection coefficient versus frequency for this 
case is depicted in Fig. 2. The figure shows a typical filter 
response with total reflection at the midband centered at the 
resonant frequency, and side ripples whose level decreases as 
one moves away from the resonant frequency. It is worth 
noting that the resonant frequency coincides with the center 
of the stop-band, which explains the high level of attenuation 
around resonance. 
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When a =/3 ,  the resonant frequency is taken at w = 2 
MHz corresponding to the wave n u m b e r  kp = 2.433. The 
coupled-mode Eqs. (25) and (26) are solved numerically with 
relevant end-point conditions. The frequency response for 
this case is shown in Fig. 3. A narrow mid-band response is 
observed with negligible side ripples. 

Comparison of Figs. 2 and 3 indicates that a material with 
two periodicities gives a stronger stop-band attenuation 
around resonance than a material with only one periodicity. 
This reflects the fact that a larger number of interactions 
occur in the first case than the latter. 

5 Conclusion 

The interaction of SH elastic modes in a plate whose 
material properties are sinusoidally varying in the direction 
of propagation has been investigated. The reflection charac- 
teristics have been presented for two cases. When four modes 

interact under certain resonant conditions, a wide midband 
response was obtained. A narrow midband response has been 
observed when only two modes interact. 
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Effect of Interface Layers on 
Elastic Wave Propagation in a 
Metal Matrix Composite 
Reinforced by Particles 
This study considers' the scattering of compressional and shear waves in SiC-particle-re- 
inJbrced Al composite with interracial layers. We assume same-size inclusions and 
same-thickness layers with nonhomogeneous elastic properties. The effective complex 
wave numbers follow from the coherent wave equations which depend only upon the 
scattering amplitude of the single scattering problem. Numerical values of scattering 
cross-sections, and phase velocities and attenuations of coherent plane waves are 
obtained for a moderately wide range of frequencies, and the results are graphed to 
display the effects of concentration of scatterers and interface properties. 

Introduction 
Ultrasonic waves have proved to be useful for the nonde- 

structive characterization of composite materials (Kinra et 
al., 1980; Sayers, 1985; Mal and Bose, 1974; Ledbetter and 
Datta, 1986; Datta and Ledbetter, 1986a). In composites, 
particularly metal-matrix composites reinforced by fibers or 
particles, it is often the case that there is an interface layer 
surrounding the particles or fibers induced by processing 
conditions (Olsson et al., 1990). It may be noted from several 
recent studies (Hashin, 1990; Chen et al., 1990; Datta and 
Ledbetter, 1986b) that interfaces have significant influence 
on mechanical behavior of fiber or particle-reinforced com- 
posites. Thus there is considerable interest in characterizing 
properties of interfaces nondestructively by ultrasonic tech- 
niques and understanding the effect of interface characteris- 
tics on wave propagation. The scattering of the ultrasonic 
waves in the composites results in a frequency-dependent 
velocity and attenuation of the wave (Varadan et al., 1985; 
Norris, 1986). 

The purpose of this paper is to analyze the effect of 
interface layers on the wave propagation of time harmonic 
plane compressional and shear waves in a particle reinforced 
metal-matrix composite. For a composite medium with im- 
perfect interfaces between the matrix and the second phase, 
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the actual details of the calculation are complicated. In the 
earlier study, Datta et al. (1988) considered the influences of 
thin interface layers with nonhomogeneous elastic properties 
on the wave propagation in a particle-reinforced composite. 
In this study, it is assumed that the tractions are continuous 
across the layer, whereas the displacements satisfy jump 
conditions that are linear in the thickness of the layer. It may 
be noted that the approximate boundary conditions used in 
this study are based on the assumption that inertial and 
curvature effects are negligible. 

In the present paper, it is assumed that the interface layer 
is of any desired finite thickness and nonhomogeneous mate- 
rial properties. The composite medium contains a random 
distribution of spherical inclusions of same size with interface 
layers of same thickness. The scattering of plane elastic 
waves by a spherical inclusion with an interface is analyzed 
and the results of the single scattering problem are applied to 
the composite medium. Even if the interface layer has vari- 
able material properties, solutions to the problem can be 
obtained by subdividing the layer into several thick-walled 
spherical shells with varying, but uniform within each shell, 
properties. Thus the inertial and curvature effects are consid- 
ered in this study. Numerical results for SiC-particle-rein- 
forced A1 composite are obtained as a function of concentra- 
tion of scatterers and frequency, and the effect of interface 
properties on scattering cross-sections, and phase velocities 
and attenuations of coherent plane waves is discussed in 
detail. The method of solution is such that numerical results 
can be obtained at any desired finite frequency. 

Statement of the Problem and Single Scattering Field 
We consider a random distribution of identical spherical 

inclusions of radius a 0 in an infinite matrix. Let A, /x, p, v 
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be the Lam6 constants, the mass density, the Poisson's ratio 
of the matrix, and A0, iz0, P0, uo those of the inclusions. We 
assume that thick layers of uniform thickness h with variable 
material properties are present at the interfaces separating 
the matrix from each sphere. 

In order to study the scattering of plane waves in a 
metal-matrix composite with interface layers, we first con- 
sider the scattered field due to a single spherical inclusion 
with an interface layer. Also, let the inclusion be separated 
from the matrix by n layers. The geometry is depicted in Fig. 
1 where (x,  y, z )  is the Cartesian coordinate system with 
origin at the center of the sphere and (r, O, 49) is the 
corresponding spherical polar coordinate system. The layer is 

kp = - - ,  k ~ = - - ,  (3) 
Cp C s 

Cp, c s are the longitudinal and shear wave speeds in the 
matrix 

? + 2 ~  ~ p  
cp = - - ,  c, = . ( 4 )  

P 

In what follows, the time factor e x p ( - i w t )  will be omitted 
from all the field quantities. 

The boundary conditions for the scattered field are 

n s + i b/p = b/p Up 

m m + 1 Up = btp 

t 1 btp = /Up 

m m +  I O;.p = %; 

,z.;, = 

( r = a , , , p = r , O , 4 9 )  

( r = a m , m  = 1 ~ n -  l , p  = r , O , ¢ )  

( r = a o , p  = r ,O,  49) 

(5) 

subdivided into several thin shells and the material proper- 
ties within each shell of inner radius a re_t, outer radius 
am(m = 1 ~ n), and uniform thickness h m = a m - a,,_ ~ are 
Am, t~m, Pm, lJm' 

Let the components of the displacement vector u in the r, 
0 and 49 directions be labeled by u~, Uo, and u¢. The 
displacement equation of motion is 

c)2U 

(A + 2/z)VV • u - i~V X V × u = p Ot 2 (1) 

where V = %3/dr  + eo(1/r)O/90 + e4 (1/r sin 0)0/049 is the 
gradient operator and e,., e 0, % are the unit vectors along 
the r, 0, ~ directions. 

We consider a plane longitudinal (P) wave propagating in 
the positive z-direction or a plane shear (S) wave polarized in 
the x-direction and propagating in the positive z-direction. 
Thus, 

u i = w o exp [ i ( k p z  - wt)]e~ + u o exp [ i ( k s z  - o)t)]% 

(2) 

where a superscript i stands for the incident component, ~o is 
the circular frequency of the wave, t is the time, ex, e~ are 
unit vectors in the x, z-directions, and wo, Uo are the 
amplitudes of the incident P and S waves, kp, k s are the 
wave numbers of the P and S waves in the matrix 

a, A , # , p ,  v 

- -F - -  _k____ 
Incident Waves  

Fig. 1 A spherical inclusion with Interface layers and Incident 
waves 

where o;.,., O'ro, O7¢ are the stress components, superscripts s, 
t and m, m + l(m = 1 ~ n - 1) denote the scattered com- 
ponent within a matrix, the transmitted component within a 
spherical inclusion and the field quantities within each layer, 
and subscript p stands for the r, O, d~ directions. 

The displacement fields in the matrix, the ruth layer and 
the spherical inclusion may be expressed in the forms (Strat- 
ton, 1941) 

o~ 1 

u" = E E [ AktL(2] + BkzM~ ) + Ck,N~'] (6) 
l = 0  k =  - 1  

u . . . .  E I 2  + 'n + 
1 = 0  k =  - i  

..l_/-iml(I)rn %. K.m&,(l)m pm~(I)m] ( m  = 1 ~ n )  (7) 
~ k l ~ k l  "L'kl't'lkl + " kl "'~kl J 

,~ 1 
u' ~ ~ IAO .(,)o uo r..O)o p,, ~(l)ol 

= t . . k l ~ k t  d- .Ukl . . .k l  'P ,.Fkl.,~kl j ( 8 )  
l = 0 k = - I  

w h e r e  A~l, Bkt, Ckt, AkZ,m Bkt~, Ckml, D ~ ,  E~.i, F~n], A Okl, Bkl,° 
and C~ are the unknowns to be solved. Spherical vector 
wave functions I (3 )  M~.~/), ~,(3) l ( i ) m  &~(i)m ' 

rn = 1 ~ n), r(l)0 -kt , M~1/)°, N~ )° are given in Appendix A. The 
wave numbers k~, k~ (m = 1 ~ n) in the ruth layer and k~, 
k~ ° (m = 0) in th'e spherical inclusion are given by 

} k~n m = (m = 1 ~ n )  = - -~ ,  k~ 
Cp 

kP o w w (9) 
=---6,  k ° =  7 ( m  = 0 )  

Cp C s 

where the longitudinal and shear wave speeds c~, c~ in the 
0 in the spherical inclusion are ruth layer and c~, c s 

i Am + 2/xm ~V~ ] c~ " =  P~ , c 7 =  ( m  = 1 ~ n )  

.(10) 
0 =  ~/A0+21z0 , c,'°= / x ~  ( m = 0 )  

Cp Po 

From boundary conditions (5), the relationships among 
A k l ,  Ckl ,  Ak,~, Ck~, D m F m o o kt, kl, Akt,  and Ckt are found to be 
(Datta et al., 1988) 
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(An) ( n) n kl Dkl 
Mr(an)  C~ t + N?(a . )  F~, 

=M'lc ,i 

t (  'OICi~i] + /xnLt(a") Fk" t 

. ( & , l  _ , ( % , ~ o  
= t z h ,  I C k , )  + I x L t I X k l U o }  (11) 

Mt (am){ C a ) + Nr(am) U a 

, (Akr~ ) N~+' [Dk'~ + 
= M 7  + (am)lc~+, + (am) (e~+ 

c a  + .mLT(am) Fa  

N? 

ffoLOt 

= iL'~+ ~(am) { F~/+i ~ m + l K ~  n + l  ( a m l ~ c ~ +  1 + ~m+ V kl 

(m = l ~ n -  1) (12) 

C2t = M r ( a ° )  C2, + N ] ( a ° ) k . k t  1 

A °, . , .  . l a b  , 
C2~ = ~r~t tao)~  r ~ + ~,L~(ao) . (13) 

Also, the relationships among Bkt, Bk'~, Eke, and Bk°l are 
n (1) n n • n Bktht (ksan)  + EktJ,(k.a,~ ) = Bkth?)(k.an) 

+Jl (ks an)YktUo 

txnB;l{(l - 1)htl)(ksnan) - k~ anh~l (k~an)  } 

+ tx~E~.t((l - 1)jt(k~a~) - k~a.j,+ ,(k~a.)} 

= tZBk t{ ( l -  1)h?)(ksa . )  - k . a .h?? , ( k .a . ) }  

+ ix((l  - 1 ) j t (ksa , )  - k ,anj ,+l(ksa , )}Yktu  o (14) 

= ILm+lBk~+l{(l-  1)h?)(k~n+lam) 

-k~n+lamh~,(k~n+lam)} 

• m + l  -.{-i&m+lE~+l{(l- 1)Jl(k  s am) 

-k~n+lamJl+l(k~+lam)} (m = 1 ~ n -  1) (15) 

0 • 0 1 (1) i I • 1 BklJl(ksao) = Bklh I ( k  sao) + EklJl(ksao) 

tzoB~,{(l - 1)jl(ka°ao) - k~aoj,+ l(k~a0)} 

= ~lB21{(l - 1)h?)(klao) - k~aoh?+)l(k~ao)} 

+/z lE2 ,{ ( I -  1) j , ( k~ao) -k~aoj t+l (k~ao)  }. (16) 

In Eqs. (11) and (14). ~kl. Xkt. and Ykl are 

it-1 
~kt = --~--(2/ + 1)ak0 

i i- I 2l + 1 
Xk' 2k,  l ( l  + 1) {akl - l(1 + 1)ak,_,} (17) 

i t-1 2l + 1 
Yk, 2 l ( l  + 1) (akl -I- l ( l  + 1 ) a k , _ l }  

where 6k0, 6kl, 6k,-1 are the Kronecker delta. Solving these 
equations iteratively, we obtain equations for the determina- 
tion of Akl, Bkt, Ckt as 

Ckt ) XktUo ) 

F, 
Bkt = -- "~T Yk,Uo. (19) 

The matrices Pt, QI in Eqs. (18) are 

Pt = N~ - -~--RT(S~)-'L 5 
/xn (2o) 

Qt = M , -  ---~-R7($7)-*K I 
/z. 

The recurrence formulae for R~, S~ are given by 

[ ) ( ) ] '  R T = N~n(am) - M ? ( a m )  M~n(am-1) - R~n-'.S~n-' - 'Kin am_,_ 
/Zm- 1 

X IN~n(am-a) - /Zm-/'l'm 1R~n-I(s~n- l ) - lL~(am-l) ]  

S~ n = L ~ ( a m )  - K } n ( a m )  M ~ n ( a m _ l )  - N -1 g _ - I  -1K _am_l_ 
/ & m -  1 

, ,  _ "' 't "1 

(m = l -n )  (21) 

B~thll)( k,mam) + E~j t (  k~nam) 

= B~+'h?) (k~+lam)  + E~-lj t(k~m+lam) 

~mB~{( l  - 1)hlb(k~mam) - k~mamh51+),(k~nam)} 

"}- ~mE~{  (1 - 1) j l(  k~nam) - k~namJl+ l( k~nam) } 

R~ = N~, St ° = LOt. (22) 

In Eqs. (20)-(22), Ut, N/, K t, M t, Kin(am), L'~(am). M~(am), 
N~n(am ) (m = 1 ~ n), L~, Nt ° are given in Appendix B and 
Ft, G t are 
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Fl=jt(ksan) tx Tin ] 
At. Ut" { ( / -  1)jt(ksa") - ksa"jt+l(k*a")} 

Gt = hS1)(ksa") Ix rtn l . (23) 
At. Urn ((l - 1)h~l)(ksan) - ksanhl~l(k, an) } 

The recurrence formulae for Tf, Ut" are given by 

hll,( ksmam_l k~nam-`) -(Atm/Atm_l)(Zlm-l/Ulm-1)jlm(am_l_ Atm/Atm_l)(zlm_l/Ulm_l)nlm(am Ttm = jt( kmam) - ) h51)( ksmam) 

(m = 1 ~ n) 
jl(ksmam_l) - (iXm/Atm_l)(Tlm-1/ulm-1)J~(arn_l) 

uF = JF(am) - hg>(k2a,n_,) - (Atm/Atm_,)(Ttm-l/Utm-,)H~(am_,) HF(am) 

T, ° =jt(k,°ao), U, ° = Jt°(ao) (25) 

where Jr( ) and hll)( ) are the lth order spherical Bessel 
and Hankel functions of the first kind, and J~(a m) and 
Hfl(a m) are 

J[n(am) = (l - 1)jl(kmam) -- ksmamjl+ l(kmam) (m = 0 ~ n) ] 
Htm(am) = (l - 1)h~D(kyam) - k~namhll+),(kyam) (m = 1 ~ n) } (26) 

(24) 

The scattered field at a large distance from the sphere 
follows from Eq. (6) letting r tend to oo. This yields 

s~  ~eikprg(0,4,) I 
Ur 

1 
u~ ~ ~e'ksrhl(O, 4,) . (27) 

1 
U~ ~ 7e'ksrh2( O, 4,) 

The function g(O, 4,) is termed the far-field scattering ampli- 
tude for the scattering P waves, and the functions hi(O, 4,) 
and he(O , 4,) the far-field scattering amplitudes in the 0 and 
4, directions, respectively, for the scattered S waves. The 
definitions of these functions are given in Appendix C. The 
scattering cross-sections for incident P and S waves are then 
(Barratt and Collins, 1965) 

47r 
Ep = -~-Im[g(0 ,  4,)1 

-- kp Im I ( - i ) tA° t  (28) 

4rr 
Es = - - I m [ c o s  4,h1(0 , 4,) - sin 4,h2(0, 4,)] 

ks 

4¢r [ = (~{I(I = * + 1 )c  u - C _ , t  

l l+l, 1 ) ]  
+ . (29) 

In the above equations, Ep and lgs do not depend on 4,. 

Scattering of Elastic Waves by Randomly Distributed 
Inclusions 

We consider a random distribution of identical spherical 
inclusions with interfacial layers. Once the scattered field 
due to a single inclusion is known, the phase velocities and 

attenuations of the coherent waves through the composite 
can be easily calculated. At low concentrations of inclusions 
we can use the following dispersion relations (Foldy, 1945): 

(Kp) 2 ~  3c 
= 1 + kp~a~g(0 , 4,) (30) 

( K s )  2 3c 
= 1 + - ; : r :~{cos  4,h,(O, 4,) - sin 4,he(O, 4,)} (31)  

ksao 

where c is the volume concentration of randomly distributed 
inclusions in the matrix and K_, K s are the wave numbers of 
the effective P and S waves. I~' the above equations, Kp and 
K s do not depend on 4,. 

Numerical Results and Discussions 
To examine the effect of interface properties on the phase 

velocities and attenuations of coherent plane waves through 
thc composite medium, the far-field scattering amplitudes 
have been computed numerically. The considered composite 
was an SiC-AI composite. The constituent propertics are 
given in Table 1. Thrcc special cases of intcrfacc material arc 
considered. The elastic properties of Cases I, II, III are given 
by 

Case I. 

A + A o At + Ato 
A,(r) 2 , . , ( r )  2 

(a  0 _< r _< a 0 + h) 

P+ Po PI(r) 2 (32) 

Table 1 Material properties of SiC and AI 

SiC 

A1 p(kg/m3) 
2706 

p0(kg/m 3) #o(GPa)  A o + 2 # o ( G P a )  

3181 188.1 474.2 

# (GPa)  A + 2#(GPa) 
26.5 110.5 

v0 

0.17 

v 
0.34 
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1.10 

1.00 

~ - - ~  S wave 

. . . . . . .  P wave 

S wave 

P wave 

SiC-A1 - -  c = 0.05 
h/ao=O.O . . . .  c = 0.15 

0.90 . . . . . . . . . . . . . . . . . . .  
0.0 1.0 2.0 

aoO9 /Cs 
Fig. 2 Effect of concentration c on phase velocities versus fre- 
quency for effective P and S waves 

Case II. 

( r - a o ~  
/~ i i (F )  = ( ~  - / ~ 0 ) [ T  ) "-b /~0 

/Zil(r ) = (/J, -- /.ZO) + /% (a  o _< r _< a o + h )  

/ r - a o )  
P i , ( r )  = ( O - O o ) [ - - ~ - -  + Po (33) 

Case III. 

( r -  (ao + h/2) )3 h + ho 
bin(r) = 4 (h  - Ao) h + 

( r - ( a o + h / 2 ) )  3 
~ l l i ( r )  = 4( /z  - /z0) h + /z + /z o 

2 

X(a0  -< r _< ao + h)  

( r -  (ao + h/2) } 3 
p r o ( r )  = 4( p - P0) h + - -  p + 2 P0 (34) 

Case III  approximates actual interfacial layers best, next does 
Case II and the third, Case I. The material properties of the 
layers given above are calculated at the midpoint of each 
layer assuming variations of Cases I, II, III from the bound- 
ary of the inclusion to the matrix medium. It is found that the 
truncation after 1 = 8 in Eqs. (28), (29) gives practically 
adequate results at any desired frequency for 0 < aoo~/G 
< 2.0. 

Figure 2 shows the variations of the phase velocities 
Re(kp/Kp), Re(ks/K s) of the effective P and S waves with 
the frequency a o offG for h/a o = 0.0. The solid curves refer 
to the case c = 0.05 and the dashed curves refer to c = 0.15. 
The quantities Re(kp/Kp), Re(ks/K s) decay at a slower rate 
as the frequency increases. The P and S wave curves for 
c = 0.15 possess higher amplitudes than those for c = 0.05. 
Figure 3 shows the variations of the attenuations Im(Kp/kp), 
Im (Ks/k s) of the effective P and S waves with the frequency 
aow/C ~ for h/a o = 0.0 and c = 0.05, 0.15. The attenuations 
also increase in magnitude with the increasing volume con- 
centration c. Datta et al. (1988) previously considered the 
influence of thin interracial layers on elastic wave propaga- 
tion in a particle-reinforced composites• The present results 
are, in the limit as h/a o ~ O, in agreement with the results in 
Datta et al. (1988). 

Figure 4 shows the variation of the scattering cross-section 

1 0 - 2 ~  

10-3~ - / /Af /  ~ ~ Pwave 
I / f /  " - - - -  I 

"~ L i ' l l  - - -  c=O.15 
~ 10-4I 1 / /  

SiC-A1 

0.0 1.0 2.0 
aoo9 /Cs 

Fig. 3 Effect of concentration c on attenuations versus frequency 
for effective P and S waves 

0.235 

0 .230  

0.225 

I I I 

c = 0 . 0 ( S i n g l e  Sca t t e r e r )  
h/ao=O.1 
aoOg/G=l.0 
Case  II  

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

0.220 I / / / / / / [  ~°'"°'~° 

~,,,~ f ~:~sa~ I 
Matrix I - - ' - "  I Inclusion 

0.215 . . . . . . . .  ,h 

0 10 20 30 
n 

Fig. 4 Scattering cross-section versus n for P wave scattering 

4 0  

E,/ao 2 of the P wave with the number  of layers n for Case II 
an'd c = 0.0 (single scatterer), h/ao = 0.1, aooffc s = 1.0. Case 
II refers to the case of the interface material through which 
the elastic properties vary linearly from those of the inclu- 
sions to those of the matrix. It is found that the truncation 
after n = 30 gives practically adequate results for Cases II 
and III. The effect of the interface layer on Eo/ao z at aoo~/c s 
= 1.0 for c = 0.0 (single scatterer) is shown m Fig. 5. The 
figure shows that the cross section E./ao 2 increases with the 
h/a o ratio, and depends on the const~ituents and the nature 
of the interface layer. In Fig. 6, the scattering cross-sections 
Ep/a~, EJao 2 of the P and S waves are plotted as functions of 
the frequency aow/G for c = 0•0 (single scatterer). The 
dashed curves refer to the case h/a o = 0.0 and the solid 
curves refer to h/a o = 0.1. The interface material for Case 
III is considered. The scattering cross-sections for Case I are 
obtained by Paskaramoorthy et al. (1988) using a finite ele- 
ment  and eigenfunction expansion method. Case I refers to 
the case in which the interface material possesses constant 
properties. The present results for Case I are in good agree- 
ment  with these previously published results. 

Figure 7 shows the variations of the phase velocities 
Re(kp/Kp), Re(ks/K ~) of the effective P and S waves with 
the frequency a o o~/c s for Case III and c = 0.1, h/a o = 0.0, 
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0.1. The phase velocities decrease with the frequency and the 
interface effect increases the phase velocities. Figure 8 shows 
the variations of the attenuations Im(Kp/kp), Im(K,/k,) of 
the effective P and S waves with the frequency aooo/c , for 
Case III and c = 0.1, h/a o = 0.0, 0.1. The attenuations in- 
crease with the frequency and the interface effect on the 
attenuations is pronounced. The existence of the interface 
layers produces bigger values of the attenuations. 

In conclusion, scattering of compressional and shear waves 
by a spherical inclusion with a thick nonhomogeneous inter- 
face layer was analyzed and the results of the single scatter- 
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ing problem were applied to coherent plane waves in a metal 
matrix composite with interface layers. The interface effect 
can increase scattering cross-sections, phase velocities and 
attenuations, and depends on the frequency and the material 
properties of the interface layers. The numerical results were 
obtained for any given finite frequencies, and layers with 
nonhomogeneous elastic properties of any desired finite 
thickness. We show that it is possible to control the phase 
velocities and attenuations quantitatively by appropriately 
modifying the interface properties through process control. 
Also, effective Lain6 constants Aef f and ~eff can be easily 
obtained from the phase velocities Re(kJKe) , Re(kJK s) of 
the effective P and S waves as follows: 
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[ Aef f + 2~a  f = (A + 2~) 1 + c -~- - 1 

/ z e f f = / x [ l + c { ( ~ - 1 )  

k 2 
- -  R s 

In the above equations, ~ and H are 

3 
faa°+hpc(r)r2dr (C = I, II, III) P= Ha---~ o 

H =  ( h ) 3 + 3 ( h ) 2 + 3 ( h ) .  (36) 

We hope to analyze the effects of interface delamination and 
multiple scattering by a distribution of inclusions on macro- 
scopic materials properties of composites further in the fu- 
ture. 
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A P P E N D I X  A 
Spherical vector wave functions .t.~k1,1(3) M(k32, l~kl'(3) in Eq. (6) 

are 

[ ~rh~l)( kp r) ,(3.) e / ( co s  0)e~ l.akl 

1 a 
+h~O(kpr) 7 ~ P [  (cos 0)e o 

+ r sin ohtl)(kpr)P[(cos 0)% e i~¢° 

M(kJ] = [ si@oh'll( k,r)P?(cos O )eo 

-@)(ksr)~oP?(cos O)% ]e i~ 

N(k~ ) = [l(1 +r 1) htO(k'r)P~(c°s O)e~ 

1 0 0 
+ - - -  {rhll)(k,r)} ~P t  k (COS 0 )% 

r Or 

ik 8 { rh l l ) (ksr )}P[(cos  O)%]eik ,  ~ 
+ r sin 0 ar 

(A1) 

where hill( ) is the lth order spherical Hankel function of 
the first kind and P[( ) is the associated Legendre function 
of the first kind. Spherical vector wave function r(3)m MQ)m Xakl , let 
N(k~ )m in Eqs. (7) are obtained by replacing ke,k s by k~,k~ 
in Eqs. (All. L ~  m, MElt TM, N(k~ TM are also obtamed by replac- 
ing hta)() by the lth order spherical Bessel function of the 
first kind Jl( ) in Eqs. (All. Spherical vector wave functions 
L~] °, M(k~ )°, N(k~ )° in Eq. (8) are obtained by replacing h~l)(), 
kp,k s by Jr( ),kp °, k°, respectively, in Eqs. (A1). 

A P P E N D I X  B 
The matrices L/t, N~ in the first equation of (20) are 

I2 t L~i L'~2 ]' [ NEt~ N~ i 
(A2) 

L~t = 12 - 1 jt(kpan) + 2kpajt+l(kpa,) 

L~2 l(l + 1){(1 - 1)jt(ksan) - ksanJi+l(ksan) } , 
Ll~l ( l  -- 1 ) j l ( kpan )  -- kpan j l+ l (kpan)  [ 

( (ksan) 2 ~. . J L1~2 II  2 -  1 ~ -  I J l (ksan)  + ksanJl+l(ksan)  

(A3) 
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N(~ = ljt( kpan )" - kpanj,+ ,( kpan ) ] 

N~i~ = l(l + 1)jt(ksa") I . (A4) 
Nd~ =jt(kpan) 

udi~ = (l + 1)jt(ksan) - ksa,,jt+,(k,a,, ) 

The matrices Kt, M l in the second equation of (20) are 
obtained by replacing the/th order spherical Bessel function 
of the first kind jr( ) by the /th order spherical Hankel 
function of the first kind h/l~( ) in Eqs. (A2)-(A4). The 
matrices L~n(am ), N~'(a m) in Eqs. (21) are obtained by replac- 
ing kpan,ksa n by k~am,k~a m in Eqs. (A2)-(A4). Kin(am), 
M~n(am ) are also obtained by replacing Jr(), kpan,ksan by 
hi1)( ),k~am,k~'am, respectively, in Eqs. (A2)-(A4). The ma- 
trices L~, Nt ° in Eqs. (22) are obtained by replacing kpan, 
ksa n by kp°ao,k~°ao in Eqs. (A2)-(A4). 

A P P E N D I X  C 

The far-field scattering amplitude for the scattering P 

waves g(O, 4a) and the far-field scattering amplitudes in the 0 
and 4~ directions for the scattering S waves hl(O , 4~), h2(O, 
q~) are 

z~ 

g(O, 4~) = Y'~ Aot(-i)iPt(cos O) (A5) 
/=0 

® l 0 

hi(0,  ~b)= l~Ok_~l(--i)l(Ckl~Plk(cosO) 

Bkl k } 
+ k--~- sin----0 P~( cos 0) e ~k4 (A6) 

h2(0, q~) = - E E 
l=0k=- I  

(-- i) l+l{Ckt~Ptk(cos O) 

+ ~ Plk( COS 0) e iI'~ (A7) 
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Integral Equation Method via 
Domain Decomposition and 
Collocation for Scattering 
Problems 
In this paper an exterior domain decomposition (DD) method based on the boundary 
element (BE) formulation for the solutions of two or three-dimensional time-harmonic 
scattering problems in acoustic media is described. It is known that the requirement of 
large memory and intensive computation has been one of the major obstacles for 
solving large scale high-frequency acoustic systems using the traditional nonloeal BE 
formulations due to the fully populated resultant matrix generated from the BE 
discretization. The essence of this study is to decouple, through DD of the problem-de- 
fined exterior region, the original problem into arbitrary subproblems with data sharing 
only at the interfaces. By decomposing the exterior infinite domain into appropriate 
number of infinite subdomains, this method not only ensures the validity of the 
formulation for all frequencies but also leads to a diagonalized, bloekwise-banded 
system of discretized equations, for which the solution requires only O(N) multiplica- 
tions, where N is the number of unknowns on the scatterer surface. The size of an 
individual submatrix that is associated with a subdomain may be determined by the 
user, and may be selected such that the restriction due to the memory limitation of a 
given computer may be accommodated. In addition, the method may suit for parallel 
processing since the data associated with each subdomain (impedance matrices, load 
vectors, etc.) may be generated in parallel, and the communication needed will be only 
for the interface values. Most significantly, unlike the existing boundary integral-based 
formulations valid for all frequencies, out" method avoids the use of both the 
hypersingular operators and the double integrals, therefore reducing the computational 
effort. Numerical experiments have been conducted for rigid cylindrical scatterers 
subjected to a plane incident wave. The results have demonstrated the accuracy of the 
method for wave numbers ranging from 0 to 30, both directly on the scatterer and in the 
far-field, and have confirmed that the procedure is valid for critical frequencies. 

1 Introduction 
In this paper we are concerned with the problem of 

scattering by a rigid obstacle in an acoustic medium, and its 
solution via localized boundary integral equation methods, 
which is intended as a prototype for a class of more general 
scattering problems that occur in such diverse fields as elas- 
todynamics and electromagnetism. 

Boundary element methods have been widely used for 
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SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOUR- 
NAL OF APPLIED MECHANICS. 
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JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, May 
17, 1993; final revision, Sept. 27, 1993. Associate Technical Editor: R. L. 
Huston. 

studying problems of wave scattering by rigid or deformable 
bodies submerged in a compressible, inviscid fluid because of 
their ability to reduce by one the dimension of the problems. 
For exterior problems, they have the added attraction of 
automatically satisfying the appropriate radiation conditions. 
Some recent work on applications of BE methods to wave 
scattering problems may be found, among others, in Jean and 
Mathews (1990), Krishnasamy et al. (1990), Seybert et al. 
(1988), and Zeng et al. (1992a). Survey is also available in, 
e.g., Amini and Harris (1990), Givoli (1991), and Zeng (1992b). 
The price one pays for this reduction in problem dimension- 
ality is that, contrary to partial differential equation formula- 
tions in the domain, which upon discretization lead to large 
but sparse algebraic systems, boundary formulations give rise 
to smaller but full systems of equations. The nonlocality of 
boundary methods makes their use difficult in practice for 
problems that involve radiating or scattering bodies if the 
wavelength of the excitation is small compared to the largest 
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po f~ 

Fig. 1 Rigid scatterer immersed in a compressible, inviscid fluid 

dimension of the body, even with the largest computers now 
available. This difficulty has been addressed in the domain 
finite element and finite differences communities by develop- 
ing infinite elements (Zienkiewicz et al., 1985) and artificial 
absorbing boundaries (Givoli, 1991). There has also been 
some effort to overcome this difficulty associated with bound- 
ary elements through localization. In the early 1980s, Kagawa 
et al. (1983) developed an infinite boundary element tech- 
nique for two-dimensional problems that produced sparse 
impedance matrices, but due perhaps to the somewhat ad-hoc 
procedure used in their derivation, such infinite elements 
have not been adopted in practice. More recently, using 
novel basis and testing functions, Canning (1990) developed a 
technique that localizes the important interactions within the 
impedance (or compliance) matrix to only a small number of 
entries. A systematic variational boundary integral equation 
methods based on an exterior domain decomposition has 
been developed by Zeng et al. (1992a) for directly generating 
sparse, symmetric, impedance matrices. This method involves 
the use of double-integrals as well as the normal derivative of 
the double-layer potential, i.e., a hypersingular operator, to 
derive a stable procedure that is valid for all frequencies. 

In this paper, we describe a new BE method based on the 
domain decomposition of the exterior region in the spirit of 
(Zeng et al., 1992a) in order to obtain a new sparse formula- 
tion that avoids the double integrals and the hypersingular 
operators. In the rest of this paper, we describe the proposed 
methodology as it applies to rigid three-dimensional scatter- 
ers (the extension to deformable bodies is straightforward), 
but illustrate its applicability with numerical examples in two 
dimensions, for wave numbers in the range of 0 to 30. 

2 Statement of Problem and Formulation 

Consider the geometry shown in Fig. 1. The region Ill in 
R 3 is occupied by a rigid scatterer, with boundary F, and 
exterior l~ +, which represents a homogeneous, compressible, 
inviscid fluid with density p and speed of sound c. We 
assume that there is an incident steady-state harmonic fluid 
motion given by a pressure P°(x, t) = Re[p°(x) exp (/tot)], 
where to is the frequency of excitation, and that the scatterer 
is held fixed. We denote the total pressure in the fluid by 
Q(x, t) = Re[q(x) exp (/tot)], and the scattered pressure by 
P(x, t) = Re[p(x) exp (itot)] = Q - po. The scattering prob- 
lem then consists in finding p such that 

V 2 p + k 2 p = O ,  i n n + ,  P n =  -P~,  o n F ,  ( la ,  b) 

p satisfies a radiation condition in 12 ÷, ( l c )  

where k :  -= to2/c2, n is the outward unit vector normal to F 
and the subscript n denotes normal derivative. Equation (la) 
is the standard Helmholtz equation that governs the pressure 
in the fluid, and (lb) is the Neumann condition that requires 
the normal velocity of the fluid of vanish at the interface F 
with the scatterer. 

In order to solve subsequently this problem we decompose 
the exterior region ~+  into M subdomains Sq m, with F m 
denoting the boundary of Ore, and F~ the part of the 
interface F common to F m, as shown in Fig. 2. By renaming 

~n ~ ~m n m + l ~  III m-I / n m 

m I -'m 
~m+l 

1 Qm- 

Qi / QM 

Fig. 2 Scatterer and fluid, showing partitioning into macro-ele- 
ments 

p within ~m as p('~), (1) may then be rewritten as follows: 

V2p (m) + k2p (m) = 0, in l~ m, m = 1, 2 . . . . .  M, (2a) 

p(i) = p(/), p~ii) = _p(5), on F iN F j, 

i , j =  1,2 . . . . .  M, (2b, c) 
p(m) o n m = Pn, on Fm ~, m = 1, 2 . . . . .  M, (2d)  

p(m) satisfies a radiation condition, m = 1, 2 . . . . .  M. 

(2e) 

To actually ensure that (2a) and (2e) are satisfied by p{,n}, we 
make use of Helmholtz representation formula: 

p(m)= IDrn[p(m)] _ Sm[p~nmn)] ' in ~ ' ,  (3) 

in which 8 m and ~m are the single and double layers: 

8,,[ g ] (x )  =- fvmX(Y)G(lx - yl)dVm(y), (4a) 

9 
~m[ X](X) --= f v m g ( Y ) ~ n G ( I x  - yl)arm(y) ,  (4b) 

and G(z) is the fundamental singularity, or Green's function, 
for (la, c), 

1 
G ( z )  ~ 47rz exp (ikz), in R ~, 

i 
G(z )  =- -~ H~o2)(ikz), in R 2. (5a, b) 

Thus, p(m) in (3) automatically satisfies (2a) and (2e) for 
arbitrary p(m) and n (m) For smooth X and F one has the r n  m • 
jump relations 

1 
Sm[ ) ( ] -  = Sin[ X], ~m[ X] = ~X + Dm[ X], (6a,b)  

where the minus sign denotes the limit on F m from om. 
Boundary integral methods based on Helmholtz representa- 
tion formula (3) are usually referred to as direct since the 
pressure p(m) at any point within the fluid is expressed 

(m) (m) directly in terms of the physical quantities p and Prim on 
the boundary. By using the symbols 4~ (m~ and ff/(m) to denote 
the values of p(m) and p~,~) on F m, (3) may be written as 

p ( m )  = ~)m[l~(m)] _ 8m[ff/(m)], in ~c~m, (7) 

From (6) and (7) it follows that 

1 
~t~ (m)- ~rn[t~ (m)] q- 8m[ff/(ra) ] = 0, on V m, 

m = l , 2  . . . . .  M. (8) 
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Equation (8) and the continuity conditions (2b, c) as well as 
the boundary condition (2d) are the basic relationship for the 
numerical implementation described in the next section. Us- 
ing ~b and ~b, conditions (2b, c) and (2d) may be written as 

(~(i) = ~fl(j), ~/(i) = _ @(j), on F ~ n F j ,  

i , j =  1,2 . . . . .  M, (9a, b) 

t~ (m) =p~,  on F~, m = 1, 2 . . . . .  M. (9c) 

Remarks. (i) For a given boundary condition (9c), the 
boundary integral Eq. (8) is valid for all frequencies. This 
follows directly from the fact that (8) has no critical frequen- 
cies since Om is unbounded. It is, thus, clear that decompos- 
ing ~+ into two or more unbounded subdomains, in addi- 
tion to leading to a local formulation, makes the present 
method free from the usual defect associated with standard 
integral formulations. 

(ii) The system of algebraic equations obtained upon 
discretization of the unknowns ~b m and q,m will be block- 
wise-banded since, like the finite element (FE) method, un- 
knowns in one subdomain are coupled only with those of 
neighboring subdomains. The size of the submatrix (block) of 
each subdomain may be adjusted to meet the requirement of 
a particular computer architecture. 

(iii) The present method promises condensation of ~/(m) 
in terms of ~b (m~, either sequentially or in parallel. The 
resultant system will be smaller yet still blockwise-banded. 

(iv) While the basic ideas behind the present exterior 
domain decomposition method come from (Zeng et al., 
1992a), the numerical implementation is simpler due to the 
fact that there are no hypersingular operators and double 
integrals in this formulation. 

3 Finite Element Discretization 
We consider here the numerical solution of the problem 

described in (8) and (9) using the collocation method and the 
FE discretization as in (Zeng et al., 1992a). To solve for 4(m~ 
and O (m), we first divide the boundary F m of each subdo- 
main f~(m) into finite elements (cf. Fig. 3) and let the govern- 
ing integral Eq. (8) be satisfied at the nodal points, 

1 
2ff)(k m) -- ~)m[ff)~ rn,] -q-" ~m[ '/'̀ m)~k l = 0, k = 1, 2, . . . , Kin, 

m = 1,2 . . . . .  M, (10) 

where K m is the number of nodal points on Fm. Since 4(s) 
and 4(J) must be continuous at the interface F ~ n F j, we 
select a single mesh for this interface and approximate ~b o) 
and 4u> on F i n  F j by identical interpolating functions 
defined by their nodal values. This ensures that ff will be 
continuous across the interfaces. The pressure derivatives 
transition conditions (cf. Eq. (9b)) 

~bk(i ) + ~b}j ) = 0, o n  F i n F 1, i, j = 1, 2 . . . .  M, (11) 

are also satisfied collocationally in our numerical scheme. 
For simplicity, o (i) and 0 (i) across the common boundary 
F ~ n FJ are interpolated using identical shape functions (or 
elements) in this study. Equations (10), (11), and the bound- 
ary condition 

Ok (m) = p2, on Fff, m = 1, 2 . . . . .  M (12) 

give sufficient number of equations to determine all the 4, 
and 6 unknowns. 

On F m, 4, (m~ and ~b (m~ may be approximated, in general, 
by standard finite elements. The shape functions for 4, (ml 
and ~b (m~ may be either constant, linear, or quadratic. In this 
study, we use a quadratic shape function that corresponds to 

i Infinite 
element 

Regular 
element 

~ ~ r  

. . . . . .  S ;" - o 

• middle node 

:p0 

Fig. 3 Boundary element mesh for a circular cylindrical scatterer 
(four macro-elements each comprised of three regular elements 
and an Infinite element on each ray and four regular elements on 
the arc) 

three-node element as shown in Fig. 3. Special treatment, 
hpwever, is required in order to represent these functions on 
F' n F ] due to the infinite extent of these interfaces. The 
procedure consists of introducing a strip of standard ele- 
ments on each interface F ' n  F] up to a certain distance 
away from F, and then using the mapped infinite elements 
developed originally for field equations by Zienkiewicz et al. 
(1985) to extend the solution to infinity. A detailed descrip- 
tion of these infinite elements, which are based on assumed 
approximating functions that vary harmonically with kr and 
decay asymptotically as 1/kr and 1 / v ; ~  in three and two 
dimensions, is given therein, and an account of how they 
apply to the boundary integral approach may be found in 
(Zeng et al., 1992a). 

To illustrate the condensation and the solution scheme of 
discretized system, it is convenient to consider two-dimen- 
sional scattering problems 2. Denote the three boundary seg- 
ments of a typical subdomain ~ m ,  as shown in Fig. 2, as Fff ~, 
F~', and F'2, where F~ and F_ m represent, respectively, the 
two, i.e., the right and the left, ray boundary segments of the 
subdomain, while F~ -= Fff is the boundary portion that has 
a finite length. Equation (10) may then be rewritten as 
follows: 

1 
~ff)~rnl_ Om[ff)~m,] "4- Sr~ [ff~k (m)]  = _ ~,0 [ , / , ( rn , ]  °mL ~,l'k J ,  

k = 1, 2 . . . . .  Km, (13) 

K'0 [ .i, (rn)] ¢ + [ ~ . (m)l  w h e r e  Sm[ffJk (m)] ~ OmtWk j 'q" Omttp. k j + Sr~/[@~ m)] 
SOr.Mm)l S ±l d#m)l rnt Wk J + m ,--~ j, and 

sO [ d,(m)]  f F G  ( mL ~k ] ~ IXk-- yl)6(y)dFg(y), 

• zk j -= Ixg -- yl)O(y)dr_~(y). (14a, b) 

2The three-dimensional  case is similar but  the number ing  scheme is 
more  cumbersome .  
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In matrix form, Eqs. (13) may be expressed as 

~(0m) / 
i-A(~) A(m2 ) A(~).A(~ ) A(~) ] ~(+m,/ (f~m,] 

~'~) A(~ , A<~ ) A(~ ' A(;' / ~(m'~=~f(+m)l, (15) 
LA< , A( rJ @~m)[ if(m)) 

in which ~(0 m), 4¢+ m), ~b(_ m) are the nodal point value vectors 
of @ corresponding to the boundary segments F~, Fm+, and 
I'L", respectively; ~(+m) and o(_m) are the nodal point value 
vectors of ~p corresponding to the segments F~ and F'J; 
whereas f(o m), f(+m), f(m) are known vectors associated with the 
boundary segments F~, F~, and F~, respectively. The con- 
densation procedure may be described as follows. First, we 
rewrite Eq. (15) as 

(~,~(om'I 

[A(~) A(~) l I~(+m) I [f(+m)} 
+[A(~ ) A(~)J ~£m)J=~f~ m)' (16a) 

and 

[A(~ ) A(~ ) A(;)]~ ~b(+m)~ 

+[A(~ ) A(~5)][ 0(m))  = {f(0m)}. (16b) 

Next from Eq. (16a), one can solve for [ 0~. m), O(f°] T in terms 
of [,b(0 "~, 4,(+ m), ~b(_m)] ~ to obtain 

I~(+ rn) f q~_m' / [ K(+m) ] / ~b(°m)/ 
- ( 1 7 )  o(_m,) ~q(m)) [ K~m) J [ ,(rn) ) 

Substituting the above expression into (16b) yields 

¢'(oml 
[K(0m,] ~ ,~n)~ = {q(0m,}. (18) 

(or') 
The assemblage process of expressions (17) and (18) into a 

system of global "stiffness" (impedance) equations is similar 
to the direct stiffness method in regular FE methods. The 
construction of the element stiffness matrix and load vector 
in the regular FE procedure now becomes the construction 
of an effective "stiffness" matrix and the associated "load" 
vector for the macro-element fire. It is apparent that expres- 
sions (18) give the equations that are associated with the 
nodal points on F~. To derive the equations that are associ- 
ated with points on F~, we denote the two macro-elements 
adjacent to fire as ~ and O n, respectively. The transition 
condition of the pressure derivative (11) may then be ex- 
pressed as 

{~_~m,} -F" {~("} : {0}, on F : ,  

{g~(_m)} + {O~,)} = {0}, on F'2 (19) 

Inserting Eq. (17) into the above equations yields 

[K(+m)]~(+m'~-I-t K(/,] ~(+/'} = {q(+m)} -t- {q~)) on r"  , -t-, 

(20a) 

and 

{ ~)(om) I (~(on) I 

~(m)] t~(_n)) 
(20b) 

It is obvious that (20a, b) give the equations that are associ- 
ated with the nodal points on boundaries F~ and F'J (cf. Eq. 
(10)), and the first terms at both the right and left-hand sides 
in Eqs. (20a, b) represent the contribution of the mth 
macro-element to the global system of equations. Thus, by 
combining (18) and (20a, b) and using the standard FE 
procedure, one arrives at the effective "stiffness" matrix equa- 
tion for the macro-element I~ m 

K(0 m) ~(0m) / (q(0 m, ] 
K(+m) ¢~(m)~ = ~q(+m)~, orK(m)~(m)=q(m), (21) 

K m, [qV') 
where  K (m) and q(m) represent the effective "stiffness" (im- 
pedance) matrix and "load" vector for the macro-element 
1~ m. Applying the direct stiffness method in FE technique, the 
"stiffness" matrices K (m) and "load" vectors q(m), m = 1. 2, 
. . . ,  M, are assembled into a system of global "stiffness" 
equations K ~ = q, which will be used to determine 'b. 

It is worthwhile to point out that in obtaining K (m) and 
q(m), all the computation is done within subdomain Ore. 
Therefore, one may perform the computation either sequen- 
tially or in parallel. Also, as in the standard FE method, only 
one "stiffness" matrix needs to be constructed for all the 
macro-elements that have the same geometric configuration 
and material properties, while the rest may be obtained by 
duplication. 

Remarks. The resultant system with M rays, N nodes 
directly on the scatterer surface, and L nodes on each ray 
has a total of N + M L  unknowns, and a bandwidth of 
2N/M + 3L. Thus the number of multiplications required to 
solve this system directly is in the order of (N + ML)(2N/M 
+ 3L) 2. Results of numerical experiments have shown that 
only a few nodes on each ray have already produced good 
results 3. Thus L can be a small number. If the number of 
rays is chosen in such a way that N/M remains constant or 
bounded for increasing N, the number of multiplications will 
be of order O(N) for large-scale problems. The correspond- 
ing memory requirement is of the order O(N) (double or 
single precision numbers) also. Comparing to the standard 
BE methods, which require O(N 3) multiplications for direct 
solution schemes and O(N 2) memory size, the present 
method seems to be more effective for solving large-scale 
problems. 

4 Numerical  Examples  
In order to assess the accuracy of our new procedure and 

to verify its validity for critical frequencies, we first apply it to 

3Examples in Section 4 use three transition elements along each ray. 
Additional results show that only one transition element already gives 
good results. 
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Table 1 Normalized scattered pressure (r/a)l l21p(r, o) l lp  ° at different locations (four 
angular partitions; three standard radial elements in each radial line) 

Locations of Test Points 
ka = 2.4048256 

Directly on Scatterer (r/a = 1) 
NO, of 

Elements 
8 
16 
32 

Exact 
No. of 

Elements 
8 
16 
32 

Exact 

Back Scatterer (270 °) Forward Scatterer (90 °) , Side Scatterer (0 °, 180 °) 
Real Imaginary Real Imaginary ReM Imaginary 

-0.8153 0 . 3 5 0 5  0.5678 1.3651 0.2366 0.1166 
-0.8077 0 . 3 4 3 1  0.5728 1.3339 0.2379 0.1140 
-0.8076 0 . 3 4 2 6  0.5732 1.3337 0.2382 0.1136 
-0.8074 I 0 . 3 4 3 0  0.5728 1.3363 0.2380 0.1133 

Far Field (r/a = 100) 
Back Scatter (270 °) Forward Scatter (90 °) Side Scatter (0°,180 °) 

-0.6517 -0.0600 -0.8225 0.4978 -0.0839 0.4132 
-0.6551] -0.0644 -0.8305 0.4971 -0.0890 0.4110 
-0.6551 -0.0645 -0.8312 0.4971 -0.0891 0.4111 
-0.65511 -0.0645 -0.8310 0.4972 -0.0890 0.4110 

ka = 8,6537279 
Directly on Scatterer (r/a = 1) 

No. of 
Elements 

16 
32 
64 

Exact 
No. of 

Elements 
16 
32 
64 

Exact 

Back Scatterer (270 °) Forward Scatterer (90 °) Side Scatterer (0 °, 180 °) 
Real I Imaginary Real Imaginary Real Imaginary 

-0.7117 = 0 . 6 4 7 6  0.5337 0.3545 0.3902 -0,0830 
-0.7725 0 . 6 0 1 9  0.5064 0.4264 0.3547 0.0793 
-0.7733 0.6045 0.5081 0.4274 0.3588 0.0774 
-0.7735 0 . 6 0 3 1  0.5058 0.4304 0.3576 0.0779 

Far Field (r/a = 100) 
Back Scatter (270 °) Forward Scatter (90 °) Side Scatter (0°,180 °) 

-0.7458 0.1714 1.8675 -0,9392 -0.0719 0.5559 
-0.66881 0.1668 1.8882 - 0 . 9 9 8 1  -0.0867 0.5178 
-0.6733 0.1694 1.8775 -0,9990 -0.0796 0.5189 
-0.67101 0.1697 1.8825 -1.0000 -0.0802 0.5174 

the same two-dimensional scattering problem for a fixed rigid 
circular cylinder of radius a to an incident plane wave of 
amplitude p0 as in (Zeng et al., 1992a). We consider the case 
with 4 angular partitions, for varying numbers of elements 
directly on the scatterer. Three regular elements will be 
placed along each ray, in addition to the finite element, as 
shown in Fig. 3. Since the infinite element approximations 
are based on large-distance asymptotic expansions, the pur- 
pose of the regular finite elements along radial lines is to 
serve as a transition between the scatterer and the region 
where the asymptotic solution becomes applicable. The size 
of this transition region obviously depends on the wave 
number. 

In all our calculations, three-noded quadratic isoparamet- 
ric elements are used to represent the boundary F, the 
pressure ¢(m), and the normal derivative of the pressure 
~0 (e). With these shape functions, all the entries of the 
individual submatrices in (15) are evaluated by ordinary 
Gauss-Legendre numerical integration using only four Gauss- 
ian points per standard element, except for the diagonal 
terms of the submatrices containing the singular operator Sin, 
and De, defined by (4a) and (4b), which are integrated after 
subtracting off singularities. Detailed description of the dis- 
cretization and integration schemes used in this study may be 
found in Zeng et al., (1992a) and Zeng, (1992b). 

In order to verify the new localized integral equation 
method, the integration over the infinite elements is first 
performed approximately by neglecting contributions beyond 
a radius of 100/k, and by subdividing the interval of integra- 
tion into 16 subintervals, each of which is integrated by a 
4-point Gauss-Legendre integration. The numerical results 
will show, however, that neglecting the tail end of the rays 
does not affect significantly the accuracy of the method. 

Table 1 gives the forward-scattered, the back-scattered, 
and the side-scattered normalized pressures in the fluid, both 
directly on the scatterer (r/a = 1) and in the far field (r/a = 

100), for two different normalized frequencies ka, calculated 
for different numbers of elements on the periphery of the 
scatterer. Note that the scattered pressure has been normal- 
ized by the amplitude of the incident wave and by the 
dimensionless radius at the observation point. The two par- 
ticular wave numbers correspond to critical frequencies of 
the problems and are selected to illustrate how the new 
localized boundary integral method performs for critical wave 
numbers for which ordinary integral methods fail. The tabu- 
lated results clearly show convergence to the corresponding 
exact solutions. Naturally, the number of elements required 
to attain a prescribed accuracy increases with the wave 
number, due to the reduced wave length. 

Figure 4 shows the amplitude of the scattered pressure at 
various locations, both on and outside the scatterer, for a 
wide range of frequencies. Exact solutions are represented by 
thick solid lines while dashed lines denote the approximate 
solutions from the DD-based BE formulation. The calcula- 
tions are performed for wave numbers ka from 0.001 to 30 
with a step-size of 0.1, using a varying number of elements on 
the boundary F as needed. Thus, while only 16 elements are 
sufficient at low frequencies, 128 elements are used for 
ka = 30. Up to this frequency the DD-based BE and the 
exact solutions are essentially indistinguishable. To show the 
poor performance of standard boundary integral formula- 
tions, results from directly solving the integral equation 
1/2p ÷ + D[p  + ] = - S[p~] using collocation method with the 
same number of nodes on F as that for the DD-based BE 
method are also shown in Fig. 4. The results shown in Fig. 4 
indicate that the standard BE method fails not only at the 
critical frequencies, as expected, but also performs poorly 
within a sizable interval around each frequency. As the wave 
number increases and the critical frequencies become clus- 
tered together, the solution deteriorates completely. 

To illustrate how the DD-based BE approximation for the 
total and scattered pressure compares with the exact solution 
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Fig. 4 Normalized amplitude of scattered pressure at various loca- 
tions as a function of wave number ((a) r / a  = 1, 0 =  270 dec; (b)  
r / a = l O O ,  0 =  270 dec, ( c ) r / a = l ,  0 =  0 dec, 180 dec, (d) r / a =  
100, # = 0  dec, 180 dec; (e) r / a = l ,  0 = 9 0  deg; ( f )  r / a = l O 0 ,  
0 = 90 deg) 
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i .......... Domain Decomposition 
2 - -  Exact f - - - - - - - - - - - - .  
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1 
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3 

2 (h) 

i ~ _ _ ~ _ . .  __....~ .__ . . . . . . .  ~-~ 

O, 
4! 
3 (i) 

21 ~ V . x / ~ / V ~ f  __~4 
0 

- " ~ L  _ (1).., 

90 180 270 0 90 180 270 ~ 6 0  

Angular Coordinate, 0 (in Degrees) 
Fig. 5 Normalized amplitude of total pressure, (a) - ( f ) ,  on scat- 
terer surface, and scattered pressure, (g) - ( I ) ,  In far-field ( r / a  = 
100), for different wave numbers as a function of angular position 
(a, g) ka = 1; (b, h) ka = 2.4048256; (c, i) ka = 8.6537278; (d, j )  
ka = 15; (e, k) ka = 20; (f, I )  ka = 30) 

Table 2 Effect of number of macro-elements (angular partitions) 
on normalized scattered pressure (r /a) l /21p(r,  O) l /p ° (ka=  
8.6537279, three standard radial elements in each radial line, 32 
elements on r = a 

Angular No. of 
Position Partitions 
Forward 8 
Scatter 4 

(0 = 90 °) Exact 
Side 8 

Scatter 4 
(0 = 0°,180 °) Exact 

Back 8 
Scatter 4 

(0 = 270 °) Exact 

Surface (r/a = 1) 
Real Imaginary 

0.5075 0.4264 
0.5081 0.4274 
0.5058 0.4339 
0.3581 0.0785 
0.3588 0.0774 
0.3675 0.0779 
-0.7735 0.6039 
-0.7733 0.6045 

I-0.7735 0.6031 

Far Field (r/a = 100) 
Real Imaginary 

1,8877 ~0,9989 
1.8877 -0.9990 
1.8825 -1.0000 
0.0804 0.5179 
0.0796 0.5189 
0.0802 0.5174 
0.6716 0.1695 
0.6733 0.1694 
0.6710 0.I697 

over the entire periphery of the scatterer and the far-field 
within the fluid, Figs. 5 ( a ) - 5 ( f )  depict the normalized ampli- 
tude of the total pressure on the surface of the scatterer as a 
function of the angular coordinate 0, for several wave num- 
bers, while Figs. 5 (g) -5( / )  show the corresponding scattered 
pressure at a distance r/a = 100. Again, the two solutions 
practically coincide, for all values of 0. These figures illus- 
trate how the normalized amplitude of the total pressure 
directly on the scatterer tends to 2, as for a flat scatterer, 
within the bulk of the insonified region and becomes small, 
and almost smooth, except for a small high frequency pertur- 
bation in the shadow region, as the wave number increases. 
Apart from this oscillatory behavior in the shadow region, the 
total pressure on the scatterer practically becomes indepen- 
dent of the wave number as the wave number becomes large. 
In the far field the same general oscillatory and smooth 
behavior occurs, except that the largest scattering occurs, of 
course, in front of the scatterer. 

Table 2 serves to examine how the change of the number 

of angular partitions affects the accuracy of the solution for a 
given wave number and for a fixed number of elements on 
the boundary of the scatterer. These results show that the 
solution is basically insensitive to the number of angular 
partitions. The main advantages of introducing a larger num- 
ber of angular partitions (macro-elements) are (1) to obtain a 
sparse global matrix which might simplify significantly the 
computation; (2) to best match the multiprocessor machine 
configuration if the problem is solved on a multiprocessor 
computer. 

Finally, to evaluate the presented method for more gen- 
eral scattering problems, we consider a scatterer that has a 
cross-section consisting of a square with side 2b and two 
half-circles of a radius b, a = 2b (cf. Fig. 6(c)). Figure 6 
shows the amplitude of the scattered pressure at various 
locations. All the results are generated by using 8 angular 
partitions with three regular elements placed along each ray. 
Since there is no analytical solution for this problem, for 
comparison, we also plot in Fig. 6 the results generated from 
the stable nonlocal boundary integral formulation given in 
(Zeng, 1992b). To illustrate the performance of the standard 
boundary integral formulation for this case, results from the 
standard BE method are also shown in this figure. Again, the 
calculation is performed for wave numbers ka from 0.001 to 
30. It is clear from Fig. 6 that while the present DD-based 
BE and the stable nonlocal BE solutions are essentially 
indistinguishable, the standard BE solution fails at and near 
the critical frequencies. 

5 Conclus ions  
The exterior domain decomposition method presented in 

this paper combines the BE method with the sparsity of 
algebraic systems ordinarily encountered only in domain dis- 
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Fig. 6 Normalized amplitude of scattered pressure at various loca- 
tions as a function of wave number ((a) r / b  = 1, 0 =  270 deg; (b)  
r / a  = 100, 0 =  270 deg; (c)  r / a  = 1, 0 =  0 deg, 180 deg; (d)  r / a  = 
100, # = 0  deg. 180 deg; (e) r / b = l ,  # = 9 0  deg; ( f )  r / a  = 100, 
O = 90 deg) 

cretization procedures. The main difference between our 
approach and the existing stable methodologies for acoustic 
scattering problems is that the new method uses exclusively 
single and double-layer potentials, avoiding completely both 
the hypersingular operator and the double integrals. There- 
fore, our method not only avoids the treatment of the hyper- 
singular operators in the traditional methods based on collo- 
cation but also eliminates the requirement of additional 
integrations of the double integrals in various variational- 
based formulations. 

From the initial examination of the results of numerical 

experiments it appears that the DD-based method provides a 
practical and accurate means for solving time-harmonic scat- 
tering problems at all frequencies. The procedure may be 
formally extended to more general situations, including radi- 
ation and scattering problems involving deformable inclu- 
sions and an elastic exterior. Its main potential, advantage 
over standard boundary integral equation methods lies pri- 
marily in its power to generate blockwise-banded, algebraic 
systems of equations. Moreover, by its very design, it may 
also lend itself naturally to the implementation on parallel 
machines. By appropriately selecting the number and loca- 
tion of the subdomains, this method offers the possibility of 
exploiting optimally the parallel features of a particular par- 
allel architecture. 
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Vibration Modes and Frequencies 
of Timoshenko Beams With 
Attached Rigid Bodies 
The equations of motion and boundary conditions for a free-free Timoshenko beam 
with rigid bodies attached at the endpoints are derived. The natural boundary 
conditions, for an end that has an attached rigid body, that include the effects of the 
body mass, first moment of mass, and moment of  inertia are included. The frequency 
equation for a free-free Timoshenko beam with rigid bodies attached at its' ends which 
includes all the effects mentioned above is presented and given in terms of the 
fundamental frequency equations for Timoshenko beams that have no attached rigid 
bodies. It is shown how any support~rigid-body condition may be easily obtained by 
inspection from the reported frequency equation. The mode shapes and the orthogonal- 
ity condition, which include the contribution of the rigid-body masses, first moments, 
and moments of inertia, are also developed. Finally, the effect of  the first moment of  the 
attached rigid bodies is considered in an illustrative example. 

1 Introduction 

Presently, vibrating beams are most frequently modeled 
using the BernouUi-Euler model of a beam. There are, how- 
ever, situations where the Bernoulli-Euler model is not the 
best choice, either because the beam being modeled is short 
and thick or because several modes need to be considered in 
the analysis. The Timoshenko beam model (Timoshenko, 
1921) is a more complete model in that it accounts for the 
effects of transverse shear and rotatory inertia and it is a 
better choice when the either of the above situations prevail 
(Timoshenko, 1974). In robotics applications it is sometimes 
the case that the robot links should be considered flexible 
and because of its superior completeness the Timoshenko 
beam theory would be a good choice to model the robot links 
with. Further, because robots carry payloads which can be 
frequently modeled as rigid bodies it is of interest to deter- 
mine the effect that the presence of an attached rigid body 
has on the natural frequencies and the modes of the beam. 

Huang (1961, 1964) used the coupled differential equa- 
tions presented by Timoshenko to determine the frequency 
equations and mode shapes for six common support condi- 
tions. Comparison is made between several important beam 
theories, including the classical (Bernoulli-Euler) beams, 
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shear beams, Rayleigh beams (Strutt (Lord Rayleigh), 1877), 
and Timoshenko beams. More recently Zu and Han (1992) 
have presented a parallel development to Huang's (1961, 
1964) but for a beam which is rotating about its longitudinal 
axis. 

Grant (1978) reports the frequency equations for the same 
boundary conditions as reported by Huang (1961) but with 
the effect of a particle mass at an arbitrary point along the 
beam included. The mode shapes for one of the fundamental 
boundary condition cases (supported-supported) are pre- 
sented and the orthogonality condition is also given. 

Bruch and Mitchell (1987) investigate the specific case of a 
cantilevered Timoshenko beam with a particle end mass. The 
boundary conditions for the free end with a mass attached 
are stated, as well as the frequency equation for the beam in 
question. The mode shapes for the beam-mass system are 
also presented. 

Liu (1989) suggests two ways in which the work of Bruch 
and Mitchell could be extended: (1) the addition of springs at 
the htlb to model inertial properties of the robotic arm, and 
(2) recognition that the center of mass of the tip body may 
not be coincident with the end of the beam. 

Storch and Gates (1985) also considered the case where 
the center of mass of the tip body has an arbitrary offset with 
respect to the beam attachment point. Using a Bernoulli- 
Euler formulation, they addressed the critical buckling fre- 
quencies, natural frequencies, and mode shapes of a can- 
tilever beam with an end rigid body subject to constant axial 
acceleration. They did not, however, note the effect of the 
offset center of mass on the beam dynamics. 

The purpose of this paper is to expand and generalize 
Huang's initial findings (1961, 1964). Using Hamilton's Princi- 
ple, the governing equations for a Timoshenko beam with 
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rigid bodies at either end are derived along with the neces- 
sary boundary conditions. The natural boundary conditions 
for an end that has an attached rigid body that include the 
effects of the body mass, first moment of mass, and moment 
of inertia are presented for the first time. Next, the frequency 
equation for the unrestrained Timoshenko beam with at- 
tached rigid bodies (including the zeroth, first, and second 
mass moment effects) is developed and is shown to degener- 
ate to any other support case in the appropriate limits of the 
end masses and inertias. As an example of the relevance of 
the degeneracy property, the frequency equation for the 
cantilever beam with an end mass found in Bruch and 
Mitchell (1987) is found directly from the generalized Timo- 
shenko frequency equation. This is simplified by expressing 
the frequency equation in terms of the fundamental fre- 
quency equations for Timoshenko beams that have no at- 
tached rigid bodies. The form in which the frequency equa- 
tion has been reported shows how the mass, first moment, 
and moment of inertia may combine in establishing the 
dominance of one term over the other. 

To compliment the frequency equation, the generalized 
mode shape for a free-free Timoshenko beam with attached 
rigid bodies is also presented. These mode shapes include the 
complete contributions of the rigid bodies. 

To complete the analytical presentation the generalized 
orthogonality conditions for the Timoshenko beam are given. 
The orthogonality condition includes the contribution of the 
rigid body masses, first moments, and moments of inertia. In 
conclusion, a numerical example which illustrates some inter- 
esting and, we believe, not previously known phenomena 
related to the effect that the first moment has on the natural 
frequency behavior of the beam is presented. 

2 Timoshenko Beam Equations 
The derivation begins with the kinetic and potential en- 

ergy expressions for a Timoshenko beam that has rigid bodies 
attached to its ends. The kinetic energy is given by 

1 c 
T = 2fo ( pA'92 + Plq/2)dx 

1 2 
+ ~ ( m 0 P  0 + mpPL2+ Jo~bo 2 + Jp~b~) 

+c0 ,0 o + CpY'L L (1) 

and the potential energy is given by 

V= 12 f LEI(o ~ Ox ]2 + KZGA (~ Oxoy _ ~O )2dx (2) 

Table I Force and natural boundary conditions for a Timo- 
shenko beam with attached rigid bodies 

Natural Forced 

0 m0 0  0'0=0 

El Oo] +Jp~L +C, fiL=O 
8X Jx=L 

ylx=0 = 0 

ylx=l. = 0 

0Ix=0 = 0 

Olx=c = 0 

where it has been assumed that the x-axis is coincident with 
the neutral axis of the beam. The notation ( ' )  implies differ- 
entiation with respect to time and m 0 is the mass at x = 0 
(hub mass), Co is the first moment of the mass at x = 0, J0 is 
the moment of inertia at x = 0, mp is the mass at x = L 
(payload mass), Cp is the first moment of the mass at x = L, 
and J .  is the moment of inertia at x = L. F . . . . .  

Application of Hamdton's Prmople over both dependent 
variables y(x, t) (displacement) and O(x, t) (bending slope) 
yields the following two coupled equations of motion: 

pAy-K2GA( 82y c~O) 
Ox ---2 ~x = 0 (3) 

and 

) pl~-  EITxO 2 - KEGA( ~x - ~ = 0  (4) 

as well as the forced and natural boundary conditions for the 
problem which include the effects of the attached masses. 

At  any one end, one of four possible boundary conditions 
must be specified. With reference to Table 1 the following 
cases may be specified. A "clamped" end would be specified 
by the enforcement of the two forced boundary conditions 
y = 0 and tp = 0. An unrestrained end is specified by the 
enforcement of the two natural boundary conditions that 
pertain to the end of interest. It is important to notice that 
the general natural boundary condition expressions are dif- 
ferent for opposite ends of the beam. When there is no body 
attached to an unrestrained end the unrestrained boundary 
condition has been referred to as a "free" end (Huang, 1961) 
where (y'  - 0 )  = 0 and 0 '  = 0, regardless of which end is 
free. The remaining two possible boundary conditions are the 

N o m e n c l a t u r e  

A = beam cross-sectional area 
Co, fo = first moment of the mass at 

x=O,~=O 
Cp, f l  = first moment of the mass at 

x = L , ~ = l  
E = Young's modulus 
G = shear modulus 
I = second moment of the area 

J0, q0 = moment of inertia at x = O, 
~ = 0  

Jp, q~ = moment of inertia at x = L, 
~ = 1  

L = beam length YL, Y1 = 
m o ,  P o  = m a s s  a t  x = 0 ,  ~ = 0  
mr,  p l = m a s s a t  x = L , ~ =  1 K 2 =  

rg = radius of gyration of the p = 
cross-section ~, ~ = 

rgp = radius of gyration of the ~bo, ~0 = 
rigid body attached at x = L ~L, ~0 = 

x, ~: = axial coordinates 
y, Y = transverse deflections w = 

Y0~ Y0 transverse deflections of 
x = 0 , ~ = 0  
transverse deflections of 
x = L , ~ = l  
shear correction factor 
volume mass density 
bending slopes 
bending slope at x = 0, ~ = 0 
bending slope at x = L, 
~ = 1  
natural frequency 
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combinations of the forced and natural boundary conditions. 
In the case where there is no body on the end, the combina- 
tion y = 0 and g / =  0 results in a "supported" (pinned) end 
(Huang, 1961), and the combination t# = 0 and (y'  - qJ) = 0 
is termed a rollered (White, 1992) or guided (Levinson and 
Cooke, 1982) end. The case of a rollered end where there is 
an end mass has not been treated previously. 

Equations (3) and (4) may be uncoupled to produce two 
fourth order equations in y and qJ; specifically 

c~ 4y p 3 4y + pA 0 2y 
El~x4  + P l K 2  G Ot 4 3t---5- 

and 

e44, 
EI ~x4 

p E l  ) c~4y 

- p I +  K2--- ~ c)x20t 2 0 (5) 

o e4* 02* 
- -  + p A - -  

+ pIK2 G at 4 dt  2 

( pEI ] 04* 
- pI + K2 G ] c)x23t 2 0. (6) 

NOW, assuming separation of variables in the form 

y(x ,  t)  = Y ( x ) d  wt and 4'(x, t) = q~(x)e j~t 

and by introducing the nondimensional length and coeffi- 
cients 

x pAL4w 2 I E1 
~ = ~  and b 2 - -  r 2 =  s 2 

EI ' AL  2 ' K2AGL 2 

the coupled Eqs. (3), (4) and uncoupled Eqs. (5), (6) may be 
expressed as 

S2'eI t" + (b2s2r  2 - 1)W + Y' /L = 0 (7) 

Y" + b2s2y - LxP '' = 0 (8)  

and 

yIV + b2(r 2 + s2)y,, + b2(b2r2s 2 _ 1)Y = 0 (9) 

W t V + b 2 ( r  2 + s 2 ) W , , + b 2 ( b 2 r 2 s 2 _  1 ) W =  0, (10) 

respectively. The nondimensional parameter b may be inter- 
preted as the nondimensional frequency, the parameter r is 
related to rotatory inertia effects, and the parameter s is 
related to shear effects. As noted by Huang (1964), the 
equation of motion for a Bernoulli-Euler beam may be 
obtained from the Timoshenko equations by setting r = s = 0 
(thus not including the effects of rotatory inertia or shear). 
Similarly, the equation of motion for a shear beam can be 
recovered by setting r = 0, and for a Rayleigh beam by 
setting s = 0. 

Using the separation of variables and the same nondimen- 
sionalization, the natural boundary conditions for an unre- 
strained beam with rigid bodies attached to the ends may be 
found to be 

Y' - q* + -~pob2s2y + fob2s2XI t = 0 (11) 
lt~=0 

- - Y '  - • p l b Z s 2 y -  f~b2s2~ = 0 (12) 
L L ~=1 

[ * ' + q o b 2 * + ~ f o b 2 Y ]  = 0  (13) 

where 

m 0 
Po = pAL ' 

mp C O Cp 
P~ = p A L '  fo = p A L  2 , f l  = p A L  2 , 

So Jp 
qo pAL3 and ql = pAL 3. 

The p~ are the nondimensional end masses, the ff~ are the 
nondimensional first moments, and the q~ are the nondimen- 
sional moments of inertia. 

The solutions to Eqs. (9) and (10) yield the following 
expressions for Y and ~F: 

Y = C 1 cosh (baG) + C2 sinh (bo~)  

+ C 3 cos (b/3~) + C 4 sin (b/3~) (15) 

= C'l sinh (boer) + C~ cosh (baG) 

+ C~ sin (b/3~) + C~ cos (b/3~) (16) 
where 

= ~ --~ ( r  2 + S 2) + (r  2 - 52) 2 + ~ (17)  

The Ci and C~ coefficients in the general solutions for Y and 
q* are related through Eqs. (7) and (8) by 

b (~2 + s 2) 
' C 1 or C1 L a 

b (OL 2 + S 2) 
' C 2 or  C2 L a 

- b  ( /32 -- $2) 

C~ L /3 C3 

L [1 - b2s2(~ 2 + r2)]C~ C 1 = 

L [1 - b252(o12 + r2)]C~ c2 = 

or 

- L  [1 + b 2 5 2 ( / 3 2 -  r2 ) ]C~  C 3 =  - ~ -  

b ( /32 -- $2) 
C~ L /3 C 4 or 

L 
C 4 =  ~ [ l + b 2 s 2 ( / 3 2 - r 2 ) ] C ; .  (18) 

The expression for a has caused confusion among re- 
searchers due to the fact that a becomes imaginary if 

( 4 
(r ~ _ s~)2 + g < (r ~ + s2). 

When c~ becomes imaginary, a substitution, in the form of 
a = jod, is needed (Huang, 1964) so that the solutions for Y 
and ~ become 

Y = C I cos (ba'~) + C2 sin (ba'~) 

+ C 3 cos (b/3s ~) + C 4 sin(b/3~:) (19) 

= jC~ sin ( ba'~ ) + C'2 cos ( ba'~ ) 

+ C~ sin (b/3~:) + C~ cos (b/3~:) (20) 

where j = f T T .  
Because (19) and (20) are different from (15) and (16) an 

alternate set of frequencies, or a "second spectrum" will 
result when they are used with the boundary conditions to 
produce a frequency equation. Discussion about the exis- 
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tence of the second spectrum of frequencies for the Timo- 
shenko beam has been lengthy including: Abbas and Thomas 
(1977), Anderson (1953), Barr (1956, 1993), Kapur (1966), 
Levinson and Cooke (1982), Stephen (1982), and Traill-Nash 
and Collar (1953), and remains a topic on which there are 
many opinions. Experimental confirmation of the existence 
of the second spectrum has been claimed by Barr (1993). 

3 Frequency Equations 
The frequency equation for an unsupported Timoshenko 

beam with rigid bodies attached at either end is obtained by 
applying the natural boundary conditions (11)-(14). Using 
this procedure, the frequency equation for the free-free 
Timoshenko beam with attached rigid bodies is 

oe/3o'r Fff - boefl2o.'y cosh (bc¢) cos (b/3)(Po + Pl)Fsr 

+ b/3o'v cosh ( ba ) cos ( b /3 )(  qo + ql)Frf 

+ a / 3 ( ( P o q o  - f ~ )  + ( P l q l  - fl2))Fcf 
+b2ot2/32,y2 sinh (bce)poplF,~ - bZy 2 sinh (ba)qoqlF,  r 

+b2a/3T 2 cosh ( b a ) ( p o q l  +plq0)Fsr 

+ b 3a /3 2o.,y cosh ( b a ) cos ( b /3 ) ( P l ( P o q o - f o  2) 

+Po(Plql  - fl2))Fcs - b3/3tYY cosh ( b a )  cos (b/3) 

X (q i (poqo  - fo 2) + qo(Plqm - fl2))F~r 

+b2a/3(poqo - fo2)(plql  - fl2)F¢¢ 

+2[  a/3(o" - r ) [cosh ( b a )  cos (b/3) - 1] 

+ ( a2o. + /327) sinh ( b a )  sin (b/3)] (f0 - f l )  

+2ba/3y[ /3  cosh ( b a )  sin (b/3) - a sinh ( b a )  cos (b/3)] 

× (P0fl  - P l fo)  + 2by[/3 sinh ( b a )  cos ( b e )  

- a  cosh ( b a )  sin (b /3)] (qof  1 - qafo) 

X [4(a  2 - / 3 2 )  sinh (ba) sin (b/3) 

- 8 a / 3  cosh (br) cos (b/3) + 2ba/3[(o" - r ) ( 2  + b y ) ] ] f o f  1 

+ G l ( f i ( P o q o - f ~ ) - f o ( P l q 1 - f 1 2 ) )  = 0 (21) 

where G 1 = 2b2[o~/3(o" - r)[l  - cosh (bot) cos (bfl)] - (oe2r 
+/32o-) sinh (ba)  sin (b/3)] and where 

, y =  (Ol2--k /32) ,  T = ( / 3 2 - - S  2) and o - =  ( a 2 . q - s 2 ) .  

The factors Fij, i, j E {f, c, r, s} are the frequency equations 
that may be found for beams that have no attached bodies. 
The subscripts indicate the particular constraint conditions: 
an f subscript represents a free end, s represents a sup- 
ported (pinned) end, r represents a rollered end, and c 
represents a clamped end (White, 1992). Equation (21) shows 
how the mass, the first moment of the mass, and the moment 
of inertia of an attached rigid body may combine in establish- 
ing the dominance of one term over another. 

If the center of mass of an attached rigid body is coinci- 
dent with its point of attachment on the neutral axis of the 
beam, the first moment effects are eliminated (f0 = fl = 0). 
For this case, the simplified frequency equation for the 
free-free Timoshenko beam with attached rigid bodies is 

ceflcrrFff - ba/32o.'y cosh ( ba ) cos ( bfl ) ( p  o + pl)Fsf 

+b/3o'7 cosh ( ba ) cos ( b/3 )(  qo + q 0 F a  

+a/3(poq  ° + plql)Fc f + b2ee2 f12,y2 sinh (ba)poplFss  

-b2T 2 sinh (ba)qoqlFrr 

+b2a/3T 2 cosh ( b a ) ( p o q  1 +plq0)Fsr 

+b3a/32tyy cosh ( ba ) cos ( b/3 )(  poPlqo + poplql)Fcs 

-b3/3cry cosh ( ba ) cos ( b/3 )(  poqoq 1 + plqoql)Fcr 

+baaBpoplqoqaF~c = 0 (22) 

3.1 Degeneracy. Despite the apparent complexity of the 
frequency equation for the general case, an interesting result 
arises: the specific basic support cases (combinations of free, 
supported, clamped, and rollered ends) are recovered in the 
appropriate limits of the end masses and inertias in the 
general case. Specifically, a free end with no attached rigid 
body is recovered as Pi ~ O, fi -~ O, and qi - - - - )  0; a simply 
supported end is recovered as Pi ~ co, fi "* O, and qi "-'* 0; a 
rollered end is recovered as Pi ~ O, fi ~ O, and qi ~ oo; and 
a clamped end is recovered as Pi ~ % fi ~ O, and qi ~ ~. 

This property makes it simple to recover the frequency 
equation for any other support case from the general fre- 
quency equation. As an illustration, consider the case of a 
cantilever beam carrying a payload, as presented by Bruch 
and Mitchell (1987). To recover the frequency equation for 
this specific support case from the generalized frequency 
equation, let P0 ~ % fo ~ 0, and qo ~ % while Pl and ql 
are finite numbers defined by the dimensions of the beam 
and the attached payload. As these limits are applied, any 
term containing both P0 and qo will dominate the frequency 
equation. Extracting these terms from the general frequency 
Eq. (22) gives the frequency equation of a cantilevered Timo- 
shenko beam with a rigid body attached at the tip as 

aFer + b3o.y cosh ( b a )  cos (bfl)(otf lplrcs - qlFcr) 

+ b2plqlFc~ = 0 (23) 

which agrees with the results obtained by Bruch and Mitchell 
(1987). Including the first moment effects would yield Eq. 
(31). 

3.2 Frequency Equations for the Basic Cases. To com- 
plete the equations presented above, the frequency equations 
for all the fundamental support cases not presented by Huang 
(1961) are given below. The frequency equation for the 
clamped-roller case (with no end masses) was presented by 
Levinson and Cooke (1982), while the frequency equations 
involving all the other rollered ends are previously unre- 
ported and are due to White (1992) and White and Heppler 
(1993). 

(a) roller-roller (Fr~ = 0) 

sin b/3 = 0 (24) 

(b) supported-roller (Fs~ = 0) 

cos b/3 = 0 (25) 

(c) clamped-roller (For = 0) 

tanh ( b a )  + ~,~ tan (b/3) = 0 (26) 

(d) roller-free (F~t = 0) 

t anh(ba)  + A tan (b/3) = 0 (27) 

where ;t = a//3 and ~" = (/32 - $2)/(0/2 -It- s 2) 

4 Mode Shapes 
The mode shapes for fi = 0 are reported here because the 

case in which f / ¢  0 is too lengthy. They may be found in 
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White and Heppler (1993). To form the mode shapes, any 
three boundary conditions may be used to eliminate three 
integration constants in terms of the remaining one. The 
mode shape plots will be identical, no matter what combina- 
tions of the boundary conditions are used, although the form 
of the equations may be quite different. The displacement 
mode shapes were derived by using the shear and moment 
conditions at the base, and the shear condition at the tip to 
affect the elimination. They may be expressed as 

Y = art1 cosh ( b a G )  + a'q2 sinh ( b a G )  

+ 'q3 cos (b/3~) +/3rt4 sin (b/3t~) (28) 

where 

~1 = flr[cosh (ba )  - cos (b/3)] + by sin (b/3)q o 

+b/3r[ a sinh (ba )  +/3 sin (b/3)]pl 

+b2/3[r cosh ( b a )  + o" cos (b/3)]poqo 

+b2 /37 cos ( b/3 )qop 1 

+b3/3[ar sinh ( b a )  - /3o" sin (b/3)]plqoPl 

~2 = - [ a 0 -  sin (b/3) + fir sinh ( b a ) ]  - bail T cos (b/3)p o 

+ba/3[t~ cos (b/3) + r cosh ( b a ) ] p l  

+bZr[ a sin (b/3) - fl sinh (ba)]poqo 

-b2a/32y sin ( b/3 )pop 1 

+ b3aflr[cos ( b/3 ) - cosh ( ba ) ]poqopl 

rt3 = afl0-[cosh (ba)  - cos (b/3)] - bfly sinh (ba)q  o 

+ba/30-[ a sinh ( b a )  + /3  sin (b13)]pl  

-b2a/3[r cosh ( b a )  + tr cos (b/3)]poqo 

-b2a/3y cosh ( ba )qop~ 

+b3a/3[/3o sin (b/3) - ~ r  sinh (ba)]poqopl 

and 

~4 = [/3r sinh ( b a )  + act sin (b/3)] + ba/37 cosh (ba )p  o 

+ba/3[r cosh ( b a )  + 0- cos (b13)lPl  

+b20-[a sin (b/3) - / 3  sinh (ba)]poqo 

+b2a2/3Y sinh (ba)pop  1 

+b3a/30-[cos (b/3) - cosh (ba)lPoqoPl.  

In a similar fashion, the • mode shape was formed using the 
shear and moment boundary conditions at the base, and the 
moment condition at the tip, which yielded 

= b r ~  1 cosh (baG) + brep 2 sinh (baG) 

+ b r ~  3 cos (b/3~) + b r ~  4 sin (b/3~) (29) 

where 

(I) 1 = 01/30" [COS (b/3) - cosh ( b a ) ]  - ba/32T sin (b/3)p o 

+bo'[a sin (b13) - 13 sinh (ba)]ql  

+bZa/310- cosh (ba )  + r cos (b/3 )]poqo 

+ bea/37 cos ( b/3 ) poql 

-b3[/30- sinh (ba)  + ar sin (b13)]poqoql 

ep 2 =/3[ao" sinh ( ba)  - 13r sin (b/3)] + b/37 cos (b/3 )q o 

+b/3[ o" cosh (ba )  + r cos (b/3 )]ql 

-b2  fl0-[ a sinh (ba)  + fl sin (bfl)]poq o 

-b2y sin (bfl)qoql + b3fl0-[cosh (ba)  - cos (bfl )]poqoq 1 

~3 = - a f l r [ c o s  (bf l )  - cosh ( b a ) ]  + ba 2 fly sinh (bo~)p o 

- b r [ / 3  sinh (ba)  - a sin (b/3)]ql 

-b2afl[0- cosh ( b a )  + r cos (b/3)]poqo 

-b2~/37 cosh ( ba )poq 1 

+ b 3 [ a r  sin (b/3) +/30- sinh (ba)]poqoql 

and 

qb 4 = a [ a 0 -  sinh ( b a )  - fir sin (b/3)] - b a y  cosh (ba)q  o 

-ba[0-  cosh (ba)  + r cos (b/3)]ql 

-bZar[/3 sin (b/3) + a sinh (ba)]poqo 

+b2y sinh (ba)qoq 1 

+baar[cosh ( ba ) - cos ( b/3 ) ]poqoql. 

Since not every combination of the Pi and qi are present in 
either mode shape, they do not exhibit the same degeneracy 
properties as the frequency equation for the case where the 
beam is unrestrained and has attached rigid bodies. How- 
ever, the mode shapes that correspond to combinations of 
Pi -+ 0 and qi ~ 0 limits may be recovered from the free-free 
mode shapes that include the contribution of the end masses, 
Eqs. (28) and (29) above. Any case which corresponds to 
Pi ~ oz or qi ~ ~ must be derived directly from the boundary 
conditions. 

If the limits of Pi --> 0 and qi ~ 0 are taken in the mode 
shapes above, one form of the massless free-flee mode shape 
is recovered. It is not the one presented in Huang (1964) 
because of a different choice of elimination boundary condi- 
tions, but Huang's form may be recovered through the mass- 
less free-free frequency equation. 

4.1 Orthogonality Conditions. The orthogonality condi- 
tion (White and Heppler, 1993) for the general free-free 
Timoshenko beam with rigid bodies attached to its ends is 
useful since it details the relationship between the different 
modes and provides a means by which they can be consis- 
tently assigned definite magnitudes, the so-called orthonor- 
malization procedure. The orthogonality relationship may be 
derived by using the coupled differential Eqs. (7) and (8) as 
well as the boundary conditions (11)-(14) and may be found 
to be 

1 
f01(yiYj + rg2*ixls") d~  + E [Pk(Y/Yj)Ik 

k=O 

+Lffk( q"i~ = Y i ~ )  Ik + L2qk(~I~j)  Ik] = 0 (30) 

where rg is the radius of gyration of the cross-section. The 
first term represents the contribution of the distributed beam 
mass, while the second term is the contribution of the masses 
of the attached rigid bodies. The first moments of the mass 
are given as coupling terms in the third term, and the 
moments of inertia of the attached rigid bodies contribute in 
the final term. The full development of the orthogonality 
condition may be found in White and Heppler (1993). 

5 First Moment  Effects 
To this point the effects of the first moment, C_, have P 

been assumed to be small and therefore have been neglected. 
To investigate the validity of this assumption the mass, Mp, 
of an attached rigid body is held constant while the first 
moment of the mass, Cp, and the moment of inertia, Jp, are 
varied. 
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5.1 Frequency Equation. To find the frequency equa- 
tion for the cantilever beam including first moment effects, 
let Po ~ % f0 ~ 0 and q0 ~ c~ in (21). Also, consider Pl,  
ql, and f t  as finite numbers defined by the dimensions of the 
beam and the attached payload. The frequency equation that 
results is 

ceil Fee + flb3o'T cosh (bo~) cos (bfl)(aflplFcs -- qlFer) 

+b213(plq~ - f~ )F~  + 2b2[o~f l (cr -  ~') 

× [1 - cosh (bc¢) cos (b/3)] 

-(o~2~-+ fl2cr)sinh(ba)sin(bfl)]fl=O (31) 

5.2 Results. The frequency Eq. (31) will now be used to 
determine the effect of including the first moment on the 
natural frequencies of the cantilever beam. 

The theoretical limit for Cp ranges from -Mprgp to 
+mprgp, with Jp ranging from 0 t o  Mpr2p, where rgp is the 
radius of gyration of the rigid body attached at the payload 
end. By varying rgp, the natural frequencies for the beam 
may be calculated for a variety of J_ and Cp values. Three- . . p' 
dimensional plots of nondlmenslonal natural frequency ver- 
sus q~ and f l  of the first and fifth natural frequencies for a 
cantilever beam with r = 0.02005, s = 0.02665, and Pl = 
0.9570 are shown in Figs. 1-2. 

The first mode exhibits monotonically declining values 
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Fig. 3 The effect of varying first moment for constant second 
moment, ql = 1.2694 

with increasing moment of inertia values which is as ex- 
pected. It also displays a monotonically declining behavior as 
the first moment varies from its extreme negative value to its 
extreme positive value. An examination of a set of plots of 
the frequency equation that are parametric in f l  shows that 
this behavior is only possible for the first mode but it is still 
unclear which terms in the actual frequency equation are 
governing this response• 

Although only the fifth mode is presented here, the second 
through fifth modes display similar behavior. The interesting 
point to note is the sharp increase in the natural frequency 
values near the outer limits of the theoretically possible 
range for C... This sharp increase arises due to the Plql - f~ 
term in Eq e. (31). This term passes through zero as Co is 
increased past its outer bounds, due to the fact that Plql L f~ 
when f l  = Mprgp or -Mp~rup. Thus 2in this region, the posi- 
tive contribution of the (P lq l - f a )  term is first greatly 
reduced, then eliminated, and then returned as a negative 
value as we cross the limiting values of Cp. In turn, the sharp 
increase in natural frequency results. Also note that in the 
region between - M J  and M r , the first moment has 

• t." g P  P g P  . 

virtually no effect on the natural frequenoes. Therefore, the 
assumption that first moment effects may be neglected ap- 
pears to be reasonable. 

The relationship between adjacent modes is also an inter- 
esting one. Figure 3 shows how the first five natural frequen- 
cies change for a fixed value of the moment of inertia, while 
varying the first moment. 

In this figure the shallow monotonic decline of the first 
frequency is evident as is the sharp increase in the frequency 
values when f l  takes on values that are outside the physically 
admissible range of values. It can also be observed that the 
"plateau" values for mode n - 1 approach, but never actu- 
ally reach, the "val ley 'values for mode n and that the depth 
of the "valley" increases with increasing mode number. 

6 Summary 
Using Hamilton's Principle, the differential equations of 

motion and boundary conditions for a Timoshenko beam 
with rigid bodies attached at either end are found. Utilizing 
the solutions to the equations of motion in the boundary 
conditions gives the frequency equation for the beam. Here it 
is noted that this generalized frequency equation is merely a 
weighted combination of each of the ten fundamental sup- 
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port cases, each of which may be recovered from the general- 
ized equation in the appropriate limits of the end masses and 
moments of inertia. The generalized mode shapes for both 
displacement and bending slope are then presented. The 
degeneration properties exhibited by the frequency equation 
are not present in the mode shapes. The mode shapes for 
different support cases may be found by taking limits in the 
boundary conditions of the problem. The general orthogonal- 
ity condition for the Timoshenko beam with attached masses 
has been reported. To investigate the assumption that first 
moment effects are negligible, the natural frequencies of a 
cantilever beam are plotted for varied values of the first 
moment and for the example presented here, provided that it 
is positive, the first moment does appear to be negligible. 
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Topological Optimization 
Technique for Free Vibration 
Problems 
A topological optimization technique using the conception of OMD (Optimal Material 
Distribution) is presented for flee vibration problems of a structure. A new objective 
function corresponding to multieigenvalue optimization is suggested for improving the 
solution of the eigenvalue optimization problem. An improved optimization algorithm is 
then applied to solve these problems, which is derived by the authors using a new 
convex generalized-linearization approach via a shift parameter which corresponds to 
the Lagrange multiplier and the use of the dual method. Finally, three example 
applications are given to substantiate the feasibility of the approaches presented in this 
paper. 

Introduction 
The newest development in structural optimal design is 

topology optimization. Even though the use of previous tech- 
niques which were developed for sizing optimization and 
shape optimization problems have made it possible to obtain 
the optimal size and shape of a structure, it is necessary to 
obtain an optimal topology for a truly optimal design. 

Optimization of the topology of a continuum structure was 
rarely attempted before Bends0e and Kikuchi (1988) pre- 
sented their method that is based on a simple idea of 
transforming the problem to find the OMD (Optimal Mate- 
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rial Distribution) within a specified design domain. It is 
assumed that the material is not homogeneous, but instead 
has a variable solid-cavity microstructure. By using the ho- 
mogenization method and mathematical tools of optimiza- 
tion, the OMD with respect to given loads and boundary 
conditions can be obtained. This process results in a truly 
optimal structure, and, theoretically, the final structure is 
optimal in topology, shape, and size. 

This idea has opened up a new dimension in structural 
optimization, and it has been successfully applied to the 
problems of structural static stiffness (e.g., Bends0e and 
Kikuchi, 1988; Suzuki and Kikuchi, 1990, 1991; Olhoff et al., 
t991). In the structural dynamic problem, a solution for the 
eigenvalue optimization has been obtained by Diaz and 
Kikuchi (1992) using an extension of the above method. 
Recently, Ma et al. (1992) have developed this method for 
solving frequency response optimization problems. However, 
a dynamic problem is quite different from the static one. It 
was shown (Ma et al., 1992) that even though the previous 
optimization algorithm, which is based on a traditional OC 
(Optimality Criteria) method, is well-convergent in static 
problems (Bends0e and Kikuchi, 1988), but does not work 
well in the dynamic case, especially when the exciting fre- 
quency becomes high. Therefore, an improved optimization 
algorithm was developed (Ma et al., 1992) in order to over- 
come the difficulty mentioned above. The basic idea in that 
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development is to make a convex generalized linearization 
approach using a shift parameter which corresponds to the 
Lagrange multiplier, and employs the dual method to sepa- 
rate a multivariables minimization problem to several one-di- 
mensional problems. Then an improved resizing rule is ob- 
tained, which has much better convergency and can be re- 
duced to the previous one if choosing a zero value as the shift 
parameter. The concept of convex linearization and the use 
of duality is also the basis of the widely used optimization 
methods CONLIN (Fleury and Braibant, 1986; Fleury, 1989) 
and MMA (Svanberg, 1987), but the new algorithm is more 
efficient and suitable for the problem. It has been shown that 
the new algorithm has the simplicity of the OC method, and 
it has good convergency in the frequency response problem 
(Ma et al., 1992). Several examples of the frequency response 
problem have been given in a previous report. In this paper, 
we shall develop the new technique to improve the solution 
of the eigenvalue optimization problem. 

As shown in this paper, in the eigenvalue optimization 
problem, if one follows a specified mode of the structure so 
as to optimize (usually maximize) its eigcnvalue, then the 
number of this mode may be changed within the optimization 
process. For example, if k is the original number of order of 
the mode, then during the optimization process it may change 
to k + p finally, where p > 0. In contrast, if we follow the 
number of modal order, e.g., to optimize the kth eigenvalue, 
then the mode being the object of optimization process may 
be changed to another one. In this case, the sensitivities of 
the objective function become discontinuous, and oscillation 
may be caused in the objective function within the optimiza- 
tion process (Fig. 10). In order to overcome this problem, a 
new objective function is suggested in this paper, which 
corresponds to a specified multieigenvalue optimization 
problem. It will be shown that the use of this objective 
function and the improved optimization algorithm mentioned 
above can greatly improve the solution, and can optimize not 
only a single eigenvalue but also multieigenvalues by choos- 
ing the weighting functions and shift parameter properly. 

First, the structural optimization problem is transformed 
to an OMD problem using a specified two-dimensional mi- 
crostructure. Then, a new objective function is proposed for 
improving the solution of the eigenvalue optimization prob- 
lem. The sensitivity analysis of the objective function is also 
given. An improved optimization algorithm is then presented 
for solving the problems. Finally, three examples are given to 
substantiate the feasibility of the approach presented in this 
paper. 

The O M D  Problem 

In general, a structural optimization problem can be con- 
ceived as an OMD (Optimal Material Distribution) problem 
within a prescribed admissible structural domain assuming 
the loading and boundary conditions to be given (Bends0e 
and Kikuchi, 1988; Olhoff et al., 1991; Ma et al., 1992). As 
shown in Fig. 1, it is considered that the structural domain is 
filled by a nonhomogeneous material that has a variable 
microstructure. To simplify the problem, in the plane-stress 
problem, we assume that the microstructure is formed inside 
an empty rectangle in a unit cell as shown in Fig. 1, where, a, 
b, and 0 are regarded as the design variables. The inside 
cavity of the microstructure is variable along with the design 
variables, a and b, while the microstructure becomes a 
complete void when a = b = 0, and a complete solid when 
a = b = 1. 0 stands for the rotation of the unit cell. 

In the optimization process, the microstructures are 
changed between empty and solid. Therefore, if the total 
amount of the material of the structure is assumed constant, 
then the pieces of the material are moved from one part of 
the structure to another while the optimization process pro- 

A 
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gresses (Fig. 2). By moving the material for the aim of 
reducing the objective function, finally we can obtain an 
OMD that gives the optimal structure. 

The linearly elastic coefficients Ei~kl and mass density p 
are utilized to characterize the prol~]em. Here, in general, 
Eijkl and p are functions of the spatial coordinate. It is 
assumed 

( ~ k t  in s°lid (Po in s°lid 
Eijkt = in cavity' P = 0 in cavity (1) 

where E~k l and P0 are the elasticity tensor and mass density 
of the solid portion in the structural domain, respectively. 

Using the homogenization method, the homogenized elas- 
tic coefficients E~.~t and mass density ph, which are corre- 
sponding to an unrotated cell, can be obtained as follows: 

h l fy( oxy I l fypdy (2) Eijkl : I~  Eijkl- Eijpq~y q ]dy, ph = [~  

where Y is the domain of the cell, and Xp ~t is the solution of 
the mierostructural problem that characterizes the microme- 
chanical behavior of the microstructure (Bends0e and 
Kikuchi, 1988; Ma et al., 1992). 

Finite element discretization can also be employed to solve 
the problem. For the free vibration problem, the fundamen- 
tal finite element equation can be written as 

(K - A~M)6~ = 0 (3) 

where A N stands for the nth eigenvalue of the structure 
(n = 1, 2 . . . .  ), and 4'n the corresponding eigenvector. M 
and K stand for the mass matrix and stiffness matrix, respec- 
tively. 

nel nel 
K =  A k e ,  M =  A m  e (4) 

e = l  e = l  

nel 
where A stands for the finite element assembly operator, 

e = l  
and, k e and m e are the element stiffness and mass matrices 
obtained by 

ke = f eBe DeBed ' me = peNe Neda 
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where B~ and N e stand for the strain shape function and 
shape function, respectively. D e = TerDhTe and Pe = ph are 
the rotated homogenized stiffness and mass density, where 
T e = Te(0) is the transformation matrix for the eth element. 

Assuming the design variables with respect to an arbitrary 
finite element £'~e a r e  ae, b e and 0e, then the element 
stiffness matrix ke and mass matrix m e are functions of ae, b~ 
and 0~, i.e., 

k e = ke (ae ,  b e, Oe), m e = m e ( a e ,  be) ( 6 )  

Eigenvalue Optimization Problem 

Objective Function. Maximizing a chosen eigenvalue of 
the system is usually used as the subject in an eigenvalue 
optimization problem (e.g., Olhoff, 1981). However, in the 
eigenvalue optimization problem, when one maximizes a 
lower eigenvalue, higher eigenvalues may fall down to the 
lower values. It means that if the optimization process is to 
follow a specified mode of the structure, then the order 
number of this mode may be changed during the optimiza- 
tion process. For example, at the beginning we may wish to 
optimize the kth eigenvalue, but finally the optimal solution 
obtained may correspond to the k + pth mode, where p > 0. 
Thus the problem is changed to an unexpected one. In 
contrast, if one follows the number of modal order, e.g., to 
optimize the kth eigenvalue, then the mode being optimized 
may change to another one. In this case, the sensitivities of 
the objective function become discontinuous, and may cause 
oscillation and divergence in the iterative process. In order to 
overcome this problem, a specified multieigenvalue optimiza- 
tion problem is suggested as 

Minimize f = - A  (7) 

where, 

= a m / E l  Aniwi A =  Ao + ~ wi _~ (8) 
A0 i i 

We label A as the mean eigenvalue, where Ani (n  i = nl, n2, 
. . . .  n m) are the chosen eigenvalues, and w i (i = 1, 2 . . . .  , 
rn) the given weighting coefficients. Ao is a specified shift 
parameter• It will be shown that this objective function can 
greatly improve the solution of the optimization problem, 
and it can be used to optimize either a single eigenvalue or 
multieigenvalue by choosing the shift parameter and weight- 
ing coefficients properly. 

In fact, if we assume m = 1, Eq. (8) is reduced to A = AnD 
and the optimization problem becomes one of maximimzing 

the nxth eigenvalue A~. In the general case, assuming ~ w~ 
i=~ 

= 1, Eq. (7) can be rewritten as 

Minimize g (9) 
where, 

1 ~ W i 
2., (lO) 

g A - AO i=1 Ani -- hO 

and f = - ( 1 / g  + h0). As shown in Eq. (10), the eigenvalue 
which is the closest to the shift parameter A 0 has the largest 
contribution to the objective function g, if assuming all of the 
weighting coefficients w~ (i = 1, 2 . . . . .  m) are the same. In 
the special case, h 0 = 0, the lowest eigenvalue in A,. (ni = n~, 

, . ! . . 

n2, . . . ,  n m )  has the largest contnbuuon to the objectwe 
function. Therefore, the eigenvalue that is the closest to h 0 
will be the major object of the optimization problem. This 
implies this eigenvalue will experience the largest change. 
When two modes exchange their order within the optimiza- 
tion process, where both eigenvalues are in Eq. (10), the 

change in the objective function will be smoother than in the 
case when one of these eigenvalues is not in A n ( n  i = nl, n2, • . . t 
• . . ,  n~). It xs because the contnbutmn of these modes must 
be smoothly changed once they have already been accounted 
for in the objective function. Moreover, by properly choosing 
different values as the weighting coefficients wi (i = 1, 2, 
. . . .  m), one can increase or reduce the contributions of the 
other eigenvalues in An. ( n  i = nl, n 2 . . . . .  n m) to make a 

• , . t , . L 

desired multle~genvalue optlm~zaUon. 
Note that the "singularities" o f  the optimal structure, 

which are discussed by (e.g., Olhoff, 1981), can also be 
avoided by using the new objective function presented here. 
This will be discussed in Example 2. 

Sensitivity Analysis. In the optimization process, the fi- 
nite element mesh is fixed, but the density of the material in 
an element is changed along with the design variables de- 
fined in Fig. 1. The sensitivity of the objective function with 
respect to an arbitrary design variable x can be obtained as 

8A (A,~- A0) 2 ~ W i OAni (11) 

OX E W i i=1 ( A n i -  AO) 2 CgX 
i=1 

where 

OAn i 

8x 

r [ OK 8 M  

v [ Oke Ome ~ 
= f ~ n i , e [ ~  -- ) tn i '~-) l~ni ,e  (12) 

(for x is a design variable of the finite element e) 

(refer, e.g., Ma and Hagiwara, 1991a) where ~ni, e stands for 
the component of nith eigenvector with respect to the eth 
finite element ~~e of the structure, and Oke/Ox and OmJOx  
are calculated by 

Üke = I z d D e  8me = f OOeNerNeda. (13) 
ox JaeB~ ax a d a '  Ox Jae Ox 

It should be noted that Eq. (12) is calculated at element 
level only. For example, if we use four-node quadrilateral 
elements, just 72 multiplications are needed for each deriva- 
tive calculation with respect to a design variable. Therefore, 
the sensitivity analysis using the method mentioned here is 
very simple and highly efficient, especially when compared to 
the use of a finite-difference method• 

If the structure has repeated eigenvalues, the sensitivity 
calculated by Eq. (12) will be incorrect. In this case a sensitiv- 
ity analysis method for systems with repeated eigenvalues can 
be employed to overcome this difficulty (e.g., Ma and Hagi- 
wara, 1991b). 

Constraint Function and its Sensitivity 
Consider a constraint of total mass of the structure: 

f a p e d a  _< V o (14) 

where V 0 is the given total mass of the structure. In the 
problem which uses the microstructure shown in Fig. 1, 
Pe = Po(ae + b e -  aebe), and the constraint function be- 
comes 

nel 

h ( a e , b e )  = E Po~-~e(ae + be - aebe) - Vo ~ O. ( 1 5 )  
e = l  
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Then the sensitivities of the constraint function with re- 
spect to design variables a e and b e c a n  be obtained as 

Oh Oh 
aae = P0Oe(1 - be) and ~ = p012e(1 - ae). (16) 

Constraints of the minimum and maximum values of a e 
and b e a r e  also considered for the problem 

ae_<ae_Nae, b e N b e _ < b e ,  ( e = l , 2  . . . . .  nel ) (17) 

where . .ae(be) and ge(be) stand for the minimum and maxi- 
mum values of the design variables ae(b~), respectively. 

O p t i m i z a t i o n  A l g o r i t h m  

In the general case, the optimization problem can be 
written as 

Minimizef (18) 
X , O  

Subject to h(X) _< O, (19a) 

~-~ Xi ~--" Xi,  ( i  = 1, 2 . . . . .  N )  (19b) 

where X = col{x/} (x  i ~ A u B), (9 = col(0 i} are vectors of 
the design variables, A and B stand for the set of design 
variables a i and bi, respectively; _._x i and 2 i are the minimum 
and maximum values of the design variables, xi, respectively; 
and N = 2net. 

It is very important to find an efficient updating rule for 
the optimization problem, because we may deal with thou- 
sands of design variables in a calculation. A previous updat- 
ing rule which bases on the OC method was employed by 
Bendsce and Kikuchi (1989) for updating the design variable 
vector X. Even though the optimization algorithm based on 
this updating rule is very efficient in computation and con- 
verges for the static problems, it does not work well in the 
dynamic case. Therefore, a new optimization algorithm was 
developed in order to overcome the difficulty mentioned 
above (Ma et al., 1992). 

We can prove this idea mathematically by using a general- 
ized reciprocal approximation, which linearizes the objective 
function with respect to the intermediate variables, and the 
dual method, which separates a multivariable optimization 
problem into several one-directional problems. 

The Lagrangian function of the optimization problem is 
defined as 

N 

L = f + h h +  E [ a - i ( x i - x i ) + a + i ( x , - $ i ) ]  (20) 
i = 1  

where h, a_ i, and a+i are the Lagrange multipliers. If 
assuming Eq. (19a) to be active, then we have h > 0. 

The basic idea in this development is to use a shift 
parameter which corresponds to the Lagrange multiplier to 
obtain a convex approach for the problem. Making a new 
objective function 

f*  = f - /zh (21)  

where /z is a given shift parameter, Eq. (20) can be rewritten 
a s  

N 

L = f *  + A*h + E [ a - i ( _ x i - x i )  + a + i ( X t  - 2 1 ) ]  (22) 
i = l  

where A* = A + p. Now we have a new optimization prob- 
lem, which is completely equivalent to the original one (Ma 
et al., 1992). 

Using a generalized reciprocal approximation, we assume 
intermediate linearization variables as 

Yi = , (i = 1, 2 . . . . .  N )  (23) 

where ~i(i = 1, 2 . . . . .  N )  are parameters which can be 
determined by the known property of the objective function. 
For example, if f is an almost linear function of 1/xi, ~c i = 1 
is a proper choice. In this paper, we assume ~a = ~2 = 

. . .  = SeN = S c. Then f*  can be linearly approximated in the 
space of Yi at Yi = Yi ~ = (xik) -~ (i = 1, 2 . . . . .  N )  as 

N 

f k  = fo ~ + ~ aikx7 ~ (24) 
i = 1  

where x~ (i = 1, 2 . . . . .  N) are the kth approximations of 
the design variables obtained in the preceding iteration step 
of the optimization process, and fo k is a constant, 

3f* 1 (  Of Oh t (x~) :~+1, 
a~ = ~ y i  lyi:yik = -- ~ ~ ~ X  i -- I&c~xi ]xi=x~ 

( i +  1,2 . . . . .  N) .  (25) 

If we choose the shift parameter /z in the kth iteration 
step as 

[ a f  / a h ]  
~ _ / . ~ / ~ / , , , : x ;  ( f o r / =  1,2 . . . . .  N)  (26) 

then we have a~ >_ 0 (i = 1, 2 . . . . .  N), and the approxima- 
tion of objective function f k  is convex as ~ > 0 and x/~ _> 0, 
(i = 1, 2 . . . . .  N). 

In this problem, the constraint function h is a linear 
function with respect to an individual design variable xi, 
therefore it can be linearly approximated as 

N 

h k = hko + ~ bikxi (27) 
i=1  

where h~ < 0 is a constant, and 

Oh 
bi k = -~ixilxi=ff, (bi k > 0 ; i  = 1, 2 . . . . .  U) .  (28) 

Assuming I k - and Ik+ are the sets of number of the design 
variables which result in the minimum and maximum values, 
respectively, and I k is the set of numbers of the other design 
variables, i.e., 

I k _ = {ilx, = _xi}, 1~ = {ilx i = x i } ,  

I k = { i l _ x i < x i < x i } .  (29) 

Then the Lagrangian function in the kth iteration, Eq. (22), 
can be approximated as 

L k ( X , ' A , a ) = l o  k +  E l l  + E l ~ i +  E l~i (30) 
i E l  k i E l  k - i~lk+ 

where, a stands for the vector of the Lagrange multipliers 
Ol i(i  ~ Ik_) and Ot+i(i E Ik+) .  

lo  =fo + Aho + E E (31) 
i ~ l  k _ i ~ l  k + 

li k = a~x;  ~ + hb ikx i ,  (for i ~ I k) (32a) 

lk_i=aikx~ - e +  Ab~x i -  a_ ix  i, ( f o r i ~ I ~ _ )  (32b) 

lk+i=afxy ~ + hb~x i +  a+ix i, ( f o r i ~ I k + )  (32c) 
and for simplicity, the index "*" on A is omitted. 
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Since the approximated Lagrangian function Lk(X, A, a )  
is convex, we can use the dual method to solve the problem 
(e.g., Haftka and Gurdal, 1992). The dual problem is defined 
by 

maX Lkm(A, a ) (33a) 
A, o~ 

subject to A > 0, a > 0 (33b) 

where 

L~(A, a )  = min Lk(X, A, a ) .  (34) 
x 

Because the minimization problem Eq. (34) is separable, it 
can be replaced with an N one-dimensional minimization 
problems as follows: 

( a )  For i ~ I~: min lik(Xi) = aikx7 ~ + abikxi (35) 
xi 

(b )  For i e I~_: min lk_i(xi) = a~xF ~ + Ab~x i -- Ol_iX i 
xi 

(36) 

(c)  For i ~ I~_: min l~_i(xi) = a~x[ ~ + abikxi + a+ixi • 
xi 

(37) 

Solving Eq. (35), we can obtain its solution as 

x~ = A-he/k, (for x/ < A-he/k <.2i) (38) 

where "O = 1/(~ + 1), and 

a h ~ / )  Ixi=x/k I (39) 

Solving Eqs. (36) and (37), we can obtain 

a - i  = _ ~Ca/~x;(,+ 1) q_ A, bi k = bik[ A. -- (e~/xi)l/n], 

(for A-ne~ _< xi) (40) 

and 

a+i=b~[(eik/2i)l /n-A],  (forA-neik>_2i). (41) 

Substituting Eqs. (38) (40), and (41) into Eqs. (31), (32), 
and (30) yields 

L k = f 0  k + Ahko + A i - n (  1 - 'I/) -1  E bi%i k (42) 
i ~ l  i 

where f0 k and hk 0 are constants. 
To solve the maximization problem Eq. (33), we have 

0L k 
=hk o + A - "  E bikei k =0" (43) 

OA i ~ l k  

Then the Lagrange multiplier can be obtained as 

- 1  E b~e~ . (44) 
A* = " ~ - i E l k  

It should be noted that because the sets I~., I k and Ik+ are 
dependent on the solution of Lagrange multiplier A*, an 
iterative calculation is required for obtaining A*. 

In summary, the improved optimization algorithm can be 
described by the following. 

(a) Give the initial value of the design variables, x/k 
(i = 1, 2 . . . . .  N)  and 0~ (i = 1, 2 . . . . .  net) for k = 0. 

(b) Solve the eigenvalue problem Eq. (3) with respect to 
X i = Xi k, 0 i = O~ 

(c) 
0 i = 0~. 

(d) Calculate ~k using 

(e) 

where 

Calculate Of/Ox i and Oh/Ox i with respect to x i = x k 

( of/oxi '~ 
IJ"k= l_<i_<gmaX " ~ i ) l x i = x i k  I • ( 4 5 )  

Calculate 

( f )  
using 

e~=b~x/k ,  ( i =  1,2 . . . . .  N )  (46) 

l ~ =  ( tzk-- ( cgf/aXi ]lxi=x~) c~h/Oxi ] (47) 

Determine the Lagrange multiplier by an inner loop 

- 1  
?tk= Y'~ bi%i k (48) 

w h e r e  ~k = (}[k)r/, 

'~ = hko + E b~-xi + E b~2i, (49) 
i ~ l  k - i E l  k + 

15 = {ileik/X _< _xi}, 

ik= {ilx, < # /x  < 

= { i l 4 / x  (50) 

(g) Modify the design variables as follows: 

x i if i ~ I~_ 

xik+l= eik/A k i f i ~ I  k , ( i = 1 , 2  . . . . .  N )  (51) 

2 i if i ~ Ik_ 

(h) Determine 0[ +1 using Of/O0 i = O. 
(i) Let k = k +  1, and repeat (b) to (h) until some 

convergence criteria are fulfilled. 
Obviously, this algorithm can also be extended to deal with 

the optimization problem with multiconstraints instead of 
Eq. (19a) in which just one constraint was considered. A 
discussion about this development will be left to a separate 
report. 

Examples 
Three examples will be shown in this section. One is to 

determine the optimal reinforcements for a given two-story 
planar frame. The others are to simulate the well-known 
optimum beam design problems, a simple-supported beam 
and a fixed-fixed supported beam. 

Example 1: Reinforcement Optimization of a Two-Story 
Planar Frame. In the optimal reinforcement problem, a 
core structure is specified at the beginning, and it is assumed 
to be unchanged in the optimization process. As shown in 
Fig. 3, the design domain is specified as a rectangle, 5.0 in 
horizontal length and 8.0 in vertical height with two fixed 
supported boundaries at the bottom of the domain. The 
design domain is filled by a nonhomogeneous material with 
the microstructure shown in Fig. 1, where, in the solid 
portion, Young's modules is E ° = 100, Poisson's ratio v = 0.3 
and mass density P0 = 1.0 × 10 -6. A finite element model of 
the design domain is generated by using 2,560 (40 x 64) 
four-node plane quadrilateral finite elements with 2,665 
nodes. Consequently, we have 5,330 D.O.Fs. for the struc- 
tural domain 7,680 design variables for the optimization 
process. 
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0.25 

0.25 

Fig. 3 Optimal reinforcement problem 

Mode 1 Mode 2 Mode 5 
(14.4 Hz) (42.1 Hz) (136.7 Hz) 

Fig. 4 Three eigenmofles of the core structure 

Table 1 Weighting coefficients for the optimization problems 

Wl w2 w3 w4 w5 

Case 1 1.0 . . . . . . . . . . . . . . . .  

Case 2 . . . .  1 .0 1 .0  . . . . . . . .  

Case 3 . . . . . . . .  1.0 1.0 .... 

Case 4 0.01 0.0l 0.001 1.0 .... 

Case 5 0.01 0.01 0.01 0.001 1.0 

Table 2 Optimal elgenfrequencles of the problems 

Hz fl f2 f3 f4 

Case 1 50.8 109.3 116.3 171.3 

(352%) (259%)  (127%)  (154%) 

Case 2 37.3 140.2 150.1 151.3 

(259%) (333%) (164%)  (136%) 

Case 3 21.5 77.3 163.8 191.7 

(149%) (183%) (179%) (172%) 

Case 4 35.9 94.5 100.2 269.3 
(249%) (224%) (110%)  (242%) 

Case 5 42.8 108.9 111.2 242.8 

(296%) (259%) (122%)  (218%) 

Initial 14.4 42.1 91.4 111.2 

f5 
183.3 

(134%) 

173.9 

(127%) 

198.7 

(145%) 

270.5 

(197%) 

270.7 

(198%) 

136.7 

Case 1 Case 2 Case 5 
Fig. 5 Optimal structures 

As shown in Fig. 3, a two-story planar frame with four 
concentrated masses is given as the core structure, where 
each concentrated mass is 5.0 × Pp. Figure 4 shows first, 
second, and fifth vibration modes of the core structure. 
These modes correspond to eigenfrequencies of 14.4 Hz, 42.1 
Hz, and 136.7 Hz, respectively. 

Within the optimization process, the material is added 
only to reinforce the core structure in the design domain. 
The constraint of total mass (except the concentrated masses) 
is specified as V 0 = 17.0 × P0 (the area of whole design 
domain is 40.0). Five cases, each case is corresponding to an 
eigenvalue optimization problem, are considered for optimiz- 
ing the lowest five eigenfrequencies, respectively, using the 
multieigenvalue optimization technique proposed in this pa- 
per. Table 1 shows the weighting coefficients used in these 
problems, where the shift parameter A0 = 0.0. 

As shown in Table 1, case 1 is a single eigenvalue opti- 
mization problem. The outer cases are multieigenvalue opti- 
mization problems where modes 2 and 3 are used for case 2; 
modes 3 and 4 for case 3; modes 1, 2, 3, and 4 for case 4; and 
modes 1, 2, 3, 4 and 5 for case 5. 

Table 2 shows the optimal eigenfrequencies obtained in 
each case. As shown in Table 2, all diagonal terms in the 
table have the largest value in their columns, respectively. 
This implies that the ith eigenfrequency has the greatest 
change in the case i than the other cases where i = 1, 2 , . . . ,  
5. The values of these eigenfrequencies are 50.8 Hz, 140.2 

Fig. 6 Final structure of the slngle-eigenvalue optimization 

Hz, 163.8 Hz, 269.3 Hz, and 270.7 Hz, respectively. Compar- 
ing these values with the initial ones, the improvements 
obtained in the lowest five eigenfrequencies are 252 percent, 
233 percent, 79 percent, 169 percent, and 98 percent, respec- 
tively. 

Three optimal structures of the reinforcement optimiza- 
tion problems are given in Fig. 5. As shown in Fig. 5, the 
optimal reinforcements are very different if the weighting 
coefficients are different. By comparing the optimal struc- 
tures in Fig. 5 with the mode shapes of the initial structure 
shown in Fig. 4, it is seen that reinforcement is added to 
resist the largest deformations in the mode shapes. Figure 6 
shows a divergent example which used the single eigenvalue 
optimization technique. It is shown that if just a single mode 
(in this case, mode 5) is used, the optimization process may 
be divergent, and finally the optimal structure cannot be 
obtained. This problem has been overcome by using the 
multieigenvalue optimization technique proposed in this pa- 
per. 
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[ 4 14 I~,J 
...................................................... I f, I f3 I f ,  [ q [ 

19.8 I 60.8 I 94.1 [ 106.01151.4 I 

Fig. 7 Initial structure 

w I w~ w~ w 4 w~ 
-- 1,0 . . . . . .  
f~ f2 f~ f¢ f~ 

35,6 179.5 191.5 200,4 207.5 
(a) One mode utilized 

-- 1.0 1.0 1.0 1.0 
f2 f3 f4 f~ 

(b) Four modes utilized I 27.8 I 175.01 274.01 279,91 409.8[ 

Fig. 8 Optimization for the second eigenvalue 

(a) One mode utilized 
w I w:~ w~ w 4 w 5 

1.0 1,0 1.0 

1.0 1.0 
fl f2 f3 f4 fs 

' 26.1 89.3 282.4 322.1 422.9 (b) Five modes utilized 

Fig. 9 Optimization for the third elgenvalue 

250 - 

200, 

¢t 

150 

1 0 0 '  

Fig. 10 

50 

• .... * ..... Freq. 3(SEe) 
....... o ....... Freq. 4(SEe) 

• Freq. 2(MEO) 
Freq. 3(MEO) 

• Freq. 4(MEO) 

; , 'o 5 

Iteration Numbers 
Changes of eigenfrequencles in the optimization process 

(a-1) V0 = 9.0 

Example 2: Layout Optimization of a Simple Supported 
Beam. In the optimal layout problem, only a design domain 
and boundary conditions are given. As shown in Fig. 7, the 
design domain is specified as a rectangle, 14.0 in horizontal 
length and 2.0 in vertical height with two simple supports at 
the left and right ends. This problem is similar to the well- 
known shape optimization problem of a simple supported 
beam (e.g., Olhoff, 1981). The finite element mesh is gener- 
ated using 700 (70 × 10) finite elements with 781 nodes, we 
the have 1,582 D.O.Fs. for the structural domain and 2,100 
design variables for the optimization process in this problem. 
As shown in Fig. 7, the lowest five eigenfrequencies of the 
initial structure are 19.8 Hz, 60.8 Hz, 94.1 Hz, 106.0 Hz, and 
151.4 Hz, respectively. 

Several cases are considered. In all cases the constraints of 
total mass are given as V 0 = 17.0 × P0 (the area of whole 
design domain is 28.0), and the shift parameter A 0 is assumed 
zero, Figs. 8 and 9 show the optimal layouts obtained using 
the technique presented in this paper. Figure 8 shows the 
results corresponding to the second eigenvalue optimization, 
where Fig 8(a) is obtained by using the second mode only, 
Fig. 8(b) modes 2, 3, 4, and 5. As shown in Fig. 8, both cases 
have similar layouts of the outside, but the topologies of the 
inside are different. This is because the second eigenvalue 
dominated the optimization process in both cases, and higher 
modes gave some contributions in the case 2. Even though 
the optimal value of the second eigenfrequency may be a 
little reduced when higher modes are used in the optimiza- 
tion process, the final structure is stronger against higher 
frequency (Fig. 8(b)), since the higher eigenfrequencies are 
greatly increased. Therefore, using the multieigenvalue opti- 
mization technique makes it possible to design a better 
structure. 

Figure 9 shows the results corresponding to the third 
eigenvalue. Where Fig. 9(a) is obtained by using the third 
mode only. As shown in Fig. 9(a), if just a single mode is 
used, the final structure will be discontinuous. This phe- 
nomenon is well known as the "singularity" of the optimal 
structure (e.g., Olhoff, 1981), but it can be avoided by using 
the multieigenvalue optimization technique presented in this 
paper as shown in Fig. 9(b), in which the final structure is 
obtained by using the five modes (modes 3 to 7). 

(a-2) V0 = 22,0 

(a) rough mesh 7 0 . 1 0  

(b - l )  Vo = 9,0 

(b-2) V0 = 22.0 

(b) (f ine mesh 1 4 0 . 2 0 )  

Fig. 11 The optimal structures with respect to various total mass 
constraints 

In order to show the improvement in the convergency of 
the optimization process, Fig. 10 gives the histories of changes 
in three lower eigenfrequencies by tracing their modes within 
the first 15 iteration steps. Dash lines give the histories 
corresponding to Fig. 8(a), which uses the second mode only 
for optimizing the second eigenvalue.-Thus it is a single 
eigenvalue optimization (SEe)  problem. Solid lines gives the 
histories corresponding to Fig. 8(b), which uses modes 2-5 
for the same purpose. Thus, it is a multieigenvalue optimiza- 
tion (MEO) problem. It is shown that by using the multi- 
eigenvalue optimization technique proposed in this paper 
makes it possible to greatly improve the convergency in the 
eigenvalue optimization process. 

Example 3: Layout Optimization of a Fixed-Fixed Beam. 
This example is to demonstrate how the optimal structures 
are changed by different total mass constraints, and to inves- 
tigate whether or not the results are dependent on the finite 
element mesh. The problem is to optimize the fundamental 
eigenfrequency. In this problem, the design domain is speci- 
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fled same as Fig. 7, but with two fixed supported boundaries 
at the left and right ends of the design domain and a 
concentrated mass (5.0 x P0) at the center of the design 
domain. The problem is similar to the shape optimization 
problem of a fixed-fixed supported beam with a central mass. 
Figure l l (a)  shows the optimal structures obtained using a 
rough mesh (70 x 10), where the total mass constraints are 
given as V 0 = 9.0 x P0 (Fig. ll(a-1)) and 22.0 x P0 (Fig. 
ll(a-2)), respectively (the area of whole design domain is 
28.0). Figure l l (b)  shows the results obtained using a fine 
mesh (140 x 20), where each finite element used in Fig. 
l l (a)  has been divided into four elements. It is shown that 
when material is added to the design domain, the optimal 
structure approaches to a continuum instead of a skeleton, 
and the results are relatively insensitive to mesh size in this 
problem. 

Conclusion 
A new objective function corresponding to multiple eigen- 

values has been proposed for improving the solution of the 
eigenvalue optimization problem. An improved optimization 
algorithm is then applied to solve the problems. It has been 
shown that the use of the multieigenvalue optimization tech- 
nique and the improved updating algorithm can greatly im- 
prove the solution, and optimize not only a single eigenvalue 
but also multiple eigenvalues in a generalized weighted aver- 
age meaning. The feasibility of the approaches presented in 
this paper has been substantiated through the examples. 
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Study of Transient Coupled 
Thermoelastic Problems With 
Relaxation Times 
A new hybrid numerical method based on the Laplace transform and control volume 
methods is proposed to analyze transient coupled thermoelastic problems with 
relaxation times involving a nonlinear radiation boundary condition. The dynamic 
thermoelastic model of Green and Lindsay is selected for the present study. The 
following computational procedure is followed for the solution of the present problem. 
The nonlinear term in the boundary condition is linearized by using the Taylor's series 
approximation. Afterward, the time-dependent terms in the linearized equations are 
removed by the Laplace transform technique, and then the transformed field equations 
are discretized using the control volume method with suitable shape functions. The 
nodal dimensionless temperature and displacement in the transform domain are 
inverted to obtain the actual physical quantities, using the numerical inversion of the 
Laplace transform method. It is seen from various illustrative problems that the present 
method has good accuracy and efficiency in predicting the wave propagations of 
temperature, stress, and displacement. However, it should be noted that the distributions 
of temperature, stress, and displacement can experience steep jumps at their wavefronts. 
In the present study, the effects of the relaxation times on these thermoelastic waves are 
also investigated. 

Introduction 
The classical theory of thermoelasticity based on the 

parabolic-type heat conduction equation implies that thermal 
disturbances propagate with infinite speed through the elas- 
tic medium. This prediction may be suitable for most engi- 
neering applications; however, it is a physically unacceptable 
situation, especially at a very low temperature near absolute 
zero or for extremely short-time responses. Thus, various 
modified dynamic thermoelastic theories were proposed to 
analyze problems with "second sound" effects, such as Lord 
and Shulman (1967) and Green and Lindsay (1972). Lord and 
Shulman (1967) proposed a new theory based on a modified 
Fourier's law of heat conduction with one relaxation time. 
The resulting heat equation becomes hyperbolic, and implies 
a finite wave speed for the thermal signal. Green and Lind- 
say (1972) formulated a more rigorous theory of thermoelas- 
ticity based on an entropy production inequality. Two relax- 
ation times were introduced in Green and Lindsay's theory 
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for the thermoelastic process. A remarkable feature of this 
theory is that it does not violate the classical Fourier's law 
when the material has a center of symmetry at each point. 
Various problems characterizing these two theories have 
been investigated, and they reveal some interesting phenom- 
ena. These nonclassical theories are often regarded as the 
generalized dynamic theory of thermoelasticity. Brief reviews 
of this topic have been reported by Francis (1972), Ignaczak 
(1981), and Chandrasekharaiah (1986). 

The generalized dynamic theory of thermoelasticity is a 
sophisticated coupled field theory because the coupled dis- 
placement and temperature fields must be solved simultane- 
ously. In addition, this thermoelasticity theory again allows 
thermal disturbances to propagate with finite velocity. Thus, 
it is difficult to apply analytical methods to investigate such 
problems except for some special cases. Accordingly, various 
approximate and numerical methods were proposed to ana- 
lyze such problems. Norwood and Warren (1969), Sherief 
(1986), Dhaliwal and Rokne (1988, 1989), and Anwar (1991) 
applied the integral transform method to investigate such 
problems with various boundary conditions. However, they 
obtained only short-time solutions. Oncii and Moodie (1991) 
used Pad~-extended ray series expansion to analyze the gen- 
eralized thermoelasticity in a semi-infinite medium. It is 
evident that the above methods can't always provide all the 
desired informations concerning problems with complicated 
geometry and variable material properties. This explains why 
there has been a growing interest in the numerical scheme 
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for such problems in recent years. Accordingly, various nu- 
merical methods have been developed for solving such prob- 
lems. However, the major difficulty encountered in the nu- 
merical solution of such problems is numerical oscillations 
near the wavefronts of the temperature, displacement, and 
stress distributions. Prevost and Tao (1983) used the finite 
element method and the implict-explicit scheme to analyze a 
dynamic thermoelastic problem in a semi-infinite slab on the 
basis of Green and Lindsay's dynamic thermoelastic model. 
They modeled the half-space using two groups of elements in 
conjunction with the four-node (plane-strain) bilinear 
isoparametric element. One group consists of 75 equally 
spaced elements, while the other group consists of 20 equally 
spaced elements. It is seen that the uncoupled results ob- 
tained by Prevost and Tao (1983) did not agree well with the 
analytical solution. The same problem was solved by Chen 
and Weng (1988) using the hybrid application of the finite 
element method and the Laplace transform scheme. Unfor- 
tunately, a comparison between their results and those ob- 
tained by Prevost and Tao (1983) was not made. The finite 
element method combined with a time approximation was 
applied to solve one-dimensional linear thermoelasticity with 
finite wave speed by Gladysz (1986). Noda (1989) used the 
Laplace transform method in conjunction with a suggested 
admissible solution to solve the generalized thermoelastic 
problem for an infinite solid with a hole. However, these 
methods (Prevost and Tao, 1983; Gladysz, 1986; Chen and 
Weng, 1988; Noda, (1989) have not yet been applied to 
analyze nonlinear transient coupled thermoelastic problems 
with relaxation times involving a nonlinear radiation bound- 
ary condition. The major difficulty encountered in the nu- 
merical solution of the present problem is that numerical 
oscillations in the neighborhood of wavefronts can be found. 
A recent review on this topic has been given by Chen and Lin 
(1993). 

The purpose of the present study is to provide a new 
approach for determining a more accurate solution of tran- 
sient Coupled thermoelastic problems with relaxation times 
involving a case with a nonlinear radiation boundary condi- 
tion. The effects of surface radiation on the distributions of 
temperature, stress, and displacement in the medium will 
also be discussed. To the author's knowledge, there is no 
such study in the open literature. The mathematical formula- 
tion of the present method is as follows. The nonlinear term 
in the boundary condition is linearized by using the Taylor's 
series approximation. The Laplace transform method is used 
to remove the time-dependent terms, and then the trans- 
formed field equations are discretized by using the control 
volume method. The important task of the present method is 
that the shape functions must carefully be selected from the 
corresponding field equations in the transform domain. It is 
seen from various illustrative examples that the present re- 
suits are more accurate than those of Prevost and Tao (1983) 
within the context of classical uncoupled thermoelasticity. 
Moreover, the number of nodes required in the present study 
is less than those required in Prevost and Tao's numerical 
scheme (1983). In the present problem, the magnitudes of 
steep jumps in the distributions of temperature, displace- 
ment, and stress depend on the nature of the thermoelastic 
coupling coefficient, thermal boundary conditions, and ther- 
mal relaxation times. Thus, the effects of these parameters 
on thermoelastic waves will also be investigated. 

Mathematical  Formulat ion 
The fundamental equations of the linearized thermoelastic 

theory given by Green and Lindsay (1972) are applied to 
analyze the present problem. Cartesian tensors are used 
throughout. The conservation of mass, equation of motion, 
and energy balance equation are, respectively, given as con- 

servation of mass 

equation of motion 

Po/P = 1 + Uk, k, (1) 

p ~  = o~j*, + pb, (2) 

<~ = ~*j,, (3) 

energy balance equation 

P~o ~ = --q~,k + Pg (4) 
where p is the density; P0 the reference density; ¢ri~ the 
stress tensor; U i displacement vector; b i body force vector; qk 
the heat flux vector; T o the reference temperature of the 
natural (stress-free) state of the solid body; S the entropy 
density; g the heat source per unit volume. 

The supersposed dots ( ' )  are used to denote material 
time differentiation and a comma ( , )  to denote partial differ- 
entiation with respect to the spatial coordinates xj(j  = 1, 2, 
3). To further derive the following constitutive equations, the 
absolute temperature T is defined as 

Z = ToO + ~o) (5) 

where T is the absolute temperature; 0 the dimensionless 
temperature. 

The present study follows the constitutive equations given 
by Prevost and Tao (1983). 

o'ii = Ci j k lEk l -  /3ijTo( O-F t,O ) ( 6 )  

qi + toqi = - K q T o O , j  ( 7 )  

S = S 0 + cO + ct20 + /3ijekl/P ( 8 )  

w h e r e  Cijkl is the tensor of elastic moduli; e. the strain 
J 

tensor (%t = (Ukl + Ut k)/2); /3i tensor of thermal moduh; 
, , J . . . .  

K i, the tensor of thermal conductwW; c the spectfic heat; to 
J . • 

the relaxation hme (proposed by Lord and Shulman, 1967); 
t 1 and t 2 the relaxation time (proposed by Green and Lind- 
say, 1972). When to, t t, and t 2 vanish, Eqs. (6)-(8) reduce to 
the classical coupled theory. In Lord and Shulman's theory, 
t 1 = t 2 = 0 and Fourier's law of heat conduction is modified 
by introducing the relaxation time t 0. In Green and Lindsay's 
theory, t o = 0 and both the Duhamel-Neuman relations and 
entropy density function, respectively, shown in Eqs. (6) and 
(8) are modified by introducing two relaxation times t I and 
t 2 • 

Eliminating S, qi, and  o-ii by using Eqs. (2)-(5) leads to 
the following linear coupled field equations in terms of 
displacement U i and temperature 0: 

PUi +/3ijTo( 0 + t,O ),j - ( CqktVk,t),j = pb i (9) 

pc( t  o + t2)~J + pcO + /3ij(Ui,j + toUi,j) - ( KijO,,,), i 

= p (g  + tog) /T o. (10) 

For the case of isotropic materials, Eqs. (6) and (8) can be 
reduced to the following forms: 

o~ = aa,~k~ + 2 ~ ,  --/3T0(0 + t~b)a, (11) 
pS = pc(O + t20 ) + /3"kk (12) 

where a and p. are Lame's constant; ¢~ij the Kronecker delta. 
Thus, for isotropic materials and in the absence of body 

force and heat sources, the field Eqs. (9) and (10) can be 
simplified as 

p U / -  ( a  + ~)U;.,i, - / zU/ j j  + To(/30 + t 1 /~0),, = 0 (13) 

pc( t  o + t2)O + pcO - go, i  i +/3(Ui, i  q- to~li,i) = O. (14) 
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For the convenience of analysis, the governing Eqs. (13) 
and (14) will be transformed into dimensionless forms. To do 
this, the following dimensionless parameters are introduced: 

L = a/C~ Cs 2 = ( a + 2 t * ) / P  n = x / L  ~ = cet/L 2 

a = K / p c  r o = a t o / L  2 r l = oetl /L 2 'r 2 = o e t 2 / L  2 

~r, = ~rx*/#To # = (3A + 2 / , )a ,  

u = (a  + 2/.~)U/( f l L r o ) 6  = f i 2 T o / p c ( a  + 2/z) (15) 

where 3 is the linear thermoelastic coupling coefficient; C s 
the speed of the elastic stress wave; a the thermal diffusivity; 
and a t the coefficient of linear thermal expansion of the 
material. 

With these dimensionless parameters, Eqs. (13)-(14) are 
then transformed into a set of the dimensionless forms 

32U 30 320 32U 
- -  - -  - -  0 (16) 
3~ 2 + 37 + rl 3~07 372 

320 30 ( 32U 33//,/ ) 320 
. . . .  ~ 0 ,  (TO + T2) ~ "q'- 3~ ''['- ~ 3~37 "}- T 0 ~ ' ~  372 

(17) 

It is evident that the problem is uncoupled when 6 = 0. 
Under this mathematical formulation, the speed of the tem- 
perature wave may be computed as (Prevost and Tao, 1983) 

~/ K (18) 
C t = p c ( t  ° + t2) 

Thus C t is infinite for the case of the classical thermoelastic 
model, i.e., t o = t 2 = 0. For the case of Green and Lindsay's 
thermoelastic model, C t is finite. Based on thermodynamical 
arguments, Green (Prevost and Tao, 1983) showed that the 
first relaxation time t~ is restricted by t 1 > t 2 > 0. Thus, the 
assumption of t~ = t 2 is made in the present study. Using the 
definition of the dimensionless parameters for C t, r o, r 2, and 
L, as shown in Eq. (15), it follows that 

r o + r 2 = C,2/C, 2 (19) 

where r0 or r 2 can be denoted as the square ratio of the 
elastic and thermal wave speeds. Thus, r 0 + q'2 ) 1 implies 
that the elastic wave speed is faster than the thermal wave 
speed. 

N u m e r i c a l  A n a l y s i s  

The computational procedures of the present method are 
that the nonlinear term in the radiative boundary condition is 
linearized by using the Taylor's series approximation. After- 
ward, the time-dependent terms in the linearized differential 
equations are removed by the Laplace transform scheme, and 
then the field equations and boundary conditions in the 
transform domain are discretized using the control volume 
method with suitable shape functions. The dimensionless 
temperature, axial displacement, and axial stress in the trans- 
form domain are inverted to obtain physical results by using 
the inversion scheme of Hoing and Hirdes (1984). Assume 
that the initial conditions in the present study can be ex- 
pressed as 

3O 
0 ( 0 , 7 )  = O, ~ ( 0 , 7 )  = O, 

3u 
u(0,7)  = O, --77(0,7) = 0. (20) 

og 

The Laplace transforms of Eqs. (16)-(17) with respect to ~: 
are, respectively, 

32/~ 33 
- -  - B - -  - A a  = 0  (21) 072 37 

320 3/~ 
- - - E - - - C a = 0  (22)  
372 37 

where s is the Laplace transform parameter. A = ~L 2, B = 
s% + 1, C = s2(ro + %) + s, and E = ~(s + ZoS2). 0 and fi 
are, respectively, defined as 

a(s, n) = f f e - s eo (¢ ,  7 ) d ~  

~ ( s ,  7 )  = fo°~e-S~u( ¢, n ) d ~ .  (23) 

The discretized forms of Eqs. (21)-(22) can be obtained by 
using the control volume method. The shape functions can 
arbitrarily be chosen for most problems. However, the selec- 
tion of the shape functions is an important task for the 
present study because there exist steep jumps in the distribu- 
tions of temperature, axial displacement, and axial stress. 
Otherwise, a poor selection of the shape functions will affect 
the accuracy of the numerical results. This fact has been 
demonstrated in the work of Chen and Lin (1993). The 
following procedure will express how to obtain the suitable 
shape functions of the present problem. Thus, the associated 
homogeneous second-order ordinary differential equations of 
Eqs. (21)-(22) are introduced. 

32t2 
- -  - A a  = 0 (24) 3~ 2 

a2~ 
- - - C 0 = 0  7i < 7 < 7i+1 i =  1 ,2 ,  ( n -  1) 372 . . . . . .  

(25) 

where 7a = 0 and 7, = 1. 
Under this circumstance, the following simple notations 

must be used: 

0 ( s , , , )  = 4 ,  O ( s , 7 i + , )  = 4+1,  C'(s, '7i) = C,,, 

and fi(s ,7i+l)  = fii+l (26) 

The analytical solutions of Eqs. (24)-(25) in the interval 
[7i, 7i+ 1] with the boundary conditions (26) are, respectively, 

1 
fi(s, 7)  sinh(x/A-l) (sinhx/A-(T,+, - 7)  ui 

+sinhfA-(7  - 7 i ) / ~ i + 1 )  = N l ( 7 i + l ) U  i + N2('Oi)tti+l (27) 

1 
0(s, 7)  s i n h ( ~ l )  ( s inhg( (7 ,+ l  - 7 )0  i 

+sinh~/C(7 - 7i)Oi+,)  = M l ( T i + , ) a i  + M 2 ( T i ) a i +  l (28) 

where l = ~,+1 - 7i denotes the distance between two nodes 
and is uniform in the present study; Ni(z) and Mi(z ) ,  i = 1, 
2, are denoted as the hyperbolic shape functions and are, 
respectively, given as 

sinhv/~--(z_ rt) 
Nl(Z ) = 

sinh(~/A-1) 

sinh~/C(z - 7)  
Ml(Z) = sinh(~/C/) 

U2( z ) = 

M2(z ) = 

sinhx/A-(r/- z) 

sinh(v~-/) 

s inh fC(7  - z)  

s inh(~ /~ / )  

(29) 
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Similarly, the analytical solutions of Eqs. (24)-(25) in the 
interval [~_ a, %] can also be obtained as 

f ( s ,  71) = Nl('Oli)fi_ 1 + N 2 ( ' 0 i _ t ) f i  / ( 3 0 )  

O(s, rl) = Ml(rli)Oi_ 1 + M2(rli_l)O i. (31) 

Integrations of Eqs. (21)-(22) within the ith control vol- 
ume [~i- 1~, '%+ 1.a] are, respectively, 

~-l,a [ on 2 - B ~  - A f t  dn = 0 

e ° f - c o ] e n = o  
i-1/22 -- O, O 

(32) 

(33) 

where ~i+u2 = (~i+1 q" %)/2 and 'Oi-U2 = ('rli-I + rli)/2. 
Performing the integration producesthe following results. 

dfi df  '0i- '0i+ 1/2rid ~ 0 - Af - R~I hi+l/2 = 

G "Oi+ 1/2 d~7 vz "oi- 1,/2 ~ , , t i -  1/2 

(34) 

and 

Od 'rfi+ 1/2 ~dO m-I/2 C m+l/eOd~ (35) - f , i -1/e  - E~l~i'~iff2 = 0 

Inserting the approximations of 0 and f ,  as shown in Eqs. 
(27), (28), (30), and (31), and evaluating the resulting inte- 
grals produces the following discretized forms: 

f i - 1  - -  2c°sh~/A-lfi + f / + l  - P(0i+] - 0 i l l )  = 0 (36) 

0i-1 - 2c°shx/C'10i + 0i+1 - R ( u i + l  - f i - 1 )  = 0 (37) 

where 

P = B s i n h ( ~ - l )  

2vff  cosh ( ¢ ~ t / 2 )  

and 

R = E s i n h ( v ~ l )  

2 v ~  cosh (l/A-l/2) ' 

The arrangement of Eqs. (36)-(37) in conjunction with the 
prescribed boundary conditions yields the following vector- 
matrix equation. 

[ K ] { ¢ }  = { F )  (38) 

where [K] denotes a (2n X 2n) band matrix with complex 
numbers; {4~} a (2n x 1) vector representing the unknown 
dimensionless nodal temperature and displacement in the 
transform domain : and {F} a (2n × 1) vector representing 
the forcing terms. The direct Gauss elimination method is 
used to determine 0 i and fii, and then the numerical inver- 
sion of the Laplace transform (Honig and Hirdes, 1984) is 
applied to invert them to the physical quantities 0 i and u r 

I l lus t ra t ive  Examples 
In the following, two different examples are presented for 

demonstrating the accuracy and efficiency of the present 
numerical scheme for the dynamic coupled thermoelasticity 
problems with relaxation times involving a nonlinear bound- 
ary condition. All the computations are performed on a PC 
with an 80486 microprocessor, and the program is written in 
FORTRAN. .  

Example h Half-Space Subject to Surface Heating. This 
problem considered is a one-dimensional generalized ther- 

0.80 
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= = = Analytlcol 
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Prevost & Too (uncoupled) 

: Prevost & Too ( coupled ) 

0.60 

6 = 1  

0.20 

0.00 
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Compar ison  of the d imensionless temperature  at 'q = 1 

0.30 

Fig. l ( b )  
~ = 1  

0.20 6 = o 

= 
0,10 

0.00 
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--1.00 i I i I = I i 
0.00 0.50 1.00 1.50 2.00 

F ig .  1 ( c )  Compar ison  of the d imensionless  axial stress at ~ / =  1 

moelasticity problem in a semi-infinite solid which is sub- 
jected to surface heating on its traction-free boundary, x = 0. 
Suddenly, the wall at x = 0 is impulsively stepped to a fixed 
temperature 2T 0. Thus the dimensionless boundary condi- 
tions for this problem can be expressed as 

o ( & o )  = ] o-.(~,o) = o 

e ( ~ , n )  = 0 , ~x (~ ,n )  = 0 as ~ -~ = .  ( 39 )  
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Fig. 2(C) Comparison of the dimensionless axial stress at ~ = 1 
with two relaxation t imes  

The same problem was investigated numerically by Prevost 
and Tao (1983), Chen and Weng (1988), and Dhaliwal and 
Rokne (1989). Sternberg and Chakravorty (1959) investigated 
this problem analytically within the context of the classical 
coupled thermoelasticity using the Laplace transform method. 
Figure 1 show a comparison of the dimensionless tempera- 
ture, axial displacement, and axial stress at ~ = 1 among the 
analytical solutions (1959), results of Prevost and Tao (1983), 

and present results. It is seen that the present results have 
better agreement with the analytical solutions than those of 
Prevost and Tao (1983) for the uncoupled case (8 = 0), 
especially near the wavefronts. Comparison between the pre- 
sent results and those of Prevost and Tao (1983) for the 
coupled case (6 = 1) with the classical thermoelastic model is 
also shown in Fig. 1. It is seen from Prevost and Tao's 
numerical results that the axial displacement and axial stress 
are underpredicted and some stress oscillations occur in the 
vicinity of ~: = 1. To damp out the stress oscillations in their 
scheme, they introduced artificial numerical damping. Figure 
1 shows the effects of the thermoelastic coupling coefficient 
on the response of the thermoelastic system. It is evident that 
its effect on the responses is significant near the wave fronts 
though realistic values of 8 are small for most metal materi- 
als (6 = 1 0  - 2  ~ 1 0 - l ) .  On the other hand, in classical cou- 
pled thermoelastical problems the coupling effect is felt only 
in the vicinity of the wavefronts. Figure 2 show a comparison 
of the dimensionless temperature, axial stress between the 
present results and those of Prevost and Tao (1983) for the 
uncoupled problem with Green and Lindsay's thermoelastic 
model. The effects of various relaxation times are also shown 
in Fig. 2 where r a = ~'2 = 1 and ~l = r2 = 2.25, i.e., C t = C s 

and C t = 2 C J 3 ,  are selected. It is seen from Figs. 1-2 that 
the incorporation of the first and second relaxation times 
drastically affects the responses and the magnitudes of steep 
jumps. It can also be found that there occur two waves 
propagating with different but finite speeds. This result can 
be explained from the definition of ~'2 shown in Eq. (19). 
Equation (19) demonstrates that the elastic wave speed is 
faster than the thermal wave speed for z 2 > 1. Nevertheless, 
the propagation speed of the thermal wave is faster than that 
of the elastic wave for ~'z ~ 1. In accordance with the com- 
parative results of Fig. 1 for the classical thermoelastic model, 
the present method should have better accuracy than Prevost 
and Tao's numerical scheme even for the problem with 
Green and Lindsay's thermoelastic model. In most problems 
of elastic wave propagation, the conditions prevailing at the 
wavefronts are of great importance. The steep j'umps at the 
wavefronts not only control the behaviors behind the wave- 
fronts, but are usually critical from a technical standpoint 
because they are most likely to result in spallation or fracture 
of the material. It is worth mentioning that the 51-node and 
101-node modelings with uniform space size are required for 
obtaining the numerical results respectively shown in Fig. 1 
and Figs. 2 -  3. Obviously, the number of nodes in the 
present study is less than those in Prevost and Tao's numeri- 
cal scheme (1983). The numerical results of the dimension- 
less temperature, axial displacement, and axial stress for the 
coupled problem with 6 = 0.02 and ;'1 = re  = 1 are shown in 
Fig. 3. It is seen that the magnitudes of steep jumps in the 
distributions of displacement and stress for the uncoupled 
case are larger than those for the coupled case (~ = 0.02). As 
described in the problem with the classical thermoelastic 
model, the coupling coefficient for the problem with Green 
and Lindsay's thermoelastical model is still not a negligible 
effect even for most metal materials. 

Example 2: Half-Space with Surface Radiation. Most 
previous works were restricted to linear generalized thermoe- 
lastic problems. Few investigators analyzed nonlinear prob- 
lems associated with nonlinear thermal boundary conditions. 
Thus, Example 2 investigates the same problem as the first 
example except that the left boundary surface at x = 0 
dissipates heat by radiation into the ambient at temperature 
T=. The main purpose of this study is to illustrate the effi- 
ciency of the present method for such a problem. Accord- 
ingly, the thermal boundary condition at x = 0 can be writ- 
ten as 

q = %o- (T  4 - T 4) at x = 0 (40) 
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Fig. 3 ( c )  C o m p a r i s o n  o f  the d imens ion less  axial  stress at ~ = 1 
with t w o  relaxation t i m e s  and 8 = 0 ,02 

where a s is the surface absorptivity and o- is the Stefan - 
Boltzmann constant. 

The following dimensionless parameters will be introduced 
in order to transform Eq. (40) into a dimensionless form 

a s ~rL To 3 qL 
Re K Q = To K .  (41) 

The physical significance of Rc is the ratio of conduction to 
radiation flux (Glass and Ozisik, 1985). In Eq. (41), the value 
of Rc is a parameter that affects the linearity of the problem. 
Thus, a small value of Rc corresponds to a negligible amount 
of radiative transfer at 'q = 0, while a large value of Rc 
implies strong radiation. This implies that the problem for a 
large value of Rc is extremely nonlinear. Rc = 0 implies that 
there is no radiation, and the boundary condition (40) be- 
comes linear. 

For simplicity, we take T~ = 0. Thus, the dimensionless 
form of Eq. (40) in conjunction with Eqs. (5) and (41) is 

Q = - R c ( 1  + 0) 4 at n = 0. (42) 

Linearizing the nonlinear term (1 + 0) 4 using the Taylor's 
series approximation leads to the following linearized form of 
the boundary condition (42) as 

Q =  - R c ( 1 -  3# + 4 0 ) ( 1 +  #)3 at,r/ = O (43) 

where # is the previously calculated surface temperature. 
The Laplace transform of Eq. (43) is 

Q =  - R c  - -  + 4 #  (1 + 0)  3 . (44) 
S 

Again, the dimensionless form of Eq. (7) with the dimen- 
sionless parameters shown in Eqs. (15) and (41) is 

c)Q 00 
Q + To o~ - or/" (45) 

Thus, the Laplace transform of Eq. (45)with respect to £ is 

(1 + ¢0s)Q = - - -  (46) 
o~ 

Substituting Eqs. (28) and (44) into Eq. (46) produces the 
following discretized form at ~ = 0: 

- [ c o s h ( ~ ' l )  + 4ZF(1 + #1)3101 'q- 02 

- Z F ( 1  - 3#1)(1 + #1) 3 (47) 
S 

Rc sinh (~/C-l) 
where Z = v/~ and F = (1 + ~-0s). 

It should be noted that Eq. (38) is still linear simultaneous 
equations for Example 2. An initial guess of the first nodal 
temperature at a specific dimensionless time £s, #i, is given, 
and then [K] and {F} can be calculated. Thus, the nodal 
dimensionless temperature 0 i and displacement u i can be 
obtained by using the application of the direct Gauss elimi- 
nation method and the numerical inversion of the Laplace 
transform. The updated value of 01 is used to calculate [K] 
and {F} for iteration. This computational procedure is per- 
formed repeatedly until the relative error between the cur- 
rent nodal temperature and the value at the previous itera- 
tion.is less than a value of tolerance of 10 -4. In the present 
computation, four iterations are sufficient for obtaining a 
convergent result. The detailed illustration can review the 
work of Chen and Lin (1991). Three different values of Rc 
considered in this study ranged from 1.0 to 10.0. The case of 
Rc = 0 corresponds to no surface radiation. Thus, this case is 
not shown in Figs. 4-5. Figures 4-5 show the distributions of 
the dimensionless temperature, axial displacement, and axial 
stress at 6 = 0.0168, ~ = 1, 2, and Rc = 1, 5, 10 for 71 = 7 2 
= 0.64 and r 1 = r2 = 1.5625. It is seen that the maximum 
peak value of the axial stress o- x declines with decreasing Rc 
at ~: = 1, 2 , .  In other words, the stronger the surface radia- 
tion, the larger the peak value of o-x. These two figures also 
show that the peak value of o-, decreases with increasing 
value of £. 
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Fig. 4 ( a )  
fo r  71 = 72 = 0.64, ~ = 0.0168, and va r i ous  Rc 

o5 t o r ,=1 
0.00 0.00 I-ac = 1 1 ~ - - - " - - - - ' ~  - - -  

I 
-0.25 ~ -0.25 I," ~"/'/, '' '~' 

RC = 5 

= 

-0.50 -0.50 

-0.75 -0.75 
0.00 1.00 2.00 3.00 0.00 1.00 2.00 3.00 

D is t r ibu t ion  of  the  d i m e n s i o n l e s s  t empe ra tu re  at ~ = 1, 2 Fig. 5 (a )  D is t r ibu t ion  o f  the  d i m e n s i o n l e s s  t empe ra tu re  at ~ = 1, 2 
f o r  z l  = ~'~ = 1.5625, 3 =  0.0168, and va r i ous  Re 

0.75 

. . . .  I :~ 

\ 
0.25 ~ Rc = I 

u ~ "~ ~k,~ - - 

-0.25 ~\/~ 

Rc = t0 

-0.75 i ~ ~ I ~ I = I I I = 
0.00 1.00 2.00 3.00 

77 
Fig. 4 ( b )  D is t r ibu t ion  of  the  d i m e n s i o n l e s s  ax ia l  d i s p l a c e m e n t  at 
~ =  1, 2 fo r  ~-~ = 72 = 0 .64 ,  a = 0 . 0 1 6 8 ,  end  var ious  Rc 

0.75 

\ \  

0.25 ~ \ Rc = 1 

--0.25 

'~,/,~= ~,\ / /  

-0.75 , , , t , , , I , , ~ 
0.00 1.00 2.00 3.00 

~7 
Fig. 5 ( b )  D is t r ibu t ion  of  the  d i m e n s i o n l e s s  ax ia l  d i s p l a c e m e n t  at 

= 1 , 2  fo r  ~1 = ~'2 = 1.5625, 8 = 0.0168,  and va r i ous  Rc 

3.50 

2.50 fit 

h\~\ Re = 5 

I, t ~ l V \ \  
0.50 

-0.50 ~ ~ r ~  
' ;  R o  = l O  

-1.50 = , , I , , , I , = , 

0.00 1.00 2.00 3.00 

~7 
Fig. 4 ( c )  D is t r ibu t ion  of  the  d i m e n s i o n l e s s  ax ia l  s t ress at ~ = 1, 2 
f o r  71 = 7 2 =  0.64, 3 =  0.0168,  and va r i ous  Rc 

Figures 4-5 also show that there occur two waves propa- 
gating with different but finite speeds. The propagation speed 
of the elastic wave is faster than that of the thermal wave for 
T 2 > 1. An interesting phenomenon can be found. Namely, 
the larger the value of ~, the wider the zone between two 
steep jumps in the axial stress distribution. 

These findings shown in Figs. 4-5 were not reported in the 
past. Thus, a comparison of the numerical results using the 

3.50 ;, I :~ 

2.50 t /11 

I I 1.5o 

0.50 i 

-0.50 ,+) ~ 
\1 

I 
--1.50 = = = I = I = I L .I I 

0.00 1.00 2.00 3.00 

Fig. 5 ( c )  D is t r ibu t ion  of  the d i m e n s i o n l e s s  ax ia l  s t ress  at ~ = 1, 2 
fo r  71 = 72 = 1.5626, ,~ = 0.0168, and va r i ous  Rc 

51 and 101 modeling nodes is made. No significant differ- 
ences are observed in the comparisons for these two different 
models. This conclusion implies that the present method can 
successfully be applied to solve such a problem with surface 
radiation. 
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Conclusions 

The hybrid application of the Laplace transform and con- 
trol volume methods in conjunction with suitable shape func- 
tions is successfully applied to analyze the generalized ther- 
moelastic problem involving a nonlinear case with surface 
radiation. The suitable shape functions are obtained from the 
associated homogenous equations in the transform domain. 
It is seen from results of two different illustrative problems 
that the present method gives both oscillation-free and highly 
accurate results for the present problems. The present study 
only gives an indication of basic procedures for such prob- 
lems. In contrast with the time-step integration method, the 
present method doesn't need to consider the restrictions on 
the permissible time-step and stability which interfere with 
the efficiency of computation. 

It is found from the present study that the magnitudes of 
steep jumps occurring in the wave propagations of tempera- 
ture, axial displacement, and axial stress depend on the 
values of the coupling coefficients and relaxation times, etc. 
At the same time, it can also be seen that there occur two 
waves propagating with different but finite speeds for prob- 
lems with Green and Lindsay's dynamic thermoelastic model. 
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On First-Order Decoupling of 
Equations of Motion for 
Constrained Dynamical Systems 
In this paper we present a method for obtaining first-order decoupled equations of 
motion for multirigid body systems. The inherent flexibility in choosing generalized 
velocity components as a function of generalized coordinates is used to influence the 
structure of the resulting dynamical equations. Initially, we describe how a congruency 
transformation can be formed that represents the transformation between generalized 
velocity components and generalized coordinate derivatives. It is shown that the proper 
choice for the congruency transformation will insure generation of first-order decoupled 
equations of motion for holonomic systems. In the case of nonholonomic systems, or 
holonomic systems with unreduced configuration coordinates, we incorporate an 
orthogonal complement in conjunction with the congruency transformation. A pair of 
examples illustrate the results. Finally, we discuss numerical implementation of 
congruency transformations to achieve first-order decoupled equations for simulation 
purposes. 

Introduction 
Constrained multirigid body systems refer to systems of 

interconnected bodies and particles which are subjected to 
various motion constraints. Such systems are abundantly rele- 
vant in engineering for modeling a wide variety of mechanical 
systems. Much attention has been focused on formulation 
procedures to yield the differential equations describing the 
motion of multibody systems (Crandall et al., 1968; Gibbs, 
1879; Gibbs, 1961; Hartog, 1948; Huston, 1990; Kane and 
Levinson, 1985; Roberson and Schwertassck, 1988; Scott, 
1988; Storch and Gates, 1989). In most cases the resulting 
equations are numerically integrated to obtain trajectories 
characterizing the system's motion. In addition, the equations 
of motion are often analyzed directly to determine the nature 
of the nonlinear behavior. This paper demonstrates a method, 
using Kane's t equations (Kane and Levinson, 1985), for gen- 
erating equations of motion which are decoupled in the 
highest derivative terms. We will refer to such equations as 
being first-order decoupled. Nonlinear differential equations 

l i t  has been pointed out (see Desloge, 1987 and Huston, 1987) that 
these equations are actually a particular form of the Gibbs-Appell  equa- 
tions (see Gibbs, 1879 and 1961). 
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of this form are more easily integrated numerically, as well as 
better fit for analysis. The procedure of generalized velocity 
component selection based on a congruency transformation 
(Wade, 1951) is developed and used to achieve first-order 
decoupled form of the equations of motion. 

Considerable attention has been placed on contending 
with holonomic and nonholonomic, linear and nonlinear mo- 
tion constraints on multirigid body systems (Kamman and 
Huston, 1984; Kane, 1972; Nikravesh and Haug, 1983; Wang 
and Huston, 1988; Wehage and Haug, 1982; Wampler et al., 
1985; Xu et al., 1990). A common way to deal with con- 
straints is to impose them at an early stage of the analysis by 
reducing the set of dependent generalized coordinates to an 
independent one. If the constraints are nonholonomic the 
generalized coordinate derivatives are reduced accordingly. 
However, many consider it to be more effective to first 
perform the dynamical analysis for the unconstrained system, 
and then reduce the resulting equations to a consistent set 
with the constraint equations. For example, Kamman and 
Huston (1984), using Kane's formulation, show that the pro- 
jection of existing equations of motion onto an orthogonal 
complement yields the desired reduced equations. An orthog- 
onal complement, say C, of matrix B would satisfy the equa- 
tion BC = 0. Ben-Israel and Greville (1974) and Lawson and 
Hanson (1974) discuss the mathematical significance of the 
orthogonal complement. The use of the orthogonal comple- 
ment to impose motion constraints is illustrated by Hemami 
and Weimer (1981), Huston (1990), Kamman and Huston 
(1984), Wang and Huston (1988), and Xu et al. (1990). 
Hemami and Weimer (1981) use the orthogonal complement 
similarly for contracting equations generated by the Lagrange 
formulation. Wampler et al. (1985) discuss a method for 
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reduction of existing equations of motion subject to addi- 
tional constraints by recombining terms from the original 
equations. A numerical procedure for imposing constraints 
during integration based on generalized coordinate partition- 
ing is presented by Nikravesh and Haug (1983) and Wehage 
and Haug (1982). One common element of each of these 
methods is the application of the constraints after conducting 
the dynamical analysis. Conversely, we illustrate a method 
that imposes constraints at an intermediate step of the kine- 
matical analysis to enable decoupling for nonholonomic sys- 
tems, or systems where the holonomic constraints are yet to 
be applied. 

The following discussion addresses the use of generalized 
velocity component selection to achieve first-order decou- 
piing of multirigid body systems. The idea of the congruency 
transformation is explained and utilized here. A simple ex- 
ample is conducted to clarify the procedure for finding the 
congruency transformation for holonomic systems. Next, a 
procedure is discussed for decoupling of systems with non- 
holonomic constraints, or holonomic systems with unreduced 
configuration coordinate descriptions. The result, using or- 
thogonal complements, is a modified nonsquare transforma- 
tion between generalized coordinate time derivatives and a 
reduced set of generalized velocity components. Decoupling 
using the orthogonal complement is demonstrated by relax- 
ing a constraint from the first example. Lastly, we discuss the 
numerical application of congruency transformations. 

Dynamics of Holonomic Multirigid Body-Systems 

First-Order Decoupled Equations of Motion. In the pro- 
cess of formulating equations of motion, for example, using 
Kane's method, the analyst must choose a linear combination 
of first time derivatives of generalized coordinates to define 
generalized velocity components. These, in a general form, 
were initially introduced by Gibbs (1879, 1961), but were 
exploited in more detail by Kane (see, for example Kane 
(1972) and Kane and Levinson (1985)). Kane and his cowork- 
ers have referred to these quantities as "generalized speeds." 
Some of the problems for such a term have been pointed out 
by Papastavridis (1992), who considers either "nonholonomic 
components of the velocity vector" or "quasi-velocities" to be 
more appropriate terms. Singh and Likins (1985) mention the 
term "derivatives of quasicoordinates" as an alternative. Here, 
for lack of a better name, we shall simply call them general- 
ized velocity components. The resulting equations of motion, 
using the generalized velocity components, in matrix nota- 
tion, are of the form 

M/l = g(q, u) (1) 

where u and q are vectors of generalized velocity components 
and generalized coordinates, respectively. M is a matrix whose 
elements are functions of generalized coordinates and the 
inertia properties of the system, and g is a nonlinear vector 
function of generalized velocity components and generalized 
coordinates. The technique presented here will generate 
equations of this form where M can be made diagonal by 
judicious selection of generalized velocity components. Non- 
linear differential equations of this form are dramatically 
easier to numerically integrate, as the need for computing 
M-1 at each iteration is eliminated. In addition, performing 
various analyses of nonlinear behavior--tests for stability, 
nature of critical points, chaos, etc.--is facilitated if the 
system equations are written in state plane form. A diagonal 
M matrix in Eq. (1) satisfies this requirement. 

Kane's Equations. Consider a system of p rigid bodies 
whose configuration can be described completely by the set 
of n generalized coordinates (ql, q2 . . . . .  q . . . . . .  q,), or 

T q = [ql, q2 . . . . .  q . . . . . .  qn] • Kane s equations (Kane and 

Levinson, 1985) are formed by letting the sum of generalized 
active forces and generalized inertia forces equal zero. These 
equations are actually a particular form of the Gibbs-Appell 
equations (see Desloge, 1987; Huston, 1987). Kane (1972) 
originally referred to them as Lagrange's form of D'Alemberrs 
principle. In these equations the generalized active force 
vector can be expressed as 

P 

r = E [virfi + Fir¢i] (2) 
i = 1  

where f is the resultant active force acting at the mass center 
of the ith body, and r i is the resultant moment. V and F i are 
the partial velocity and partial angular velocity matrices, 
which are written as 

0vi 
v~ = o u  T (3 )  

(3 x n )  
and 

009 i 
F i = Ou r . (4) 

(3 x n) 

These partial velocities are taken with respect to the general- 
ized velocity component vector u. The generalized velocity 
components are a linear combination of the first time deriva- 
tives of generalized coordinates. For ease of substitution this 
relation is expressed as 

= Tu. ( 5 )  

We shall refer to the matrix T as the rate transformation 
matrix. Since we are considering holonomic systems here, T 
is a square matrix of order n. The generalized inertia force 
vector is written as 

P 

F *  = - E [miViTai + FiTHi] (6) 
i=1  

where a i is the mass center acceleration of the ith body and 
I~Ii is the time rate of change of angular momentum of body i 
with respect to the Newtonian reference frame. Finally, n 
dynamical equations of motion are obtained by letting the 
vector sums from Eqs. (2) and (6) equal the zero vector: 

F + F* = 0 (7) 

Equation (7) is the matrix form of the so-called Kane's 
equations. It should be pointed out that in this paper, as with 
other references on constrained multibody systems (see, for 
example, Huston, 1990), we shall use the term configuration 
coordinates in addition to generalized coordinates. In con- 
strained multibody systems configuration coordinates refer to 
the variables that describe a system's configuration, but may 
be dependent upon one another. Generalized coordinates 
represents reduced, or independent configuration coordi- 
nates. 

The Influence of Generalized Velocity Component Selec- 
tion. Silice our goal in this paper is to prescribe a choice of 
generalized velocity components that would yield decoupled 
equations of motion, it is first necessary to reveal the influ- 
ence of such a selection on the resulting dynamical equa- 
tions. In other words, we would like to expose the location of 
the matrix T, from Eq. (5), within Kane's equations. The 
acceleration of the mass center of the ith body can be written 
a s  

a, = v, i ,  + ~ u .  ( 8 )  

We also know the angular acceleration of body i can be 
expressed as 

~i = rill -I.. Fiu. (9) 
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From this we can write the derivative of angular momentum 
as  

[-I i = IiFiil + IiFiu + WiIim i ( 1 0 )  

where I i is the central inertia matrix and W~ is the angular 
velocity matrix associated with the ith body, and written in 
terms of body i's natural frame. Thus, the generalized inertia 
force becomes 

F *  = - ~ [mi~Tvif l  + miViTVi u + I'iTIiFiil 
i=1 

+FiTiiFi u + FiTWilitoi]. ( 1 1 )  

From the relation depicted in Eq. (5), it is easily shown that 
the partial velocity matrix of Eq. (3) can be expressed as 

3V i 3V i 3 r  i 
Oar = O i l r T  = ~qT T (12) 

where is r i the Euclidean position of body i's mass center 
with respect to the inertial reference frame. We can write 
this as 

V~ = JiT (13) 

where Ji is the partial derivative of r i body's mass center 
position with respect to the vector of the generalized coordi- 
nates. Similarly, Eq. (4) is 

C~ ('Oi •O)i (14) 
cguT = C~iT T 

o r  

ri = f iT (15) 
where f~i is the partial derivative of body i's angular velocity 
with respect to the time derivative of the generalized coordi- 
nate vector. Substitution of Eqs. (13) and (15) into Eq. (6) 
gives the following expression for the equations of motion: 

- ~ miTTJiTJiTfi  + m i T r j [ ~  (JiT)u 
i=1 

d 
+ T T f l~ I i f~ iT i l  + T T n ~ I i ~  ( f l iT )u  

+ TT~2irWiIio~i -- T r J f f i  - TTJiTfi -- TTI~iTmi] = O. (16) 

l 

By letting 
P 

A = - Y'~ [ m i J f J  i + f lT i l i f l i ] ,  (17) 
i=1 

a complete set of equations of motion can be expressed as 

TTATfl-  ~ m i T T j  (JiT)u 
i=1 

d 
+ T T ~ ~ / T I i ~  ( ~ ~ i T ) u  + Tr~iTwilitoi 

and 

- T T j ~ f i -  TT~2~mi] = 0 (18a) 

/1 = Tu. (18b)  

It is now clear that T manifests itself in the transformation 
TTAT in the first term of the left-hand side of Eq. (18a), as 
far as first-order generalized velocity components are con- 
cerned. We now wish to explain how the analyst can choose 
the rate transformation matrix T in Eq. (18b) to assure that 

the coefficient matrix for the first-order generalized speed 
vector in Eq. (18a) is diagonal. 

Selecting T for Decoupling. Clearly, from the above re- 
sults, first-order decoupled equations of motion will be gen- 
erated if T r A T  is a diagonal matrix. Therefore, we first 
consider how this transformation can be influenced by T to 
satisfy this condition. Notice that if the eigenvectors of A are 
used as the columns of T, a diagonal matrix results under the 
similarity transformation T-aAT. Moreover, A is symmetric, 
hence, its eigenvectors can be chosen to be orthogonal. With 
orthogonal eigenvectors we know that T -1 = T T, and the 
similarity transformation effectively appears as the leading 
matrix for the first-order terms of Eq. (18a). Thus, a suffi- 
cient condition for obtaining first-order decoupled equations 
of motion is that the rate transformation matrix T be com- 
prised of the eigenvectors of A. However, it should be em- 
phasized that this is not a necessary condition for decou- 
piing. In fact it can be much less laborious to choose the 
elements of T to satisfy a congruency transformation than to 
symbolically determine the eigenvectors of A. We will now 
show that decoupling can be achieved by satisfying an alter- 
native sufficiency condition. That is, if T is chosen to fulfill a 
specific congruency transformation, Eq. (18a) will be decou- 
pled in first-order terms. Consider the following definition 
(see, for example, Wade, 1951). If for two given matrices A 
and N there exists a nonsingular matrix T that satisfies the 
relation 

TTAT = N (19) 

then A and N are said to be congruent. Furthermore, we 
shall utilize a theorem (see Wade, 1951) stating that a sym- 
metric matrix can be reduced by a congruency transformation 
to a diagonal matrix of the same rank. The principal motiva- 
tion behind employing congruency transformations to achieve 
decoupling is that the rate transformation matrix can be 
formed directly with various combinations of the elements of 
the A matrix. At this point we propose an algorithm for 
obtaining the matrix T that yields a diagonal matrix under 
the congruency transformation of Eq. (19). This, in turn, 
would be used in Eq. (18b) as a rate transformation matrix. 
Consider the symmetric A matrix written as 

a l l  

A = /a'. 

L aln 

The transformation matrix 
such that it can be written 

1 
a12 • , , aln [ 

a22 . . . . . .  ] ' 

. . . . . .  ann 

(20) 

T will be composed of m factors, 

T = T1T2T3...T m (21) 

where m is the number of degrees-of-freedom less one 
(m = n - 1). T a would be constructed as follows: 

1 - a 1 2 / a  n . . . - - a l k / a  n . . . - a l J a n  
0 1 . . . . . . . . .  0 

1 T 1 

0 1 

(22) 

(23) 

0 0 

When the congruency transformation 

TiTAT1 = A' 

is performed, the resulting A' is a matrix with zero elements 
in row one and column one, except for the element a n (see 
Eq. (24)). In other words, it will be block diagonal with the 
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lower right m by m submatrix remaining undiagonalized, and 
is given here as 

aal 0 0 ... 0 ] 
i bl a b12 • . barn 

?~ = T1TATa = b z a  b 2 2  . .  bzm . (24) 

bml bin2 • . bmm 

The same procedure is performed on this result, except T z is 
constructed as . . . .  0] 

1 -b12/b n . . . -bam/b n 
T2 = 0 1 . . .  0 . (25) 

0 . . .  0 1 

The congruency transformation is performed again: 

TfT1TATiT2 = A t' (26) 

This is repeated until a total of m transformations have been 
completed, and the A matrix is converted to diagonal form. 
One additional requirement is that T be nonsingular. How- 
ever, this is assumed since the final diagonal matrix is of the 
same rank as the original A matrix. Therefore, T must be of 
full rank. Before discussing the use of the orthogonal com- 
plement, an example is presented to illustrate decoupling 
with the congruency transformation. 

Example of Decoupling With the Congruency Transforma- 
tion. Consider the following system of two particles con- 
nected by a rigid, massless rod. Sliding mass ml is con- 
strained to move along the horizontal axis n2, and the mass 
m 2 must stay on the constant radius arc with respect to m a in 
the n 1 - n 2 plane, as shown in Fig. 1. 

Using the generalized coordinates qa and q2, the matrix A 
is assembled using Ja and J2 for each of the masses. This 
gives 

and 

- rsq2 ] 
(28) 

which can be combined according to Eq. (17) to obtain 

- m  a m 2 -m2rcq2] 
A = -m2rcq2 --mzr 2 ] .  (29) 

Equation (19) is used to form the congruency transformation 
for A as 

T =  [10 - m z r c q 2 / ( m l + m 2 ) ]  " 1  (30) 

For this system the resultant applied force vectors for each 
mass are 

and 

The above matrices can then be assembled using Eq. (18a) to 
yield the following dynamical equations: 

[ - - m l - m  2 0 ] 
0 m2 r2 -- mZr2c2q2/(m 1 + m2) fi 

[ 0 0 
= _m~racq2sq2u~/(ml + m2) + -magrsq2 

The complete set of equations of motion are Eq. (33) and the 
following equation using the rate transformation matrix given 
in Eq. (30): 

[ l -m2rcq2/ (ml  + m2) ]u. (34) 
~1= 0 1 

Equation (34) shows that the generalized velocity compo- 
nents obtained using the congruency transformation include 
mass terms. This is slightly different from the definition of 
the relationship between n and el, as defined by Kane (1985) 
to be a function of q and time, and not of the mass properties 
of the system. It also indicates another problem with the 
term "generalized speeds," or even "generalized velocity 
components," for the elements of the vector u, since they 
depend on mass properties in the more general context used 
in this paper. We shall, however, continue using "generalized 
velocity components" since the term "generalized" may be 
interpreted that n is not just like a common velocity vector. 

Dynamics of  Nonholonomic  Multibody Systems 
The equations of motion given in Eqs. (18a) and (18b) 

become invalid if the multibody system includes constraints 
which are nonholonomic. If this is the case, the constraints 
can be applied to the system with an orthogonal complement, 
and the transformation between generalized coordinate 
derivatives and generalized velocity components is no longer 
one-to-one. Additionally, situations might arise where a 
model is given with unreduced configuration coordinates 
along with holonomic constraint equations that are yet to be 
applied. Again, the orthogonal complement is used to impose 
such constraints. These ideas are discussed next, and illus- 
trated with an example. 

The Orthogonal Complement. Huston (1990) shows that 
if the motion constraint equations, either holonomic or non- 
holonomic, are written as 

B~I = 0 (35) 

and the unconstrained equations of motion are as depicted in 
Eq. (1), a valid set of reduced equations describing the 
dynamics of the constrained system is 

CTMit = CTg(/I, q) (36) 

where C is the orthogonal complement of B. Recall C is the 
orthogonal complement of B if BC = 0 is satisfied. C can be 
thought of as a non-square transformation between the unre- 
duced generalized coordinate derivative vector ~1, and a re- 
duced generalized coordinate derivative vector, say :~: 

~1 = C~. (37) 
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Let us rewrite Eq. (36) in similar form to Eq. (16) by first 
writing 

-- --~1 miCTJiTJiit + m i c r j [ ~ ( J i ) i t  
i= 

+ cT~-~I i~ iq  + c T a ~ I i ~ t  (~-~i)q 

+cr12~rW/I/ooi -- c T j / f i -  CrfZ~zi] = 0. (38) 

We can substitute the expression for i~ given in Eq. (37) into 
Eq. (38) to establish equations of motion in terms of the new 
reduced generalized coordinate vector z and its derivatives: 

- _ micrj[JiC~ + m i c r j f N ( J i C ) i  + c~aTIia,c~ 
i=1 

d 
+cTl~TIi~(  a iC) i  + crlaiTWfliwi 

-CrJ / r f i  - cTII~¥i] = 0. (39) 

One can see that the role of the matrix C in Eq. (39) is 
equivalent to that of T in Eq. (16). Hence, we can view 

0vi 
JiC = 0i  r (40) 

and 

0oo i 
FtiC = 0i  r (41) 

as special partial velocity matrices. Generalized velocity com- 
ponents can be introduced easily using the transformation 

= Tu. (42) 

With this, the transformation between unreduced general- 
ized coordinate derivatives and reduced generalized velocity 
components is written as 

q = CTu. (43) 

A new set of equations of motion in terms of reduced 
generalized velocity components can now be given as 

[ -- --~1 miTZCrJirJiCTfi + miTZCrjf ~(JiCT)u 
i = 

d 
+ TrcTa~'IzfZ~CT/~ + TTcTgl/TIi~ (FZ/CT)u 

+ TVcT~iTwi l iwi  - T T c T J f f  i + TTcTI2T¢i]  = 0 (44) 

which are accurate in describing the behavior of the con- 
strained system. Note that the matrix product CT shown in 
Eq. (43) represents a modified, nonsquare, rate transforma- 
tion matrix. 

There are several procedures for determining the orthogo- 
nal complement matrix as demonstrated by Huston (1990) 
and Hemami and Weimer (1981). Here, we will consider the 
zero-eigenvalue approach discussed by Huston. If there are 
m motion constraints imposed on a system that has n de- 
grees-of-freedom, the m by n matrix B from Eq. (35) will be 
of rank m. B premultiplied by its transpose will be a symmet- 
ric n by n matrix also of rank m. Hence, BrB will have 

Fig. 2 A sliding 
nates 

[ - - - -  ql u 

V m 2 
n 1 

3endulum with unreduced configuration coordi- 

(n - m) independent eigenvectors associated with the zero 
eigenvalues. If the columns of C are comprised of these 
eigenvectors we have 

BrBC = 0. (45) 

Premultiplying by C T gives 

CTBrBC = 0 (46) 

or  

BC = 0. (47) 

Therefore, C is the orthogonal complement of B. With C 
specified, we can now focus on the coefficient matrix for 
generalized velocity component derivatives from Eq. (44) by 
grouping all other terms into the function h. This gives 

TrCTACTfi = h(q, u). (48) 

The matrix A is the same as defined in Eq. (17). To obtain 
first-order decoupled equations for the constrained system 
we simply choose T to be the proper congruency transforma- 
tion, this time for cTAc, using the procedure outlined ear- 
lier. 

Example: Unreduced Configuration Coordinates. We 
will now repeat the example carried out above, but now using 
the dependent configuration coordinates shown in Fig. 2. 

The constraint imposed by the rigid rod is temporarily 
removed. The position Jacobians for the two masses now 
appear as 

and 

0 00]  49, 

The resulting A matrix is [. m 0 : 1  
A = 0 - m  2 . ( 5 1 )  

- m  2 0 -me]  

Now we must find the orthogonal complement to reimpose 
the constraint. Therefore, the constraint representation 
should be put in the form of Eq. (35). For the simple 
pendulum this constraint is written as 

Bq = [0 q2 q3]~l  = 0. (52) 

To find an orthogonal complement the zero eigenvectors of 
BTB must be found. However, for this problem the vectors 
comprising C can be obtained even more simply, using the 
Gram-Schmidt process, for example. The orthogonal comple- 
ment is found to be 

C = -q3  . (53) 
qz 
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We can form CrAC to allow determination of T as 

The necessary components are now available to produce the 
constrained dynamical equations of motion using Eq. (44). 
The applied force vectors remain the same as in the previous 
example. The dynamical equations in terms of the reduced 
generalized velocity component vector are 

[ - m  1 - m 2 0 ] 
il 

0 -m~q22/(ml + m 2 )  + m2 r2 

[ 0 j[0] 55, 
= _m~q3q2uZ/(ma + me) + m2gq3 

The additional equations of motion stemming from the trans- 
formation between configuration coordinates and reduced 
generalized velocity components are 

/1=[10 -m2q21(m'+me)] u ' l  

Numerical Implementation of Congruency Transfor- 
mations 

Very often one must analyze large-scale systems where it 
would be very tedious to symbolically obtain the proper 
congruency transformation. For this reason, we now discuss 
numerical implementation of the congruency transformation 
so that it may be used on more complicated systems. Recall 
the expression for the equations of motion shown in Eq. (16), 
except here we do not require the matrix T to be a diagonal- 
izing congruency transformation. In this case T may be any 
matrix that yields a valid vector of generalized velocity com- 
ponents. The equations of motion for a holonomic system are 

- i= =~1 miTrJTJiTit + miTrJiT~(JiT)u 

d 
+ TToiTIiaiTil + T T o / T I i ~ ( a i T ) u  

+TT~TwiIiooi -- T T J T f i -  Trl~Tr/] = 0. (57) 

Notice that the derivative of the rate transformation matrix T 
appears in two of the terms in Eq. (57). Even though it would 
be possible to select T to be a diagonalizing congruency 
transformation at each iteration of the numerical integration, 
we would be left with the cumbersome task of specifying its 
time derivative as well. Hence, the following development 
allows selection of a matrix • which is independent of the 
original dynamical equations (Eq. (57)), and does not appear 
in derivative form. However, one must still choose a valid 
linear combination of generalized coordinate derivatives 
(prescribed by T) to define generalized velocity components, 
as usually done with conventional application of Kane's equa- 
tions. For example, it is common to choose a trivial set of 
generalized velocity components by selecting T as the identity 
matrix. Denote the matrix products premultiplying u from 
Eq. (57) as 

z [ v'P O/TIiI~i] t T A = T \=l/-iL" [miJiTJi+ (58) ) 

and the remaining vector sum as h(q, u) so the equations of 
motion can be written as 

(54) Aft = h(q, u). (59) 

Let us introduce the vector x in the following expression: 

fl = ~x .  (60) 

Substituting this into Eq. (59) yields 

AWx = h(q, u). (61) 

We can now premultiply both sides of Eq. (61) by ~ z  giving 
us  

~TA*x = ~Th(q ,  u). (62) 

However, notice the left-band side of Eq. (62) is a congru- 
ency transformation on the symmetric matrix A. If • is 
chosen as prescribed earlier, ~t"TA~ will be diagonal. Let 
L = ~t"TA~ SO Eq. (62) becomes 

Lx = ~Th(q ,  u). (63) 

Vector x can be written as 

x = L - l W r h ( q ,  u) (64) 

(56) when the inverse of L is simply comprised of the reciprocals 
of its diagonal elements. Finally, the resulting first-order 
decoupled form in terms of 6 is 

fl = * L - l * r h ( q ,  u). (65) 

We see that Eq. (65) is well structured for direct numerical 
integration without inversion of the A matrix. 

Conclusion 
We have proposed and demonstrated a method for creat- 

ing rigid-body equations of motion that are decoupled in 
first-order terms. This is achieved by properly choosing a 
congruency transformation that specifies generalized velocity 
components. For nonholonomic systems, or holonomic sys- 
tems with unreduced configuration coordinates, the congru- 
ency transformation is used in conjunction with an orthogo- 
nal complement to the constraint array. In both cases, the 
resulting equations are in a form that make it convenient for 
nonlinear behavior analyses. Moreover, it becomes an easy 
matter to implement general integration routines for first- 
order differential equations to obtain generalized coordinate 
trajectories for simulation purposes. 
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Elastic Compression of a 
Fiber Network 
A constitutive equation for a planar fiber network under transverse compression is 
derived allowing for an in-plane fiber orientation distribution. The fibers are assumed to 
be well dispersed in space and to have a large aspect ratio and uniform diameter. A 
compression experiment, performed on a glass-fiber network obtained by ashing a 
commercial composite preform, is accurately described by the theory. 

Introduction 
In various manufacturing processes for composite materi- 

als solid fibers are suspended in a liquid matrix and the 
whole is formed by the application of pressure. If the fibers 
are sufficiently long, they form a load-supporting network 
which may substantially contribute to the stress state in the 
suspension. The magnitude of this stress contribution de- 
pends on the volume fraction, fiber orientation distribution, 
and the spatial arrangement of the fibers. In many processes, 
such as compression moulding, the fiber orientation distribu- 
tion is planar or close to planar, and the network is com- 
pressed in the direction perpendicular to the plane of orien- 
tation. The compressive stress exerted by the network in that 
direction is the concern of the present work. 

A fiber network has a volume in excess of that occupied by 
the fibers, that depends on the specific fiber arrangement. 
On loading the network, the fibers will deform to decrease 
that excess volume and thus increase the fiber volume frac- 
tion. A large number of empirical or semi-empirical models 
have been suggested to describe the load-volume fraction 
relation for different types of fiber assemblies. Aligned fiber 
beds appear to derive their excess volume from the inherent 
misalignment or waviness of the fibers. Gutowski et al. (1992) 
have proposed a model for the compressibility of aligned 
fiber beds based on the assumption that the fibers form 
arches of a constant height-to-length ratio, The resulting 
equation contains three adjustable parameters. Van Wyk 
(1946) suggested a model for the compression of wool with 
three-dimensional random orientation. His result is a simple 
power law: 

P = k~b 3, (1) 

where P is the compressive force per unit area, $ is the 
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volume fraction, and k is an adjustable constant of propor- 
tionality. There is plenty of experimental support for this 
expression. Already Schofield (1938) proposed it as an empir- 
ical equation based on his experiments on compression of 
wool. 

Both of the above models are based on the bending of 
fiber segments between fiber-fiber contact points. This con- 
cept will here be applied to a third case: a fiber network with 
an general planar, but nonaligned fiber orientation distribu- 
tion. A constitutive theory is thus developed on purely mech- 
anistic grounds using no adjustable parameters. 

Problem Formulation 
The fiber network under consideration is idealized as 

follows: 
1 The structure of the fiber network is statistically homo- 

geneous. 
2 The fibers are approximately straight and all oriented 

in the same plane, 
3 The fibers are well dispersed in space, in the sense that 

they do not form bundles of parallel fibers. 
4 The fibers are sufficiently long that the constitutive 

behavior does not depend on the fiber length distribution. 
Under what conditions this requirement is fulfilled will be 
discussed later on, 

5 The fiber diameter is uniform. 
6 Since we only concerned with the fiber network itself, 

the space between the fibers is regarded as void, i.e., there is 
nothing there to store or dissipate energy. 

7 The deformation is elastic; i.e., no sliding between 
fibers in contact is allowed as this would give rise to inelastic 
dissipation. This is a necessary condition for the existence of 
a positive definite strain energy function, on which the pres- 
ent derivation relies. 

The network is subjected to a uniaxial compressive stress 
P directed perpendicular to the plane of orientation. We 
seek the constitutive relation 

P = P [ $ , O ( 0 ) ] ,  

where 4 is the fiber volume fraction, and 0(0)  is the 
in-plane fiber orientation distribution function. 
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Fig. 1 Example of node geometry 

Theory 
Each fiber makes contact with a number of other fibers 

crossing above and below. When an external uniaxial pres- 
sure is applied the fibers act as beams supported at the 
contact points. A segment of a fiber deflects between two 
supporting fibers under the load of a third. Such a segment 
will be called a node, and one of several possible realizations 
is illustrated in Fig. 1. 

A node will be characterized by the node spacing, a, the 
nodal force p,  the node deflection 3, and the nodal compli- 
ance d6 

s = ~p ,  (2) 

which depends on the node geometry and the end conditions. 
The end conditions are determined by the neighboring nodes. 
As the section in Fig. 1 deflects, it encounters another fiber 
with a probability which depends on the volume fraction and 
orientation distribution. In this way new nodes are continu- 
ously generated during compression, and the average node 
spacing a and nodal compliance g decrease accordingly. The 
response of the network is thus nonlinear. 

It will be necessary to make some assumption of the 
statistical distribution of nodal forces or displacements. One 
cannot assume uniformity in either, since a newly formed 
node must have p = 0 whereas an old node carries a finite 
force. Instead we shall assume uniformity in the incremental 
node force dp; i.e., on incremental compression of the net- 
work, the increase in the uniaxial pressure is evenly distribu- 
tion among the nodes existing at the time. This is equivalent 
to assuming that the force carried by a node is uniquely 
determined by the volume fraction at which it is formed (or 
force free). Since the node compliance is nonuniform, the 
incremental node deflection d6 will be nonuniform. How- 
ever, this allows us to write the average incremental node 
deflection in terms of the average nodal compliance: 

d~ = ~dp. (3) 
A strain energy function can now be defined 

d W  = npd6, (4) 

where rt is the node density, the number of nodes per unit 
volume. Substituting (2) for d6 and using the uniformity of 
dp, 

d W  = ~ p d p .  (5) 

Substituting (3) for dp we obtain 

p s _ _  
d~¢¢ = n-z-d& (6) 

s 

Next we need to relate d6 to the fiber volume fraction 4~. 
Since the total fiber volume 4~V is constant, 

. . . .  4,--~-, (7) 

where V is the total volume of the network. Now, recognizing 
that if 8 = d the network is collapsed, i.e., V =  0, and 
assuming that ~ << d, we can write 

d V  d8 

V d (8) 

and arrive at 

_ _  d 
aa  = 7d4~. (9) 

Now, by substitution of (9) into (6), we have 

ps d 
d'W = n T  7d~b. (10) 

Differentiation of the strain energy function with respect to a 
change in the total volume gives the uniaxial pressure: 

d 'W d nC¢ p s 
P d----~V = - - ~ 4 ~ = a  • "q-~-. (11) 

To eliminate the unknown nonuniform p, (11) is again differ- 
entiated with respect to p and (3) substituted for dp: 

d6 
dP = d . ~Tdp = d . n - z - .  (12) 

s 

Substituting Eq. (9) we have 

d2 " " d (13) 
d P =  ~4~ 

and can integrate with respect to q~: 

d2 c,~ r/ P= Jo ~ d 6 .  (14) 

The volume occupied by an average fiber is 

2" 7d l, 

where i is the average fiber length. The number of fibers per 
unit volume is thus 

4q5 

~rdZl " 

Multiplying this by the number of nodes per fiber, i/~ where 
is the average node spacing, gives the number of nodes per 

unit volume, 

4,/, 
= . , (15) 

~d2K 

and Eq. (14) becomes 

4 f4,dc~ 
P = 7,0 ¥-" (16) 

An important feature of this result is that the node proper- 
ties a and s enter only as averages. It now remains to find 
appropriate forms of these average functions ~(~) and ~(4~), 
both of which will depend on the fiber orientation distribu- 
tion. 

The average number ~ of fiber centerlines intersecting a 
cylindrical test volume of length i and diameter D circum- 
scribing an average fiber is exactly (Toll, 1993) 

1 
~ = ni2Df + -~ 1rniDZ(g + 1), (17) 

where n is the number fraction of fibers and f and g are 
functions of the fiber orientation distribution. At large aspect 
ratios I /D the second term may be neglected: 

Ni = ni2Df  • (18) 

The average number of fiber-fiber contacts Nc along an 
average fiber can be set equal to the average number of fiber 
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centerlines intersecting a test cylinder of diameter D = 2d; 
thus, in terms of volume fraction, 

8 i  
Nc = 2nl2df  = -~ ~f45.  (19) 

This result has also been obtained by Komori and Makishima 
(1977). The average node spacing is now obtained as 

i ~ r d  
a = 2_~  = - - - - .  (20) 

N c 4 f45 

The orientation function f is defined as (Toll, 1993) 

f = 9696 I sin(0 '  - 0) I ~p(O')~O(O)dO'dO, (21) 

where ~0(0) is the in-plane fiber orientation distribution 
function. The function f can assume values between 0, at 
unidirectional, and 2/~-, at planar random orientation. 

The estimation of the average nodal compliance is more 
difficult because of the uncertainty in the node geometry and 
end conditions. A simple model can be based on the fiber 
segment depicted in Fig. 1: a cylindrical beam supported 
with a no-rotation condition at each end and loaded with p 
at the midsection. The compliance of such a beam, as known 
from elementary beam theory, gives the nodal compliance 

a 3 

g 3¢rEd4 , (22) 

where E is the Young's modulus of the fiber. It is not 
obvious whether this model is too stiff or too compliant: on 
the one hand, the end condition of no rotation is more 
restrictive than the true end condition--continuity of rota- 
tion; on the other hand, the central loading gives higher 
compliance than a more likely unsymmetrical one. Equation 
(22) involves the third moment of the node spacing a. This 
can be estimated by assuming the contact points along a 
given fiber to be spaced at random. We then have an expo- 
nential distribution of contact point spacings, 

1 
f~(x)  + - e  -x/~. (23) a 

Taking the third moment of (23) we obtain 

a 3 = 6~ 3. (24) 

Thus we have 
2K 3 

= 7rEd----- ~ . (25) 

Substituting Eqs. (20) and (25) into (16) and integrating 
gives the final result: 

512 
P = ~---TT4Ef445 5 ,.~ Ef44, 5. (26) 

Finally we provide some additional results. Combining (15) 
and (20), the node density is obtained as 

16 f4,2 

'O 7r 2 d 3 .  (27)  

Using P = fi~d and (26), the average nodal force p can be 
written explicitly: 

32 
p = -7--TEd2f345 3. (28)  

(29) 

Experiment 
A compression experiment was performed, using a com- 

mercial "Glass Mat reinforced Thermoplastic sheet" (GMT) 

f 0.4 

0.5 

1000 

too 

~ lO 

o.1 

~0.3 

0.01 0.1 

Volume fraction 

Fig. 2 Theoretical P-~  relation for various fiber orientation distri- 
butions 

with discontinuous fibers and polypropylene matrix (AZDEL, 
Inc.). This composite is produced by a slurry deposition 
process similar to that used for paper making, and contains 
well-dispersed fibers with almost perfectly planar orientation. 
The fiber diameter and length are about 12 /zm and 12 ram, 
respectively. The fiber volume fraction of the composite as 
determined by ashing is about 0.087. 

The in-plane fiber orientation distribution was determined 
by metallographic polishing followed by digital image analy- 
sis. This technique has been described by Toll and Andersson 
(1991). The orientation function ff was then calculated ac- 
cording to Eq. (21): 

fGMT= 0.46. 

A fiber network was prepared by ashing the GMT material 
at 560°C for one hour. This network was compressed be- 
tween two circular parallel plates by the application of 
weights, while recording the distance between the plates. The 
plate diameter was 50 ram, and the mass of glass fibers 
between the plates was 1.96 g. 

Results and Discussion 
Figure 2 shows the theoretical log-log plot of P versus 45 

according to Eq. (26) at various fiber orientation distribu- 
tions. This curve is a straight line of slope 5, and the effect of 
changing the orientation distribution is to shift the curve 
along the &axis. 

Figure 3 shows the experimental datapoints along with the 
theoretical P-45 relation for the ashed GMT material. For 
illustration purposes the number of nodes per fiber, lfd, as a 
function of 4, has been calculated according to Eq. (20) and 
indicated in the figure. The data suggest an upper and a 
lower limit to the applicability of the theory; at very low and 
very high volume fractions the theory is too stiff, whereas in 
an intermediate range the data agree very accurately with the 
theoretical curve. 

A real fiber network possesses a finite unloaded volume 
fraction 4,0, due to the action of volume and surface related 
forces such as gravity and electrostatics. The volume fraction 
will tend to 4,0 as P ~ 0 thus explaining the deviation of the 
first data point from the straight line. 

For the tested fiber network 4'0 was about 0.02, corre- 
sponding to about 12 nodes per fiber, and the first datapoint 
at 4, = 0.03 corresponds to some 18 nodes per fiber. This 
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Fig. 3 Expe r imen ta l  P - ~  datapoints  a long with the  theoret ica l  
predict ion for the  f iber or ientat ion distr ibution m e a s u r e d  ( f  = 0,46),  
The  a v e r a g e  number  of n o d e s  per  f iber,  accord ing  to Eq. (20) ,  is 
a lso indicated.  

ought to be sufficiently many for the fiber ends not to 
significantly affect the response, and thus our neglect of fiber 
ends, or equivalently assumption of infinite fiber length, 
holds. If the fibers were shorter, the effect of the fiber ends 
would have caused ~b 0 to be even higher. At high volume 
fractions (the last datapoint) clearly audible fiber breakage 
occurs. Since this is an inelastic effect not accounted for, the 
theory again overestimates P. However, the rather low level 
of this upper applicability limit is peculiar of this experiment: 
the ashing procedure most certainly damages the fiber sur- 
faces and reduces the fiber strength. In an actual manufac- 
turing process the fibers are well protected by a polymer 
matrix and fiber breakage should occur only at much higher 
pressure. 

The exceptional experimental agreement is reassuring but 
unexpected. After all, we have made a series of assumptions 
whose validity cannot be expected to be complete. The sim- 
ple beam that we have used to model the compliance of a 
fiber segment is totally symmetric and thus has certain weak- 

nesses. It cannot account for the fact that the direction of 
contact force is not simply alternating, or that the beam 
segment is not loaded midway between the supports. In 
addition, we have made assumptions such as uniform incre- 
mental nodal forces, perfect dispersion, and no sliding be- 
tween fibers. Nevertheless, we find a perfect agreement with 
the experimental data. 

The same basic mechanism of beam bending between 
contact points was used in Van Wyk's model of a three-di- 
mensional network. The resulting form is also very similar, 
except that in the three-dimensional case P cc 4, 3 rather 
than P cc ~5. There is, however, no analytical solution for 
the constitutive parameter k in Eq. (1). 

When the fibers of a node form wide angles at the contact 
points it seems appropriate to derive the nodal compliance 
from a simple beam model. However, when contacting fibers 
are close to parallel, the contact surface may become sub- 
stantial and a contact point no longer is an appropriate 
description. This means that Eq. (26) most likely does not 
apply at very high fiber alignments. This is, however, no 
limitation of the result (16), provided that appropriate func- 
tions g and ~ can be found. 
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A Note on the Stability and Instability 
of the System With Time Variable 
Parameters 

L. Cveticanin 1 

1 Introduction 
In the previous time a lot of stability and instability theo- 

ries were developed for the systems with time variable pa- 
rameters described as 

£ + C(t)2 + X( t )x  = O, (1) 

where C(t) and K(t) represent the arbitrary time-dependent 
damping and rigidity coefficients, x is a deflection function 
and ( " )  -= d/dt, ("') =- d2/dt  2, but all of them have some 
restrictions. Most of the theories are based on the Liapunov 
direct stability and instability theorems and the Liapunov 
function is assumed as an energy-type function 

1 1 
V = ~fl(t)22 + -~f2(t)x 2, (2) 

where f~(t) and fa(t) are time variable functions. Merkin 
(1971) assumed the case when f l ( t )=f2( t )= 1, and the 
stability conditions are defined only for the case when the 
functions C(t) and K(t) have constant values. In the paper of 
Shrivastava (1981) the theorem of stability is defined for the 
case when C(t) and K(t) are arbitrary functions. The disad- 
vantage of the method is that it does not give the conditions 
of asymptotical stability or instability. An extension is done 
by Ahmadian (1986) for C(t) and K(t) monotony functions. 
The suggested theorems give the conditions of asymptotical 
stability and instability only for some special types of rigidity 
and damping functions. 

In this paper a new type of Liapunov function is formed 
which allows to follow the classical Liapunov results on 
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asymptotic stability and instability of nonautonomous systems 
and represents an extension of the previous results. A stabil- 
ity theorem for a special type of second-order different 
equation with complex deflection function is also defined. 

2 Analysis 

Let us assume a function V in a total square form: 

1 1 
V = ~fl(t)22 + ~fz( t )x  2 + f3 ( t )x / .  (3) 

The corresponding time derivative after substituting (1) is 

1.  2 ~/2(t)x2 = ~f l ( t )2  + - K(t)xxfl(t) 

-C(t)22f l ( t )  - f 2 ( t ) x i  + f 3 ( t ) x /  + f3(t)22 

- f3 ( t )K( t )2x- f3 ( t )C( t )22 .  (4) 

Using the Eqs. (3) and (4), the conditions for asymptotic 
stability and instability of (1) will be defined. 

Theorem of Asymptotic Stability. 

Theorem 1: If there are bounded positive definite func- 
tions ft(t) and fa(t) which are nonsingular and continuously 
differentiable and a positive definite function f3(t) which is 
also continuously differentiable and satisfies the relation 

f~(t)  < fl(t)f2(t),  (5a)  
and if 

1 .  
C(t )k ( t  ) - f 3 ( t )  - ~fl( t)  > 0, (5b) 

1 .  
f3(t)K(t)  - ~f2 > 0, (5c) 

4[C(t)fl(t)  - f3(t) - ~fl( t)][ f3(t)K(t)  - ~f2] 

- [ f2  +J~ - f3C( t )  - K ( t ) f l ( t ) ]  2 > O, (5d) 

the unperturbed motion described with (1) is asymptotically 
stable. 

Proof" If the functions ft(t) and f2(t) are positive defi- 
nite and have a small upper limit, and if the condition (5a) is 
satisfied, the function V (3) represents a positive definite 
bounded function for all t >_ t o and max(lxl, 12l, [Yl, IS'l) -< h. 
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BRIEF NOTES 

The time derivative V is a negative definite function for 
(5b)-(5d). The function V and its derivative V satisfy all the 
conditions of the Liapunov theorem of asymptotic stability 
(see Leipholz, 1970). 

Propositions: 
(1) The asymptotic stability is not possible for C(t) _< O, 

because the condition (5b) is never satisfied. 
(2) The motion is asymptotic stable for K(t) positive 

(according to (5c)). 

Example. Let us analyze the asymptotic stability for some 
monotony functions C(t) and K(t), 

We assume the functions fl  = 1, f2 = K(t) + C(t)/2, f3 
= 1/2. The unperturbed motion described by (1) is asymptot- 
ically stable for 

C(t) > 1/2, K(t)  - I t( t)  - C ( t ) / 2  > 0. (6) 

(1) If C(t) is a decreasing function or a constant which 
satisfies the condition (6) and K(t) is also a decreasing 
function or a constant value, the motion is asymptotically 
stable, i.e., it tends to the position (0, 0). 

(2) If C(t) is increasing and satisfying (6) and K(t) is 
increasing or decreasing, respectively, the stability conditions 
are  

/(m~. -- Rm.~ -- d m J 2  > 0, 

Kmin + /~min -- Cmax/2 > 0. 

(3) For a constant damping parameter and K(t) increas- 
ing or decreasing, respectively, the stability conditions are 

Kmin -- /~max > 0, 

Kmin +/~min > 0. 

Theorem of Instability. 

Theorem 2: If there are bounded positive functions fl(t) 
and f2(t) which are nonsingular and continuously differen- 
tiable and a positive function f3(t) which is also continuously 
differentiable and satisfies the relation 

and if 
f~( t )  ~_fl(t)f2(t), (7a) 

1 . 

f3(t)  - C(t) f l ( t  ) + ~ f , ( t )  > 0, (7b) 

1 .  
~f2 - f 3 ( t ) K ( t )  > 0, (7c) 

4[ f3(t) - C( t ) f l ( t )  + ~ f l ( t ) ] [ ' ~ / 2 -  f3(t)K(t)]  

- [ f 2  + f3  - f 3C( t )  - K ( t ) f l ( t ) ]  2 > 0, (7d) 

the unperturbed motion described as (1) is instable. 

Proof" If the functions fl(t) and f2(t) are positive and 
have an infinitely small upper bound for t >_ t o and x i 
max(Ixl, 121) _< h and the condition (7a) is satisfied, the func- 
tion V (3) is positive, semi-definite, and hounded. For the 
conditions (7b)-(7d) the time derivative V (4) is a positive 
definite function. As V has the same sign as V for arbitrarily 
large t when xi are arbitrarily small, the function V repre- 
sents a Liapunov function which satisfies the conditions of 
the Liapunov theorem of instability (see Leipholz, 1970). 

Note: If the functions fl(t) and fz(t) arc not only bounded 
but also positive definite and the function f3(t) satisfies the 
relations (7b-7d), then the function V is positive definite 

with a small upper limit and for that function the instability is 
totality in the Liapunov sense (see Hahn, 1959, pp. 16). 

Propositions: 
(1) The instability may occur not only for negative values 

of C(t) but also non-negative which satisfies the relation 
(7b). 

(2) The instability conditions are satisfied for K(t) nega- 
tive definite. 

Example. Let us assume the Liapunov function where 
fl = 1, f 2  = K(t) + C(t)/2, f3 = l/2. The instability condi- 
tions are satisfied for 

C(t) < 1 /2 , /~( t )  + C ( t ) / 2  - K(t)  > 0. (8) 

The second relation is satisfied for K(t) < 0. The condition 
(8) is then 

C(t) < 1/2, - I K ( t ) [  ÷ C ( t ) / 2  + bK(t)l > 0. (9) 

(1) If the damping is a constant value which satisfies (8) 
(including C = 0) and K(t) is a negative decreasing function 
the motion is always instable. The same conclusion corre- 
sponds for C(t) a positive increasing function and a negative 
decreasing function. 

(2) If C(t) is positive increasing or negative decreasing 
and satisfying (8) and K(t) is negative increasing, the instabil- 
ity conditions are 

]gmi, I -  I/~ma×L + Cmin/2 > 0. 

(3) For C(t) is positive decreasing or negative increasing 
and satisfying (8) and K(t) is negative increasing or decreas- 
ing, respectively, the instability conditions are 

[gm~.l-  [/~maxl - Cmax/2 > 0, 

IKmi.I + Igmi. I -  Cmax/2 > 0. 

Comments. The only possibility to analyze the asymptotic 
stability and instability applying of the Liapunov function of 
the energy type is to extend it with a term f3(t)x2. For 
f3(t) = 0 the condition (5c) or (7c) can never been satisfied 
because for a limited and definite function f2 the time 
derivative is f2( t )  = 0 for t ~ o~. 

3 Stability Analysis of a System With Complex De- 
flection Function 

Let us consider a linear second-order differential equation 
with complex deflection function z and time variable param- 
eters 

£ + C(t)~ + K( t ) z  - iG(t)~ = 0 (9) 

where C(t), K(t), and G(t) represent the arbitrary time-de- 
pendent damping, rigidity, and gyroscopic coefficients, re- 
spectively, z = x + iy complex deflection function, i = x / -  1 
is imaginary unit. Let us assume a function of the energy 
form 

1 1 
v =  i l l ( t ) ( 2  2 +~2)  + j 2 ( t ) ( x  2 + y 2 )  (10) 

where fl(t) and f2(t) are arbitrary time variable functions. It 
is an extension of the function suggested by Ahmadian (1986) 
where f l ( t )= 1, f2(t) = K(t). The time derivative of the 
function (10) according to (9) is 

1 .  2 1 .  
I/= -~f,(t)(2 +~2)  + _~f2(t)(x 2 + y2) 

-K(t)(xic + y~)f,(t)  - C(t)(2 z + ) ) f l ( t )  

-f~(t)(~ +yy). (11) 
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Let us formulate the Theorem of stability. 

Theorem 3: If there are positive-definite continuously 
differentiable functions f l ( t )  and f 2 ( t )  and if it is 

1 .  
C ( t ) f l ( t  ) - ~ f ~ ( t )  >_ O, (12a)  

1 . 
- ~f2  >- 0, (12b)  

1 .  1 .  

(12c)  

the unperturbed motion described as (9) is stable. 

Proof." According to the fact that the functions f~( t )  and 
f2(t) are positive-definite, the function V (10) is a positive 
definite function for t >_ t o and max(lxl, [./I, lyl, 1.91) _< h. The 
time derivative of V is a function (11) which is negative 
semi-definite or is identically zero according to (12a)-(12c).  
The function V represents a Liapunov function (see La Salle, 
1968) which satisfies the conditions of stability theorem (see 
Hahn, 1959). 

To satisfy the conditions (12) the following requirements 
have to be fulfilled: 

(1) The function f2(t) has to be a positive decreasing or a 
positive constant function. 

(2) If the damping is neglected, the function f l ( t )  has to 
be a non-negative function. 

(3) The stability condition (12a) may be satisfied, not  
only for positive damping but also for the case when the 
damping is zero and K ( t )  is a positive definite function. 

(4) For the case when C( t )  is a positive definite function, 
the motion is stable for K ( t )  non-negative. 

(5) The gyroscopic effect has no influence on the stability 
properties of the system. The same conclusion is given by 
Cveticanin (1992). 

(6) The functions C ( t )  and K ( t )  may be also periodical. 

Note:  The conditions of simple stability (12) correspond 
also for the system (1). 

Example. Let us consider the case when 

1 
C ( t )  = 1 + - -  K ( t )  = 6 + • cos ( O r ) ,  

t + l '  

where ( 6 - • )  > 0 ,  t>_0 .  (13) 

We introduce the functions 

1 1 
f l ( t )  ( t  + 1 ) K ( t )  and f2 ( t )  = t +----1 (14) 

As the stability conditions (12) are satisfied, it can be con- 
cluded that the unperturbed motion of the system is stable. 
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Stresses in Open-Ended 
Cylindrical Shells  

BRIEF NOTES 

J. T.-S. Wang 2 and C.-C. Lin 2 

Timoshenko and Woinowsky-Krieger (1959) stated on p. 
501 in their book that if the ends of a thin circular cylindrical 
shell are free and the loading is not symmetrical with respect 
to the axis of the cylinder, the deformation consists princi- 
pally in bending. The present study presents some explo- 
rations from the standpoint of stress distribution to qualita- 
tively verify the statement for an open-ended cylindrical shell 
under  normal loading which does not vary along the axis of 
the shell. 

The following equilibrium equations, without the effect of 
body forces, in cylindrical polar coordinates for stress distri- 
bution which is independent  of the longitudinal axis, can be 
found in textbooks on mechanics of solids such as the book 
by Fung (1965): 

- -  + - - -  + 0 ( 1 )  
Or r ,90 r 

Or,. o 2 1 0% 
- -  + - f r o + - - - -  = 0 ( 2 )  

Or r r O0 

for a < r < b where a and b are radii of curvatures of the 
inner and outer surfaces of the shell, respectively; r and 0 
are radial and circumferential coordinates, respectively. If R 
is the radius of curvature of the middle surface and h is the 
thickness of the cylindrical shell, then a = R-h~2  and b = R 
+ h / 2 .  

L o a d  I n d e p e n d e n t  o f  0 

When the load is independent  of 0, r,. o = 0 and the other 
n o  stress components are also independent  of 0. The only 
equilibrium equation reduced from Eq. (1) becomes 

d 
~ ( r o ' ~ )  = o- 0 . (3) 

The effective loading q per unit mid-surface area is related 
to the loadings q0 and qi on the outer and inner surfaces, 
respectively, as follows: 

q R  = qo b - qi a. (4) 

The following four combinations of surface loadings are 
considered in the exploration: 

C a s e l .  qo b = - q i  a = q R / 2 .  
Since rcr r varies from - q R / 2  to q R / 2  as ~" varies from 

- h / 2  to h / 2  where ~" is the radial coordinate measured from 
the mid-surface of the cylindrical shell, we consider that r~rr 
varies as an odd function of ~'. 
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Let us formulate the Theorem of stability. 

Theorem 3: If there are positive-definite continuously 
differentiable functions f l ( t )  and f 2 ( t )  and if it is 

1 .  
C ( t ) f l ( t  ) - ~ f ~ ( t )  >_ O, (12a)  

1 . 
- ~f2  >- 0, (12b)  

1 .  1 .  

(12c)  

the unperturbed motion described as (9) is stable. 

Proof." According to the fact that the functions f~( t )  and 
f2(t) are positive-definite, the function V (10) is a positive 
definite function for t >_ t o and max(lxl, [./I, lyl, 1.91) _< h. The 
time derivative of V is a function (11) which is negative 
semi-definite or is identically zero according to (12a)-(12c).  
The function V represents a Liapunov function (see La Salle, 
1968) which satisfies the conditions of stability theorem (see 
Hahn, 1959). 

To satisfy the conditions (12) the following requirements 
have to be fulfilled: 

(1) The function f2(t) has to be a positive decreasing or a 
positive constant function. 

(2) If the damping is neglected, the function f l ( t )  has to 
be a non-negative function. 

(3) The stability condition (12a) may be satisfied, not  
only for positive damping but also for the case when the 
damping is zero and K ( t )  is a positive definite function. 

(4) For the case when C( t )  is a positive definite function, 
the motion is stable for K ( t )  non-negative. 

(5) The gyroscopic effect has no influence on the stability 
properties of the system. The same conclusion is given by 
Cveticanin (1992). 

(6) The functions C ( t )  and K ( t )  may be also periodical. 

Note:  The conditions of simple stability (12) correspond 
also for the system (1). 

Example. Let us consider the case when 

1 
C ( t )  = 1 + - -  K ( t )  = 6 + • cos ( O r ) ,  

t + l '  

where ( 6 - • )  > 0 ,  t>_0 .  (13) 

We introduce the functions 

1 1 
f l ( t )  ( t  + 1 ) K ( t )  and f2 ( t )  = t +----1 (14) 

As the stability conditions (12) are satisfied, it can be con- 
cluded that the unperturbed motion of the system is stable. 
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Stresses in Open-Ended 
Cylindrical Shells  

BRIEF NOTES 

J. T.-S. Wang 2 and C.-C. Lin 2 

Timoshenko and Woinowsky-Krieger (1959) stated on p. 
501 in their book that if the ends of a thin circular cylindrical 
shell are free and the loading is not symmetrical with respect 
to the axis of the cylinder, the deformation consists princi- 
pally in bending. The present study presents some explo- 
rations from the standpoint of stress distribution to qualita- 
tively verify the statement for an open-ended cylindrical shell 
under  normal loading which does not vary along the axis of 
the shell. 

The following equilibrium equations, without the effect of 
body forces, in cylindrical polar coordinates for stress distri- 
bution which is independent  of the longitudinal axis, can be 
found in textbooks on mechanics of solids such as the book 
by Fung (1965): 

- -  + - - -  + 0 ( 1 )  
Or r ,90 r 

Or,. o 2 1 0% 
- -  + - f r o + - - - -  = 0 ( 2 )  

Or r r O0 

for a < r < b where a and b are radii of curvatures of the 
inner and outer surfaces of the shell, respectively; r and 0 
are radial and circumferential coordinates, respectively. If R 
is the radius of curvature of the middle surface and h is the 
thickness of the cylindrical shell, then a = R-h~2  and b = R 
+ h / 2 .  

L o a d  I n d e p e n d e n t  o f  0 

When the load is independent  of 0, r,. o = 0 and the other 
n o  stress components are also independent  of 0. The only 
equilibrium equation reduced from Eq. (1) becomes 

d 
~ ( r o ' ~ )  = o- 0 . (3) 

The effective loading q per unit mid-surface area is related 
to the loadings q0 and qi on the outer and inner surfaces, 
respectively, as follows: 

q R  = qo b - qi a. (4) 

The following four combinations of surface loadings are 
considered in the exploration: 

C a s e l .  qo b = - q i  a = q R / 2 .  
Since rcr r varies from - q R / 2  to q R / 2  as ~" varies from 

- h / 2  to h / 2  where ~" is the radial coordinate measured from 
the mid-surface of the cylindrical shell, we consider that r~rr 
varies as an odd function of ~'. 
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Case 2. qo b = qR and qi = O. 
We consider a linear variation of ff through the thickness 

of the thin shell for r~r~, hence 

"' 

Case 3. q0 = 0 and qi a = - q R .  
We consider the same form of variation of ro~ as in Case 

2, as a result 

ro-~ = q R ( - 0 . 5  + ~ ) .  (6) 

Case 4. qo b = qi a = q*. 
The effective load q = 0 for this case, and we consider 

that ro;. is constant through the thickness, 

r~r= q*. (7) 

By integrating Eq. (3) through the thickness of the shell, we 
have 

[rO'r] ~ = lab%dr = N o (8) 

where N o is the stress resultant. By using the surface traction 
conditions at r = a and b, we arrive at 

N o = qR (9) 

for Cases 1 through 3 listed before. For the fourth case, 

N o = O. (10) 

Results given by Eqs. (9) and (10) are the well-known solu- 
tions based on the classical membrane theory of shells. 

Multiplying Eq. (3) by r, and then integrating the resulting 
equation through the thickness, we have 

fabrd( ro'r ) = fabr% dr. (11) 

The right-hand side of Eq. (11) represents the moment of % 
through the thickness about the axis of the cylinder, i.e., 

£br%dr = NoR + M o (12) 

where M o is the stress couple at the section. By using Eqs. 
(9) and (10), we have for Cases 1 through 3, 

and for Case 4, 

fa bro'odr = qR 2 + Mo, (13a) 

fa brobdr = 0 + M o. (13b) 

The left-hand side of Eq. (11) when integrated by parts 
becomes 

fabrd(ro-r)= [r2Crr]ba-- fabro'rdr (14) 

which is equal to qR 2 for Cases 1 through 3, and 0 for Case 
4. When the results of Eq. (14) are equated to Eqs. (13a) and 

(13b), we conclude that M o = 0 for all four cases. Hence, the 
state of stress in the shell is principally membrane when the 
normal load on the shell is symmetrical about the axis of the 
cylinder. 

Loads Dependent on 0 
When the normal load on a cylindrical shell is dependent 

on 0, rr0 exists in the shell but takes on zero values at the 
inner and outer surfaces of the shell for the loading condition 
under consideration. We consider that the variation of the 
in-plane stress % can be represented in a separable form of 
r and 0 as follows: 

% = g ( O ) o ' ( r ) .  (15) 

Integrating Eq. (2) through the thickness of the shell, we 
have 

dg 
fabr~rdr = O. (16) [r2 rO] 

dg 
Since rr0 = 0 at a and b and we consider that ~ ÷ O, hence 

fa broodr = 0. (17) 

As noted before, the left-hand side of Eq. (17) represents the 
moment of % through the shell thickness about the axis of 
the cylinder. Hence, 

fa bro'o dr = N o R + M o = O. (18) 

Equation (18) gives 

Mo = -NOR.  (19) 

The in-plane stress % for the extreme fibers at ff = _+ h/2  of 
each section based on the classical shell theory are 

( R )  No 6M° No 1 -Y 6 ~  (20) 
° ' ° = h ±  h 2 h 

While the first term in the parentheses represents the mem- 
brane effect, the second term represents the bending effect. 
For R = 10h as being suggested on page 25 in the book by 
Kraus (1967) as the thickness limitation for thin elastic shells, 
the bending effect is 60 times of the membrance effect. 
Hence, the state of stress is principally bending when loads 
that are not symmetrical about the axis of the cylinder but 
dependent on 0. 
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BRIEF NOTES 

A m p l i t u d e  B o u n d s  o f  L i n e a r  F r e e  

V i b r a t i o n s  

W. S c h i e h l e n  3,s a n d  Bin  Hu 4,s 

Linear free vibrations are completely characterized by their eigen- 
~equencies and eigenmodes. However, in engineering applica- 
tions the amplitudes of a vibrating system have to be bounded, 
too. The information on the amplitudes of linear vibrations is 
available from the general solution for each set of initial condi- 
tions, which usually are unknown vector quantities. The initial 
energy is a scalar quantity which is used to identi~ the amplitude 
bounds of arbitrarily damped linear vibrating systems. 

Introduction 
For reasons of safety and reliability, the maximum peak 

values of the vibration responses excited by initial distur- 
bances must be taken into account in the engineering. These 
maximum peak values are defined as maximum amplitudes of 
vibrations. Since it is not practical to solve the differential 
equations for every possible initial condition to find the exact 
maximum amplitudes, for economic reason, some amplitude 
bounds are very useful. For a classically damped system, 
Miiller and Schiehlen (1985) have given amplitude bounds 
for normal coordinates. Thomson (1988) has presented an 
approach to calculate approximate amplitude bounds for 
original physical coordinates using the first three modes. 
However, this approach is not applicable to nonclassically 
damped systems. On the other hand, bounds of vibration 
responses have been extensively studied (see Nicholson (1987) 
and Yae and Inman (1987)). These response bounds vary 
with time. Using the bounds, one can indirectly get some 
amplitude bounds, too, but these amplitude bounds are usu- 
ally not easy to compute. Therefore, simple amplitude bounds 
for free vibrations are presented here. 

The equations of free vibrations of an n-degree-of-free- 
dom linear system can be written as 

M~,+C#+ Ky=O, #(to) =7o, Y(to) =Yo, (1) 
where the inertia matrix M, the velocity matrix C, and the 
stiffness matrix K are of the order n × n. The displacement 
y(t) is an n-dimensional vector. Further, Yo and #o, respec- 
tively, are the initial displacements and the initial velocities 
at the initial time t = t o . The velocity matrix C can be 
decomposed as C = D + G, where D is symmetric, D = D v, 
and G is antisymmetric, G = - G  T. The matrix D describes 
the dissipative forces and the matrix G represents the gyro- 
scopic forces. For dissipative systems, the matrices M and K 
are symmetric and positive definite and the matrix D is 
positive semi-definite. 

Simple Amplitude Bounds 
The amplitude bounds proposed are defined as follows: 

For linear vibrations governed by Eqs. (1), where E 0 is the 
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1 1 
initial energy, E 0 =-~#0rM~,0 + ~Y0rKyo, and Mi7 l and 

K~J(i = 1, 2 . . . . .  n) are the diagonal elements of the 
matrices M-1 and K -~, there exist simple amplitude bounds 
given as 

maxlYi(t)l _< 2K~ilE~, maxlp/(t)[ _< 2M~i71E~, 
t t 

i =  1,2 . . . . .  n. (2) 

Considering Eqs. (1) and multiplying them by #r, we have 

i.e., 

#TMy + y T c #  + #TKy = 0 (3) 

d [ l r ' ~  d ( l r  ) 
~ [ - ~ #  M#) +#TD#+,TG,+ ~ ~y Ky =0. (4) 

Because G is antisymmetric, #TG# = 0, hence 

d [ 1 . r  • + ~ y r K y  ) ~ [ ~ y  My =-#rD#.  (5) 

We define the energy function as 

1 1 
E(y,#) = ~#TM~, + ~yrKy.  (6) 

From (5), it follows 

d 
~ E ( y , # )  = - # r D # .  (7) 

Since D is positive semidefinite, we get 

E(y,#) < E(yo,#o ) = E o. (8) 

Def, nir,  x = [Y,] as the state vector and introducir,  sets 

A: = {x[x belongs to the orbits of Eqs. (1)}, (9) 

B: = {xle(x): = E(y,#) < Eo}, (io) 

Ci: = {x[x/= 0}, i = 1, 2 . . . . .  n, (11) 

then we can see from (8) that A c B. Choosing 2n continu- 
ous mappings, 

Pi: Pi(x) = Pi([Xl, X2 . . . . .  X2n] T) = Ixil, x e R 2n, (12) 

then Pi(x) is differentiable except x ~ C i. Further, Pi(x) has 
the minimum in x e C  i. Because the set B is a closed 
bounded set and Pi(x) is continuous in B, Pi(x) has the 

eP/(x) 
maximum IxT[ in B. Since ~ 0 for x e B A C~, the 

0x 
maximal point x* lies only on the boundary of B, i.e., the 
surface of the ellipse B* = {xlE(x) = E0}. Because of A c B, 
we have 

maxPi(x ) _< maxPi(x ) = max Pi(x) (13) 
XEA X~B XEB* 

that is, the amplitude of x i is smaller than [xT[. 
Now we search the maximum [xT[ of P/Ix) in B*. If x 

1 1 
Nix) = E(y,~,) = g#TM# + ~yrKy = e0. (14) 

First the state variable x 1 = Yl is considered, then from (14), 
it follows that Yl is a function of the other state variables. If 
Pl(x) has the maximum lyTI at the point x = x*, it yields 

0Pt(x) 01Yll 
0 j = 2,3 . . . . .  n, (15) 

ayj ayj 
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and 

OPi(x ) OlYll 
0 j = l ,  2 . . . . .  n. (16) 

oyj ayj 

Differentiating (14) under the condition (15) and (16), one 
obtains 

kijY ? = 0 ,  i = 2 , 3  . . . . .  n (17) 
j=l 

M~,* = o. (18) 
Assume 

(19) A n _ l :  = [k12 . . . . .  k l . ]  T, 

O n _ l :  = . . . , 

k n 2  • . . k n n  

, , . .  ~ ] T  
Y<.-1): = [Y~ ' Y~ 

then 

kl l r 

K = A n _ l  On-1 ' 

and Eqs. (17) can be written as 

A~-lY~ + . -  lY(n- 1) 

Following from (18) and (24), it yields 

[2 E(y*, j'*) = ~ [y~ ,  Y(~t-1)] 
1 

= -~ [Yr, Y,* 1 l [ k l l Y ~  
( n - ) J  [ 

(20) 

(21) 

(22) 

(23) 

= 0. (24) 

A ~ _ i ]  [ Yr ](25) 
O._l Ly,:l,] 

+ A n - 1Y(n - 1) (26) 
0 

l [ k  , * 2  
= 2 1  11Yl +Y~A~-i~'(~ ,)) ( 2 7 )  

1 
= .~(kllyT2 . * * r  Jra't-1 A n  lYT) (28) - -  y l ~ l n _ l ~CJ, n _ l _ 

1 
= ~ ( k l l  - AT._iO~-}iAn_i)y? 2. (29) 

Assuming further 

K- l :  = ( K ~ l ) n x n  , (30) 

= K-I  a n - l :  [ 12 . . . . .  R 1 ) ]  T ,  (31) 

[ Ky21 . . .  K~) ] 

B~_ 1: . . . . .  (32) 

LK; ;  . . .  K~-~ 

K aT ] n--1 , 

a n - 1  B n - 1  

then 

From KK-1 = I, we get 

A n _ l  O n - I  

K[11 a T ] 
n - 1  = I .  

an  - 1 Bn - 1 

(33) 

(34) 

Therefore, 
T a k l i K l l  1 + A , _ i  , - I  = 1, 

A._  iK{l I + O , _ l a , _  I = 0. 

From (36) and (35) it follows that 

AT 1 a n -  1 

K~-i a 
A r O -I  A .  n - 1  n - 1  -1  

Substituting (37) into (29), one gets 

yT 2 
E(y*, ~z*) 2K1-11 - Eo, 

If E o > 0, it follows from (27) 

resulting in 

1 - k l l K { 1 1  

Kll 1 

1 

K~-i I 

(35) 

(36) 

- -  + k n. (37) 

(38) 

(39) 

E(y*, ~*) = ~ y ~ j ~ l k l y y ~  = E o, (40) 

c : =  ~ k l j y  ~ -~ O. (41) 
j = l  

At the point (y~, y ~ , . .  Yn*, .9[, "* "* •, Y2 . . . . .  y, ), one has the 
following second partial derivatives: 

0 2y 1 k i j  
i, j ~ {2, 3 . . . . .  n}, (42) 

C 3YiaYj 

02yl 

a;iayj 

c92y  1 

- -0  i ~ { 1 , 2  . . . . .  n} j ~ { 2 , 3  . . . . .  n}, (43) 

mij 
- i, j ~ {1, 2 . . . . .  n}. (44) 

a~,a;j c 

Since the matrix M and O,_ 1 are positive definite, the 
Hessian matrix of Yl with respect to [y> . . . ,  Yn, Yl, " " ,  

~n] T is negative definite for c > 0. Hence, y~ = ~ is 
the maximum. For c < 0, the Hessian matrix is positive 
definite, and y~ = - 2 ~ 1 1 E 0  is the minimum. This means 
that 

max Pl(X) = Pl(X*) = ly~l = lyllma~ = 2K~x1E0 • (45) 
X ~ B *  

Secondly, one searches the maximum of [yj[, j ~ {2 . . . . .  
n}. A transformation is chosen as 

Y'= [Yj, Y2 . . . .  Y j - i ,  Yi, Yj+i . . . . .  y , ] Z = ' r y ,  (46) 

where 

T i j =  1, Tjl = 1, (47) 

T/j = 1 f o r i ~  1, i-4=j, (48) 

~j = 0 for the others. (49) 

The transformation T is a permutation, 

T = T T, T 2 = I. 

From y = T - l y  ' = Ty' follows 

1 1 
E(y, ~,) = ~,TM~, + ~ y r K y  (50) 
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X 1 X 2 
k I ~ k 2 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 1 A dissipative oscillator with two degrees-of-freedom 

l T 1 T 
= ~ , '  TTMT~' + ~y '  T rKTy  ' (51) 

1 T 1 T = :,  TTMm-'-' ~ y  ,y + ~y '  K 'y ' ,  (52) 

where K' = TrKT.  Following from (45), one gets 

[Y]lmax = 1 / ~ f 7  lEo. 

That means 

]Yy]max = ~ / 2 ( T T K - ' T ) ; I  Eo = 1/27KHtEo . 

Similarly it is proved that 

lYjIm,x = V / ~ t E 0 ,  j ~ {1 . . . . .  n}. (55) 

Finally, we get the inequalities (2) from 03). 

E x a m p l e  

We give here an example to show how to get the ampli- 
tude bounds by using the aforementioned theorem. For sim- 
plicity, a dissipative oscillator with two degrees-of-freedom is 
considered (see Fig. 1). Its differential equation reads as 
follows: 

m2.J[xzJ 
-c2][ 1 [ (Cl -[-C2) "~l + / 

[ -c2 c2 -~2 

[ (  k l  + k 2 )  - k 2 ] [ X l ]  

+ _ k 2  k2 J [ x 2 J  = [ ~ ] "  

BRIEF NOTES 

C o n c l u s i o n s  

The presented amplitude bounds provide a simple relation 
to the initial energy and the inertia and stiffness properties. 
They can be easily computed and every state variable can be 
analyzed separately. Using these advantages, one can easily 
judge the level of vibrations and choose parameters in de- 
signs, for example, to reduce some vibrations. 

The presented amplitude bounds do not depend on damp- 
ing, which is convenient when applied, since we rarely know 
the exact damping of a system. On the other hand, because 
the influence of damping on the amplitude bounds is not 
considered, the estimations of the maximum amplitudes are 
too conservative for systems with large damping. 
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The inertia matrix, damping matrix, and stiffness matrix are 
symmetric and positive definite. Then 

> 0 ,  

(57) 

I: ] f "1 M t 0 ( c  t + C2) 
= > 0,  C = 

m2 [ --C2 C 2 

K _k  2 k2 

1 .2 
Eo = ~ [ m l x t  o + m 2 ~  o + (kl  + kz)x2o 

-2kzxaoX2o + kzx~o], (58) 

1 1 1 1 1 
M j ~ ' =  m-- 7, M221= m--- 7, Kit 1 =  ~ ,  K22 ' =  ~ + k2.  

(59) 

Using the theorem, one gets the amplitude bounds as 

mtaxJxl(t)l < 1 / - ~  , maxlxz(t)l  _< 1/-~------~ , (60) 
V mt V m2 

maxlx1(t) [ 2 / ~  maxlk2(t)[ } / 2 E  o 2Eo _< , --< + - -  
V kt kl kz 
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For a circular bar of perfectly plastic material and subjected to a 
cyclically variable torque and a constant axial force, the interac- 
tion (or generalized Bree) diagram is derived by a direct method 
in which Melan's theorem is used to locate the nonmtchetting 
load boundary. 

I n t r o d u c t i o n  

A circular bar of length L is subjected to a cyclically 
variable torque M r = Ttx(t), T > 0, - 1 _</x(t) _< 1, and a 
constant axial force N >_ 0. The material is elastic-perfectly 
plastic, obeys the normality rule and the Mises yield function 
f ( ~ , ¢ )  =_ (~2 + 3r2)t/z < %, where o~ = yield stress and 
~r = ~r(x), r = r(x)  are normal and shear stresses at the 
circle of radius x = r/R, 0 _< x _< 1. The beam theory is used 
(planar cross-sections before and after deformation). Let us 
set N = aPr and T = / 3 T  e, where Py = 7rR2% = axial plastic 
limit load, T e = %//~/3-R = elastic limit torque, I = ~rR4/2 
= second polar area moment, and a, /3 scalar parameters. 
In the positive quadrant of the (a ,  /3)-plane, Fig. 1, an 
interaction diagram can be envisaged which consists of differ- 
ent domains, each of which corresponds to a different type of 
long-term steady-state response to the load, namely: B s 
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Fig. 1 A dissipative oscillator with two degrees-of-freedom 

l T 1 T 
= ~ , '  TTMT~' + ~y '  T rKTy  ' (51) 

1 T 1 T = :,  TTMm-'-' ~ y  ,y + ~y '  K 'y ' ,  (52) 

where K' = TrKT.  Following from (45), one gets 

[Y]lmax = 1 / ~ f 7  lEo. 

That means 

]Yy]max = ~ / 2 ( T T K - ' T ) ; I  Eo = 1/27KHtEo . 

Similarly it is proved that 

lYjIm,x = V / ~ t E 0 ,  j ~ {1 . . . . .  n}. (55) 

Finally, we get the inequalities (2) from 03). 

E x a m p l e  
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m2.J[xzJ 
-c2][ 1 [ (Cl -[-C2) "~l + / 

[ -c2 c2 -~2 

[ (  k l  + k 2 )  - k 2 ] [ X l ]  

+ _ k 2  k2 J [ x 2 J  = [ ~ ] "  
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C o n c l u s i o n s  

The presented amplitude bounds provide a simple relation 
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BRIEF NOTES 

(elastic response, i.e., elastic shakedown), B F (alternating 
plasticity, i.e., plastic shakedown) and B n (ratchetting, i.e., 
incremental collapse). B e is a subdomain of B s collecting the 
loads (a ,  /3) under which the entire response is elastic. The 
load domain B: = B s U BF U BR is bounded by the plastic 
collapse limit load curve, which is known to have (Lubliner, 
1990) the parametric equations: 

+ 

/3 = ( 4 / 3 ) [ 2 ~ ' 3  - ( 2 ~ '  2 - 1 ) ( 1  + ~ ' 2 ) " a ] ,  ( i )  

where the parameter ~" = v~i~/RO is related to the collapse 
mechanisms ti, 0, with u = axial displacement, 0 = torsional 
rotation. 

Since the other details of the interaction diagram are not 
known in the literature, to the authors' knowledge, it is the 
purpose of the present Brief Note to report them. For later 
use the elastic stress response is reported here, i.e., 

0 "E = O/O'y, T EE = (13ry/'V/3-)/3X/A,(t), 0 ~ X  ~_ 1, t >_ O .  

(2) 

It is easy to recognize that the fully elastic domain B E is the 
quadrant bounded by the circle O/2 + / 3 2  = 1. This curve was 
derived by Kachanov (1969) as a lower bound to the elastic 
shakedown boundary. 

Elastic Shakedown Domain (B s) 
The boundary of B s can be determined by known methods 

of shakedown theory (K6nig, 1987; Polizzotto, 1993a, b). The 
shear stress ~-e(x,t) oscillates, at every x, between ~-(~) = (%/  
f3-)/3x (at times t(1 ~ at which ~ = 1) and r(f~ = -(~,,/V'3)/3x 
(at times t(z ) at which /x = - 1). For c~ = O; the elastic stress 
paths Se(x) belong to the r-axis of the (tr O-)-plane, Fig. 2(c), 
and find themselves in a "neutral" configuration with respect 

i 

4/3- 

#=T/r e 

plaatic collapse 
fimit load curve 

i 
. 

213 1 ~ =N/Py 

Fig. 1 

to the Mises ellipse (i.e., symmetrically located). As far as 
a = 0 and /3 < 1, elastic shakedown occurs. For O/= 0 and 
/3 =/3* = 1, the largest stress path, Se(1), touches the Mises 
ellipse (at points A, B in Fig. 2(c)) and the bar is exposed to 
an impending alternating plasticity collapse mode, whereas 
/3" = 1 is the peak value of the elastic shakedown limit load 
as a function of a, called "plastic shakedown load multiplier" 
in (Polizzotto, 1993b). On superposition, upon the bar loaded 

with /3 = 1, of an axial force N = aPy -= 27rR2L 1 ~r(x)xdx 
~J 

with ~(x) arbitrary but plastically admissible, the steady-state 
response of the bar does not change, such that an upper 
plateau embedded in the line /3 =/3* must exist in the 
boundary of B s (segment a-b  in Fig. 1). 

The falling branch of the above boundary curve is found 
by Melan's theorem, i.e., by determining the maximum axial 
force N = aPy which is possible to apply upon the bar, 
already loaded by the load ( a  = 0,/3 _< 1), without violating 
the yield conditions. To this purpose, let ~r*= ~rE+ ~s  
and z * =  r E +  z s, be normal and shear stresses at the 
shakedown limit, ~r s and z s being self-stresses. Since, obvi- 
ously, the max a value is obtained when the yield condition 
is attained at all circles x in (0,1), by the condition f(cr*,z*) 
= % for all x in (0,1) and at times t(1 ) and t(2), we obtain 

c r  S = 113Vy [ - -  O/ -i- ( 1  - -  /3  2 X 2 ) 1 / 2 ]  , T S ~ 0 ,  (3)  

and the stress profiles at times t(l ) and t(2 ) are the ellipse 
arches D~C and DeC of Fig. 2(c), respectively, (for/3 = 1, it 
is D~ =- A, D e =- B). Then, the condition of self-equilibrium 
for ~ s gives 

O/ = (2/3/32)[1 - (1 - ~32) 3/2] (4) 

which is the equation of the falling branch of the elastic 
shakedown load boundary (curve b-c in Fig. 1). For/3 < .65, 
this curve practically coincides with curve (1). For /3 = .85, 
the stresses ~r*o'* at the elastic shakedown limit are de- 
picted in Figs. 2(a,b) and compared with those at the plastic 
collapse (ultimate) limit. Any load (o/,/3) on curve (4) pro- 
motes a steady-state response with an impending ratchetting 
collapse mode, activated as soon as the axial force is in- 
creased. The ratchetting mechanism consists in translations 
u/2 of the free cross-section at every half-cycle, with axial 
plastic strains eft) = E~) = const = u/2L, and alternating 
shear plastic strains, 1.e., "y(~') + T(P2) = 0 everywhere. 

Plastic Shakedown Domain (B F) 
The boundary of B F c a n  be determined by a method as in 

(Polizzotto, 1993c, d; see also Ponter and Karadeniz, 1985), 
similar to that of the previous section. For O/= 0 and 1 </3 
< 4/3, the elastic stress paths SE(x) exceed the yield ellipse 
in the outer ring 1//3 < x < 1. The plastic overpotential turns 
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BRIEF NOTES 

out to b e y = 0 f o r 0 _ < x _ <  1//3 and y = ( % / v / 3  - ) ( / 3 x -  1) 
for 1//3 _< x _< 1, Fig. 3(a). The stress paths Se(x)  are all 
located over the r-axis of the (G,r)-plane, Fig. 3(c), and are 
in neutral configurations (characterized by the circumstance 
that the plastic overpotential y(x)  is minimum with respect 
to any other configuration of SE(x)). In these conditions, by 
a theorem given in (Polizzotto, 1993d), plastic shakedown 
occurs with only alternating plastic shear strains taking place 
in the ring Xo -< x _< 1. x 0 is determined by the consideration 
that, in the actual steady cycles, the maximum and minimum 

, E S shear stresses ~'(kl = r(k) + r(k), (k = 1, 2) are at the yield 
limit in the ring x0-<x-< 1, but below it in the circle 
0_<x_<x 0, such that the diagrams of r~) and r~) are 
as depicted in Fig. 3(a), lines Oa'b' and Oa"b". Thus, since 
r~) = - r ~ = - ( c r y / ~ / 3 " ) ( B x - 1 )  for x0 _<x~ 1 and r(sl ') 
= - r ~ ) =  - ( o ~ / ~ - ) ( / 3  - 1/x0)x for 0 < x  -<x0, the con- 
dition of self-equilibrium for rl~ ) gives 

x 0 = (4 - 3/3) v3, (5) 

valid for 1 _< /3 _< 4/3, (the value /3 = 4/3 specifies the plas- 
tic collapse limit torque, T v = (4/3)Te). 

The boundary of B F is determined by applying Melan's 
theorem to the bar elastic core, that is, evaluating the maxi- 

axial force aPy = 27rR2£X°o'*(x)xdx to apply to the mum 

core, such as to lead it to the (partial) elastic shakedown 
limit. Since, by the yield condition, 

o-* = O-y[1 - ( x / x 0 ) 2 ]  1/2 forO _<x Nx 0 ( 6 )  

(bu t  G *  = 0 fo r  x o ~ x _< 1), we  ob ta in  

a = (2/3)(4 - 3/3) 2/3, (7) 

which is the searched-for equation (line d-b in Fig. 1). In this 
state, the stress paths S*(x),xo _< x _< 1, are located over the 
r-axis of the (~r,r)-plane, whereas those related to 0 _< x _< x o 
are located at distances ~r*(x) from the stress origin, Fig. 
3(c) with the stress profiles coincident with the ellipse quad- 
rant arches. The stresses tr*, ¢* at the transition B J B  R are 
depicted in Figs. 3(a,b) and compared with those at the 
plastic collapse (ultimate) limit. If the axial force exceeds (7), 
a ratchetting collapse mode similar to that described previ- 
ously for /3 < 1 is activated, with the stress paths S*(x), 
0 _< x ~ 1, shifted somewhere away from the origin along the 
G-axis in Fig. 3(c). 

Conclusion 
The interaction diagram of a circular bar in torsion and 

extension has been derived by a direct method grounded on 
Melan's theorem. This direct method being unable to pro- 
vide, by itself, the steady-cycle plastic strains, a full analysis 

of the bar steady cycle has been addressed, obtaining results 
(not reported here for lack of space) which confirm those 
previously presented. 
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BRIEF NOTES 

1 Introduction 
In a recent study of the vibration of an inextensional 

beam, Nayfeh and Pai (1989) (hereafter referred as N & P) 
have derived amplitude equations for two bending modes 
that are in one-to-one resonance. However, the coefficients 
of the nonlinear terms in these amplitude equations could 
only be evaluated numerically. In this paper, we will show 
that the coefficients of the nonlinear terms in the amplitude 
equations actually satisfy certain equalities that can be proven 
without the necessity of direct numerical evaluation. Given 
these equalities, the amplitude equations can be integrated in 
two limiting cases. We resort to the previous work of Feng 
and Sethna (1990) and Feng and Wiggins (1993), respectively, 
for the analysis of these two limiting cases. 

2 Ampitude Equations 
The planar and nonplanar responses of a fixed-flee beam 

subjected to a principal parametric excitation have been 
studied by many authors. N & P contains references for these 
investigations. N & P considers uniform beams with rectangu- 
lar cross-sections. Cubic nonlinearities due to both the curva- 
ture and inertia are included in their formulation. Employing 
the method of multiple time scales, N & P obtain ordinary 
differential equations for the complex amplitudes of the two 
resonant modes Ai and A2: 

-i(2tOlmA~l +/J, tO lmA1)  - ~2z4A1 

- 60°q + -~0/2 + (1 + 60)0/3 ( 2 A , A 2 A  2 +X1A22) 

- - 3 ( 1  + ~o)o/4A12.,Z~l "Jr 20/5~O12m~A12 

2 - 2 _ 20/TgOOz2n~,~le2iOo2n~r2 = 0 ( l a )  + 20/6o02nA1A2 

- i ( 2 t O l m A '  2 + /ztO2nA2) 

2 --  2 × (2AzA1 X, + A 2 A  2) - 3/34A~.4- 2 + 2Bstoz. AzA2 

+ 2f16wZm.42 A 2  - 2 /37gto~n.d2e 2i'°zn°-T2 = 0 ( l b )  

where 

o,: So'Ore [<o:,,,:',,,- <,,:"So'<,,:<,,'4'd,, 
" =  

0/3 = fo~*m[ *,~(*'.*Z)']'ds, 
0/4 = f01(I)m[(I)~n(CX~nqI~)'] ,dS,  

0/5=fol(I)m[(I)~nflSfoSfI)~n2dsds]tds, 

0/6=folc~)rn[fI)~nflSfoSCI~2dsds] 'dS, 

0/7 = f o a l (  S - 1)¢'I)mtIJ; + ¢~mdP~n] aSS, ( 2 )  

as given in the Appendix of N & P. The values for /3i are 
obtained from 0/i by interchanging m and n. For a precise 

definition of rest of the parameters, the reader is referred to 
N & P .  

The equations given in (1) are nonautonomous. However, 
they can easily be converted to autonomous ones by letting 
A 1 = ei°°2n<rT2z1 and A 2 = e i ~ 2 " ~ r 2 Z 2  to get 

2to2nZrl = -t.Lt, O2nZ 1 q-i[(t~2 z 4 -  2 t o 2 n t r ) Z l  

+ 2 0/vg w2./~'1 -- 4R5 Z~Y'I 
+ 4 R 6 Z , Z 2 Z 2 ]  (3a) +4R2Z~Z ! 

2wz.Z i = -/xtoanZ 2 + i [ - 2 t o z ,  tyZ2 + 2/37gw~.2, 2 

-4Esz Z2 - 4E2z Z: - 4e z z Z,] (3b) 

where 

= 7 /3.>, + (1  + 

1 3 
R5 = 70/ oo   - + 8 0 ) 0 / , ,  

1[  602 ] 
R 6 = ~ t~00/1 + - - 0 / l  2 / 3 ~  + (1 + 60)0/3 

1 43 21[ 602 ] 
e 5  = 2/350)22n --  /34, E6  = ~0/31 - ~ -~ /32  - /33 (4) 

as defined in the Appendix of N & P. 

3 Symmetries of the Amplitude Equations 
The symmetries of the amplitude equations are in fact 

equalities satisfied by the constants E. and R ,  (j  = 2, 5, 6). . . . . . .  J J 
We first establish the equahtles satisfied by the constants 0/1 
0/2, etc., as summarized in the following propositions. 

Proposition 1: For arbitrary m and n, (i) a 1 + 0/3 = -/31, 
(ii) a 2 = /32, (iii) a 3 =/33, (iv) a 6 = /36" 

Proposition 2: For m = n, a i = /3i, i =  1, 2, 3, 4, 5, 6. 
Furthermore, O~ 3 = Ol4, 0/5 = 0/6" 

The proof of Proposition 1 is based on repeated use of 
integration by parts and the formula for interchanging order 
of integration, namely, 

f o ~ d x f : f ( y ) d y  = f0~(0 / -  y ) f ( y ) d y .  (5) 

In addition, we recall that the shape function @i, its explicit 
form given in N & P, satisfies these boundary conditions 

f~)i(So)(~i'(So) = O, f~)i(So)f~i"(So) = 0 

• ~(s0)~l '(s0) = 0, (6) 

at both So = 0 and So = 1. 
As an illustration, to show (i), we first rewrite the defini- 

tion of 0/1 so that there can be no confusion about the 
dummy integration variables. Integrating by parts and apply- 
ing (6), we have 

f01 ( ) f l  s = - dp s dp s dp t • t d tds  0/1 m( ) n rn( ) n . . . . . . .  ( )  

So  )So # t#t ## t @ s dp s dp t • t dtds .  + m( ) n m( ) n (  ) 
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Applying (5) to the first term and simplifying the second term 
through integration by parts, we obtain 

og I l(i)ll t !  s t tt 
= - f o  m(s )O: ( s ) fo  [* ,~ ( t ) * ; , ( , )  - q~, ' , ( t )*:( t) ldtds 

-- fol d ~ (  s )fl);( s )cI);( s )dp;' ( s )as .  

Simplifying a 3 through integration by parts twice, we get 

ee 3 = 2 £ 1 ~ , ~ ( s ) ~ , ' , ( s ) ~ ( s ) ~ ' ( s ) d s .  

Thus, (i) follows by recalling that ,81 is obtained by inter- 
changing m and n the expression of a v 

Theorem 1. For arbitrary m and n, R 2 = - E 2 ,  R 6 = 

- E  6. 

Theorem 2. For m = n, in addition to the results stated 
in Theorem 1, we have R s = E 5 and E 2 - E 5 + E 6 = 0. 

Proof: These theorems are direct consequences of 
Proposition 1 and Proposition 2. Recall also that for m = n, 
60 = O. 

Because of Theorem 1, the amplitude Eqs. (3) can be 
expressed as 

2 * 2 ,  = - d Z  1 + i [ - ( s  - b ) Z  1 + F1Z t + r q l Z l Z  , 

+~r2Z1Z2Z ~ + Ir3ZtZ2 2] (7a) 

2 2 2 = - d Z  2 + i [ - ( s  + b ) Z  2 + F2Z ~ + 7ri2Z2Z 2 

+ T r 2 Z i Z 2 Z  ~ + ,~-3Z~Z12] 

where 

(7b) 

1 1 
d = #oo2,,, s = 2w~no" - ~a2 Z4, b = ~a2 Z4, 

F 1 = 2ce7gw22, F z = 2a7gw22n, 77"11 = - 4 R 5 ,  

~'12 = - 4 E 5 ,  ~r2 = 4 R 6 ,  'n'3 = 4R2, 

and dots represent differentiation with respect to r ,  where 
T 2 

- - .  We have used superscript * to denote complex 
7" = 2 t ' 0 1 m  

conjugate for consistency with the notation in Feng and 
Sethna (1990). 

For the special case m = n, due to Theorem 2, we have 

33",1 = "rgl2,  77" 1 - -  77 2 - -  77" 3 : O. ( 8 )  

4 Consequences of the Symmetries of the Amplitude 
Equations 

The dynamical system (7) has very important properties 
that make it possible for us to determine the dynamics 
through an analytical approach. In Feng and Sethna (1990), it 
is shown that these systems can be derived from a Hamilto- 
nian function in the case when d = 0. Furthermore, for the 
free oscillation case where F 1 = F 2 = 0, the dynamical sys- 
tem is completely integrable which is accomplished by a 
series of coordinate transformations. The variables are first 
transformed into action angle variables by letting 

BRIEF NOTES 

Z 1 = (2Ii)l 'asin01 + i(2Ia)l/2cos01, 

Z 2 = (212)l/2sinOz + i(212)1/2c0s02. 

The action-angle variables are further transformed into a 
new set of variables according to 

q; = 01 - Oz, q2 = 02, Pl = 11, P2 = 11 + 12. 

After that, another coordinate transformation is introduced 
to eliminate the parameter ~r3: 

P1 P 2  r r  

Pl I "rr 3 I ' P2 [ 7% I ' ql = (1 + sgn ~'3) 7 + Qa, 

7r 
q2 = (1 + sgn rr3) ~ + Q2. 

The final equations obtained for the general case (7) become 

Pl = 4P,(P2 - Pl)sin2 Qi, (9a)  

(~1 = - 2 ( b  + YP2) + 2(2P1 - P z ) ( a  - cos2Ol) ,  (9b)  

P2 = 0, (9c)  

02 = s + (b  + TP2) - 2P1(°e - cos2Q,)  

- 2 y P 1  - ( y  + 2 6 ) P  2 (9d)  
where 

77"11 + 7/'12 
-t- "77" 2 2 rql  - -  77"12 

I 7r31 21 rr31 

3 7 7 " 1 2 -  ,77-12 

2[ rr3[ 

When m = n, Theorem 2 implies that some coefficients in 
Eq. (7) satisfy identities in (8). Equations (7) with these 
special properties have been studied in Feng and Wiggins 
(1993). For the special case of b = d = 0, the amplitude 
equations in the real form, obtained by Z 1 = xj + iyl, Z 2 = 
x 2 + iy 2, are shown to have 0(2) symmetry. Introducing the 
coordinate transformation 

X1 = ql cosq2, x2 = qlsinq2, Yl =p~cosq2 --P2ql-lsinq2, 

Y2 = plsinq2 + P2ql-lcosq2, 

and setting F 1 = F 2 = 1, and 7r n = zr~ without loss of gen- 
erality, we obtain 

01 = [s - rq (q l  z + p 2  +p2q~-Z) + 1]pl  (10a) 

/ } , =  [ - s  + zr,(q~ + pl  2 + p22q~-2)](ql -p~q~-3 ) 

+ ( q l  +p~q~-3) ( lOb) 

die =P2[( s + 1 ) q l  2 

_ 7rl(q2 + p a  2 + p ~  + q~-2)q~-2 + 27r3 ] 

/ } 2 = 0 .  

(10c) 

( lOd)  

The dynamical systems (9) and (10) are shown to be 
integrable in Feng and Sethna (1990) and in Feng and 
Wiggins (1993). Furthermore, homoclinic and heteroclinic 
orbits are shown to occur for the both systems. It is also 
shown that parametric forcing or symmetry breaking terms 
can create homoclinic tangels which lead to chaotic vibration 
of the beam. 
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Tensile Crack-Tip Stress Fields in 
Elastic-Perfectly Plastic Crystals 

Y. Huang 9 

1 Introduction 

Rice (1987) analyzed the plane-strain asymptotic stress 
field and deformation field around a tensile crack tip for 
elastic-perfectly plastic single-crystal solids. It was found that 
the yield surface is a polygon for slip systems {1 1 1} (1 1 0) 

in fcc (face-centered cubic) or {1 1 0} (1 1 1) and {1 2 1} 
(1 1 1) in bcc (body-centered cubic) crystals. The stresses 
around the crack tip are constants within each angular sector 
surrounding the tip, though they vary among sectors and are 
discontinuous. The stresses in each sector correspond to a 
vertex on the polygon of yield locus, and adjacent sectors 
correspond to adjacent vertices. The yield surface in terms of 
in-plane stresses is shown in Fig. l(a) for the crack orienta- 
tion studied by Rice--crack plane (0 1 0), x2-axis; crack-tip 

direction [1 0 "1]; and crack growth direction [1 0 1], xt-axis. 
Only the upper half-plane is studied due to symmetry. 

Rice (1987) showed that the boundary of each annular sector 
must be coincidental with the following six angles in the 
polar coordinate 0 : 0  deg, 35.26 deg [tan -1 (1/v~-) -= a], 
54.74 deg (~r/2,- a), 90 deg, 125.26 deg (7r/2 + a), 144.74 
deg (Tr - a), and 180 deg. Moreover, the stress discontinuity 
across a sector boundary satisfies [[1 ]] 

7 ( 0 - .  + 0-22) = - [ [ z ] ]  (1) 

where the left-hand side is the jump in mean in-plane stress 
and L is the arc length around the yield surface, increasing 
in the direction A ~ B ~ C ~ D (Fig. l(a)). Based on these 
observations, Rice found an asymptotic near-tip four-sector 
stress field (shown in Fig. l(b)) and the stresses for fcc 
crystals: 

Sector D, 125.26 deg _< 0 _< 180 deg: 

O"22 = 0, 0-11 = ~/6r, 0-12 = 0 (2a) 

Sector C, 90 deg _< 0 _< 125.26 deg: 

3 
0-22 = ~ ' ,  0-11 = ~ g ~ ' ,  <2  = -vS-~" (2b) 
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Fig. 1 Rice's (1987) solution for a crack in an fcc crystal: (a) 
crack orientation and yield surface; (b) four-sector stress field 

Sector B, 54.74 deg < 0 < 90 deg: 

3 
0-22 = 2vrffr, ~lt = ~V r~r, 0-12 = -v/~-r (2c) 

SectorA, 0deg  ~_ 0_< 54.74deg: 

o"22 = 3~/6q ", o11 = 2~/6r, crt2 = 0 (2d)  

where r is the critical shear strength for the {1 1 1} (1 1 0) 
slip system in fcc crystals. It is observed that there is a tensile 
stress state on the crack surface, 0-11 ] 0 =  rr = 2.45 r and that 
the maximum stress ahead of a crack, 0-22 I 0= 0 is 7.35 r. 

The shear stress must be zero on the crack surface (0 = ~r) 
and ahead of the crack (0 = 0), hence, the sectors including 
these two rays must correspond to vertex A or D (Fig. l(a)). 
There are four possibilities: (i) sector A around 0 = 0 and 
sector D around 0 =  ~r, (ii) sector D for both 0 = 0  and 
0 =  rr, (iii) sector A for both 0 = 0  and 0 =  rr, and (iv) 
sector D for 0 = 0 and sector A for 0 = ~r. It can be shown 
that Rice's (1987) solution is the only possible stress field in 
(i) and that there is no solution for (iv) that can lead to a 
tensile stress ahead of the crack, i.e., 0-22 I 0= 0 > 0. The aim 
of the present study is to find other asymptotic near-tip stress 
fields, such as (ii) and Off), around a stationary, tensile crack 
tip in elastic-perfectly plastic crystals. Though some experi- 
mental and computational work has been done recently (e.g., 
Mohan et al., 1992a, b; Shield and Kim, 1991) suggesting that 
the nature of plastic hardening and finite deformation effects 
play an important role in the evolution of the crack-tip stress 
field, the analysis here is limited to elastic-perfectly plastic 
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Tensile Crack-Tip Stress Fields in 
Elastic-Perfectly Plastic Crystals 
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1 Introduction 

Rice (1987) analyzed the plane-strain asymptotic stress 
field and deformation field around a tensile crack tip for 
elastic-perfectly plastic single-crystal solids. It was found that 
the yield surface is a polygon for slip systems {1 1 1} (1 1 0) 

in fcc (face-centered cubic) or {1 1 0} (1 1 1) and {1 2 1} 
(1 1 1) in bcc (body-centered cubic) crystals. The stresses 
around the crack tip are constants within each angular sector 
surrounding the tip, though they vary among sectors and are 
discontinuous. The stresses in each sector correspond to a 
vertex on the polygon of yield locus, and adjacent sectors 
correspond to adjacent vertices. The yield surface in terms of 
in-plane stresses is shown in Fig. l(a) for the crack orienta- 
tion studied by Rice--crack plane (0 1 0), x2-axis; crack-tip 

direction [1 0 "1]; and crack growth direction [1 0 1], xt-axis. 
Only the upper half-plane is studied due to symmetry. 

Rice (1987) showed that the boundary of each annular sector 
must be coincidental with the following six angles in the 
polar coordinate 0 : 0  deg, 35.26 deg [tan -1 (1/v~-) -= a], 
54.74 deg (~r/2,- a), 90 deg, 125.26 deg (7r/2 + a), 144.74 
deg (Tr - a), and 180 deg. Moreover, the stress discontinuity 
across a sector boundary satisfies [[1 ]] 

7 ( 0 - .  + 0-22) = - [ [ z ] ]  (1) 

where the left-hand side is the jump in mean in-plane stress 
and L is the arc length around the yield surface, increasing 
in the direction A ~ B ~ C ~ D (Fig. l(a)). Based on these 
observations, Rice found an asymptotic near-tip four-sector 
stress field (shown in Fig. l(b)) and the stresses for fcc 
crystals: 

Sector D, 125.26 deg _< 0 _< 180 deg: 

O"22 = 0, 0-11 = ~/6r, 0-12 = 0 (2a) 

Sector C, 90 deg _< 0 _< 125.26 deg: 

3 
0-22 = ~ ' ,  0-11 = ~ g ~ ' ,  <2  = -vS-~" (2b) 
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Fig. 1 Rice's (1987) solution for a crack in an fcc crystal: (a) 
crack orientation and yield surface; (b) four-sector stress field 

Sector B, 54.74 deg < 0 < 90 deg: 

3 
0-22 = 2vrffr, ~lt = ~V r~r, 0-12 = -v/~-r (2c) 

SectorA, 0deg  ~_ 0_< 54.74deg: 

o"22 = 3~/6q ", o11 = 2~/6r, crt2 = 0 (2d)  

where r is the critical shear strength for the {1 1 1} (1 1 0) 
slip system in fcc crystals. It is observed that there is a tensile 
stress state on the crack surface, 0-11 ] 0 =  rr = 2.45 r and that 
the maximum stress ahead of a crack, 0-22 I 0= 0 is 7.35 r. 

The shear stress must be zero on the crack surface (0 = ~r) 
and ahead of the crack (0 = 0), hence, the sectors including 
these two rays must correspond to vertex A or D (Fig. l(a)). 
There are four possibilities: (i) sector A around 0 = 0 and 
sector D around 0 =  ~r, (ii) sector D for both 0 = 0  and 
0 =  rr, (iii) sector A for both 0 = 0  and 0 =  rr, and (iv) 
sector D for 0 = 0 and sector A for 0 = ~r. It can be shown 
that Rice's (1987) solution is the only possible stress field in 
(i) and that there is no solution for (iv) that can lead to a 
tensile stress ahead of the crack, i.e., 0-22 I 0= 0 > 0. The aim 
of the present study is to find other asymptotic near-tip stress 
fields, such as (ii) and Off), around a stationary, tensile crack 
tip in elastic-perfectly plastic crystals. Though some experi- 
mental and computational work has been done recently (e.g., 
Mohan et al., 1992a, b; Shield and Kim, 1991) suggesting that 
the nature of plastic hardening and finite deformation effects 
play an important role in the evolution of the crack-tip stress 
field, the analysis here is limited to elastic-perfectly plastic 
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fcc single-crystal solids with small deformation gradients. 
Moreover, only solutions that have a tensile stress ahead of 
the crack, i.e., 0"22 10= 0 > 0, are presented. 

2 Near-Tip Stress Fields 
Booker and Davis (1972) and Rice (1973) developed the 

plane-strain slip-line theory for anisotropic plastic materials 
and concluded that (o'11 + 0"22)/2 + L is constant along a 
line of one family of characteristics and (0",1 - 0"22)/2 - L is 
constant along the line of the other family. Equation (1) can 
be regarded as a consequence of (0"= + ~r22)/2 + L being a 
constant. However, one can also conclude that 

may hold at the boundary of annular sectors from the fact 
that (0"11 + 0"22)/2 - L is a constant. (Equation (3) cannot be 
ruled out from Rice's (1987) derivation of Eq. (1).) In a study 
of an interface crack between an elastic-perfectly plastic solid 
and a rigid substrate, Guo and Keer (1990) found an asymp- 
totic solution that exhibits a feature similar to Eqs. (1) and 
(3), i.e., the radial ray 0 = constant corresponds to one family 
of characteristics for small 0 and corresponds to the other 
family for large 0. 

Type (ii) solutions, i.e., sector D for both crack surface and 
0 = 0, are discussed first. Sector D around the crack surface 
is identical to Rice's (1987), i.e., 

Sector D, 125.26 deg _< 0 _< 180 deg: 

0"22 = 0 ,  0''1 = f 6 r ,  0-,2 = 0. (4a)  

The next sector must be sector C due to the continuity of 
tractions across the sector boundary. The jump in stresses 
satisfies Eq. (1), i.e., 

(0-11 + O'22)C = (0-,1 + 0-22)0 + 2 L  

where L = 3 f 6  r/4 is the distance between vertices D and 
C on the yield surface. This leads to 

Sector C, 35.26 deg _< 0 _< 125.26 deg: 

3 
o '22=v/~r ,  O ' l l=~V/6T ,  0"12 = - V ~ T .  (4b)  

Equation (4b) is identical to (2b), but the annular sector's 
range in Eq. (4b), 35.26 deg - 125.26 deg, is larger than that 
for Eq. (2b), because the sector including 0 = 0 in (ii) 
corresponds to vertex D and the only possible angles over 
which a jump from C to D occurs are 35.26 deg and 125.26 
deg. It is also interesting to point out that the sector bound- 
ary 0 = 35.26 deg is very close to the angle, 40 deg, where 
Mohan et al. (1992b) observed shear-strain concentrations. 
The next sector is D, and Eq. (3) holds across the discontinu- 
ity at 0 = 35.26 deg in order to ensure 0"22 10=0 > 0, i.e., 

3 
+ 0 " = ) 0  = (0",,  + + (& ,  

which leads to 
SectorD,  0deg  < 0 <  35.26deg: 

3 5 
0"22 = ~/6"3", 0"11 = - ~ / ~ r ,  0"12 = 0. (4c)  

This three-sector solution DCD is shown in Fig. 2(a). The 
stress ahead of the crack, 0"22 I 0= 0 = 3.67 r, in this three-sec- 
tor solution is only half that for Rice's (1987) four-sector 
solution ABCD given in Eq. (2d), and the horizontal stress 
component, 0"11 10=0 = 6.12 r is slightly larger than that for 
the four-sector solution, O-ll 10=0 = 4.90 r. It is evident from 
this analysis that the asymptotic stress field DCD in Eq. (4) is 
the only possible solution in (ii) that gives a tensile stress, 

2A5 

_24", /57 
. . . . .  \ 90° / 

crack surface O ~ D T 

Fig. 2In) 

/ 

.... k surface A " X , X /  A 

Fig. 2(b) 

Fig. 2 Other asymptotic stress fields: (a) three-sector field with 
a tensile stress state on the crack surface; (b)  three-sector field 
with a compressive stress state on the crack surface 

o22 I 0= 0 > 0, ahead of the crack and where all sectors corre- 
spond to vertices on the yield surface. 

Type (iii) solutions give sector A around the crack surface 
on which there is a compressive stress state, 0",1 10= ~ < 0. 
This type of solution may occur when a large compressive 
T-stress is imposed. Thus, sector A that includes the crack 
surface is 

Sector A, 144.74 deg _< 0 _< 180 deg: 

0"22 = 0, 0"11 = - f 6 r ,  0"12 = 0 (5a)  

where the boundary 0 = 144.74 deg is the only possible angle 
for stress discontinuity in order to ensure the continuity of 
tractions, and the next sector must sector B, given by 

Sector B, 54.74 deg _< 0 _< 144.74 deg: 

0"22=T , 0".=0, 0",2 = (5b) 

where Eq. (3) has been used. The B-sector boundaries, 
0 = 54.74 deg and 0 = 144.74 deg, are the only two possible 
angles for a jump from B to A in order to ensure the sector 
including 0 = 0 is an A-sector. Equation (1) applies at 0 = 
54.74 deg, so that there is a tensile stress, 0"2210=0 > 0, 
ahead of the crack, and the sector is given by 

Sector A, 0 deg < 0 < 54.74 deg: 

3 (g 
0"22 = 0",1 = 0"12 = o.  ( 5 c )  

The three-sector solution ABA in Eq. (5) is shown in Fig. 
2(b). It is observed that the stress ahead of the crack, 
0"2210=0  = 3.67 r ,  is the same as the three-sector solution 
DCD in Eq. (4), which is half that for the four-sector solution 
ABCD. However, the horizontal stress component for ABA, 
0"n 10=0, is much less than those for the ABCD and DCD 
fields. It is evident from this analysis that the three-sector 
solution ABA in Eq. (5) is the only possible solution that 
gives a compressive stress state on the crack surface and a 
tensile stress ahead of the crack, 0-22 I 0= 0 > 0, and where all 
sectors correspond to vertices. Further numerical study is 
necessary in order to determine the condition governing 
these asymptotic fields. 
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An Analysis for the Effects of 
Compressive Load Excursions on 
Fatigue Crack Growth in Metallic 
Materials 

G. A. Kardomateas  l°'n and R. L. Carlson 1°'12 

1 Introduction 
The variable amplitude loading of service load spectra 

often includes compressive excursions. Since it seemed rea- 
sonable to assume that compressive loads do not induce 
opening of the crack and hence do not contribute to crack 
growth, it had been recommended that analyses of crack 
growth may exclude the compressive excursions, i.e., only 
cycles with tensile loading need to be included. However, a 
number of experimental investigations on the effects of com- 
pressive excursions indicated that neglecting them can be 
expected to lead to nonconservative crack growth predictions 
(Carlson and Kardomateas, 1994). 

Based on elastic compression of the asperities, single as- 
perity models had been presented by Beevers et al. (1984). 
These discrete asperity models provide a rational explanation 
of the observed behavior due to closure obstruction in load 
sequences that involve cycling in tension with a positive load 
ratio, and involve mostly elastic loading/unloading of the 
asperities. For compressive excursions of sizable magnitude, 
an inelastic model accounting for the plastic crushing of the 
asperities is required. 

2 Formulation 
For a properly loaded specimen, the distribution of the 

asperities is essentially uniform across the specimen thick- 
ness. This suggests the possibility of representing the asperi- 
ties configuration through the thickness by an effective 
(through-thickness) line contact. 
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Fig. 1 (a) External (global) and crack tip (local) loading; (b) a 
single asperity on the upper crack face 

Consider an asperity at a distance C from the crack tip in 
a specimen of thickness t (Fig. 1). The presence of both 
externally applied forces and crack face forces is illustrated 
in Fig. l(a) whereas the details of the proposed model are 
indicated in Fig. l(b). Only the upper crack face is shown 
with the asperity developing a force P. The stress intensity 
factor produced by concentrated, opposing line loads on the 
faces of a finite center crack of length 2a, can be determined 
from Sih et al. (1962) for both the Mode I and Mode II cases. 
The opening mode stress intensity factor for plane strain in 
terms of the local crack face force from Sih et al. (1962) is 

1 -- (1) K,,,oca,= ( ~ - ~ ) 1 / 2 ( 2 -  C )  t/2P 

This expression is also valid for a single-edge crack of length 
a (this can be easily shown by following the same procedure 
as in Sih et al., 1962). 

The contribution of the external load will be represented 
by Kl,globa I. By superposition, the total stress intensity factor 
is 

K, = Kl , toea  I + Kl,globa I. (2) 

The dimension L0 represents the initial magnitude of the 
interference produced by the asperity. The effective initial 
width of the asperity is b 0 (Fig. l(b)). The load P will now be 
determined from a displacement condition at the asperity 
site, which includes the plastic crushing of the asperity. 

The vertical displacement at the upper crack face, i.e., at 
0 = ~r and an arbitrary r, is 

Uz(r, ~') = O2,globa t + U2,1oea 1. ( 3 )  

By use of the stress intensity factors for the global and the 
local load, we can write the displacement at the asperity site, 
r=C,  O=1r: 
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1 Introduction 
The variable amplitude loading of service load spectra 

often includes compressive excursions. Since it seemed rea- 
sonable to assume that compressive loads do not induce 
opening of the crack and hence do not contribute to crack 
growth, it had been recommended that analyses of crack 
growth may exclude the compressive excursions, i.e., only 
cycles with tensile loading need to be included. However, a 
number of experimental investigations on the effects of com- 
pressive excursions indicated that neglecting them can be 
expected to lead to nonconservative crack growth predictions 
(Carlson and Kardomateas, 1994). 

Based on elastic compression of the asperities, single as- 
perity models had been presented by Beevers et al. (1984). 
These discrete asperity models provide a rational explanation 
of the observed behavior due to closure obstruction in load 
sequences that involve cycling in tension with a positive load 
ratio, and involve mostly elastic loading/unloading of the 
asperities. For compressive excursions of sizable magnitude, 
an inelastic model accounting for the plastic crushing of the 
asperities is required. 

2 Formulation 
For a properly loaded specimen, the distribution of the 
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ness. This suggests the possibility of representing the asperi- 
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Fig. 1 (a) External (global) and crack tip (local) loading; (b) a 
single asperity on the upper crack face 

Consider an asperity at a distance C from the crack tip in 
a specimen of thickness t (Fig. 1). The presence of both 
externally applied forces and crack face forces is illustrated 
in Fig. l(a) whereas the details of the proposed model are 
indicated in Fig. l(b). Only the upper crack face is shown 
with the asperity developing a force P. The stress intensity 
factor produced by concentrated, opposing line loads on the 
faces of a finite center crack of length 2a, can be determined 
from Sih et al. (1962) for both the Mode I and Mode II cases. 
The opening mode stress intensity factor for plane strain in 
terms of the local crack face force from Sih et al. (1962) is 

1 -- (1) K,,,oca,= ( ~ - ~ ) 1 / 2 ( 2 -  C )  t/2P 

This expression is also valid for a single-edge crack of length 
a (this can be easily shown by following the same procedure 
as in Sih et al., 1962). 

The contribution of the external load will be represented 
by Kl,globa I. By superposition, the total stress intensity factor 
is 

K, = Kl , toea  I + Kl,globa I. (2) 

The dimension L0 represents the initial magnitude of the 
interference produced by the asperity. The effective initial 
width of the asperity is b 0 (Fig. l(b)). The load P will now be 
determined from a displacement condition at the asperity 
site, which includes the plastic crushing of the asperity. 

The vertical displacement at the upper crack face, i.e., at 
0 = ~r and an arbitrary r, is 

Uz(r, ~') = O2,globa t + U2,1oea 1. ( 3 )  

By use of the stress intensity factors for the global and the 
local load, we can write the displacement at the asperity site, 
r=C,  O=1r: 
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2(c)1  
U2(C, 7r) = ~ ~ (1 - u)K,.g,oba , 

2 (1- -  v ) (  C ) ' / 2 p  

+ ~rG 1 - ~ a  t '  (4) 

where G is the shear modulus and v the Poisson's ratio. The 
condition for determining the force P is the displacement at 
the asperity site 

U2(C, 7T) = Lf ,  (5) 

where L f is the interference height for a given external load 
during ctosure. This will be considered next. 

The asperity is assumed under uniaxial compression 0-22 = 

0- (all other stress components are zero). Moreover, the total 
equivalent strain of the asperity is 

~T= ~e _{_ ~p, (6) 

where 7e is the elastic and 7P the plastic component (we 
consider positive the asperity stress 0- and strain e when 
they are compressive). Notice that in uniaxial compression, 
although there are other nonzero components of strain, 
namely, ell = ff33 = - - E 2 2 / 2 ,  it turns out that ~ = t522. Hence, 
since ~e = 0-/E~ 7r  = ln(Lo/Lf), the plastic component is 

L 0 o- 
e'P = In Lf  E '  (7) 

where E is the modulus of elasticity. Assume now an equiva- 
lent true stress vs. integrated equivalent plastic strain law 

= 0-o(% + ~P)" (8) 

The two constants 0-0, and n are found from two points on 
the stress-strain curve beyond yield, usually the maximum 
load and the fracture point, whereas % is found from the 
yield point, i.e., e 0 = (0-y/0-o)1/C The constant n is the 
strain-hardening exponent. Notice that ~ = 0-. 

Next, denote by A 0 = tb o the initial cross-sectional area of 
the asperity. For simplicity, we shall consider the material as 
being incompressible in both the elastic and the plastic 
ranges when cross-sectional area calculations are performed 
(this would be strictly accurate if the Poisson's ratio is 0.5; 
however, the error introduced for the usual value of 0.3 can 
be reasonably expected to be small, if the elastic strains are 
small compared to the plastic ones). Therefore, the incom- 
pressibility requirement gives a relationship for the current 
cross-section A f  and the stress cr = P/A f: 

PLf 
A lLy  = AoLo, 0- = AoL-----~o . (9) 

Using (7), (8), and (9) gives one equation in P, L f: 

~oAoLo ] = In EAoL ° + %. (10a) 

The other equation needed to solve for Lf and P is found 
from (4) and (5): 

2 [  C ~l/z 
L f =  - G I G )  (1 - /))K/,globa 1 

2(1-  v) ( c ) l / 2 p  
+ ~r--G 1 - ~ a  -7-" (10b) 

Notice that the final, crushed asperity width can be found 
from the volume preservation condition (9) and the trans- 
verse strain equality el~ = %3: 

b f=bo  L o ~ .  (11) 

The description of the asperity behavior for the two separate 
phases, i.e., the loading and unloading one, will follow next. 

Loading Phase. During the application of the external 
cyclic load, Q, asperity loading may occur from the initial 
configuration or it may involve reloading after the asperity 
has been plastically crushed to a reduced height. Hence, 
during the decreasing external load cycle (loading the asper- 
ity) from a general position (Qi, Pi = O, Li, Ai) to a position 
(Qf < Qi, P, Lf  < Li, A T > Ai) , the following conditions may 
develop: 

(a) No asperity contact takes place and K 1 = Kl,globa I if, 
from (10b): 

2 ( l - v ) ( C )  1/2 
~ Kl,globa , > L i. (12) 

(b) If asperity contact takes place and during asperity 
loading (decreasing external load), the asperity compresses 
below yield, then (10a) is replaced with the equation found 
by setting ~P = 0 in (7), or 

Lf  P In Lf -- 1 (13) 
EAi L i L i " 

Then the asperity load and final asperity height are found by 
eliminating L r from (10b) and (13). 

(c) If the foregoing conditions are not met and the asper- 
ity loading is taking place in the plastic range, then the 
system of Eqs. (10) is numerically solved. 

The current asperity height, Li, and cross-sectional area, 
Ai, have been used in (13) instead of the initial values, L 0 
and A0, respectively, since on reloading after a compressive 
excursion, the asperity is loaded elastically from the current 
(crushed asperity) dimensions. 

Unloading Phase. During the increasing external load 
cycle (unloading the asperity to zero asperity load), from a 
position (Qf, P,,, Lc, A t )  to a position (Qi > Qr, P = O, 
L i > Lf, A i < Af) ,  we re;zover not the initial asperity height 
L0, but the final compressed one, L f, plus the change in 
height that is given by the elastic solution that corresponds to 
the load P,, at which unloading takes place, ¢ L i / E  , i.e., 

P, Lf  . 
L i = L f +  E A r '  A i = L o A o / L  i. (14) 

Notice that L i is now the "new" (after unloading) interfer- 
ence height. 

3 M o d e l  Pred ic t ions  
Consider a metal with the mechanical properties: E = 200 

GN/m 2, u = 0.3, yield strength ~y = 400 MN/m e, strain- 
hardening exponent n = 0.30 and the constant of Eq. (8), 
0-0 = 700 MN/m 2. The other constant in the relation (8) that 
describes the behavior beyond yield is found by fitting the 
yield point, i.e., e o = (0-y/0-o) 1/n. These material constants are 
typical of a hot roiled steel. A single-edge-cracked specimen 
of thickness t = 13 mm and width w = 26 mm with a crack of 
length a = 11 mm is assumed. 

For this case of single-edge through crack of length a in a 
plate of width w under uniform remote normal load Q, the 
stress intensity factor is (e.g., Hellan, 1984): 

a2 
Q ~ 1.12 - 0.23-~ + 10.6~g K t ( Q )  = w-7 

a 3 a 4 ) 
- 2 1 . 7 ~  + 30.47a . (15) 
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Fig. 2 (a) Applied load sequence; (b) the total stress intensity 
factor at different moments during the application of the load se- 
quence 

Consider a single asperity configuration with an initial 
interference height L 0 = 25 /,m and initial width b 0 = 50 
b~m. The distance from the crack tip is C = 15 tzm. These 
are typical dimensions of experimentally observed asperities 
as reported by Beevers et al. (1984). First, the opening load 
(load at which asperity contact is established), QoP, is found 
by setting P = 0 in (10b): 

K°P 2(]--~-v) ~ = K,(Qop). (16) 

A load sequence as shown in Fig. 2(a) is applied. First, the 
specimen is cycled between 1.1Qoe and 0.55Qoe, so that the 
load ratio is positive, R = 0.5. Then a compressive excursion 
to -2.2QoP, i.e., a negative R = - 2 ,  is applied. Subse- 
quently, the initial, positive R = 0.5 is resumed. 

The quantity that controls the fatigue crack growth rate is 
the range in the total stress intensity factor AK. Figure 2(b) 
shows the total stress intensity factor at the different stages 
of the loading sequence. In all segments, at the maximum 
positive external load, K = Kt_Joba I and the range AK is 
affected by the mtmmum (posmve or negative) external load, 
at which asperity contact may develop, and a nonzero K[.1oca 1 
may be generated. At the first R = 0.5 load segment, AK is 
relatively small (because of the rather large Kz.loca j at the 

load minimum). During the compressive excursion, which 
crushes the asperity, AK is increased substantially. Notice 
that at the minimum, negative load point, K is positive, 
nonzero. 

4 Conclusions 
It has been shown that an inelastic, discrete asperities 

model can be used to demonstatc the effect of compressive 
excursions during fatigue crack growth. By reducing the height 
of roughness asperities, the effective range of the stress 
intensity factor is increased. Subsequent increases in crack 
growth rate can then be expected to follow. 
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An Alternative Derivation of Some New 
Perspectives on Constrained Motion 

A. A. Barhorst ~3 

An alternative derivation of some recently reported results is 
presented. Specifically, some results regarding the fundamental 
view of Lagrangian mechanics and nonholonomic constraints. 

I n t r o d u c t i o n  

In a recent paper (Udwadia and Kalaba, 1992), the general 
nonholonomic equations of motion for rigid bodies were 
developed via a constrained optimization procedure. The 
authors utilized the theory of generalized inverses for matri- 
ces. The resulting evolution equations were cast as an error 
equation similar to state feedback in the modern control 
theory. The authors mentioned that this interpretation of the 
nonholonomic dynamics is new and enlightening. 

In this Note, the intent is to show that the error type 
interpretation is also available from a physical formulation of 
the nonholonomic equations of motion. The presentation 
herein is more restrictive than the work in (Udwadia and 
Kalaba, 1992), but it does appear to cover all the cases that 
arise in engineering systems. 

D e r i v a t i o n  

Without loss of generality and to facilitate brevity, suppose 
a system of P particles with N degrees-of-freedom is under- 
going holonomic motion, uniquely described by N-indepen- 
dent generalized coordinates. D'Alembert's principle for this 
system of particles can be written as 

Y'~NG°rP. (Vp - mpa~)  = 0 (1) 
p 

where UG°rP is the absolute variation of the position of the 
pth particle as seen in the Newtonian frame N with origin o. 
The vector F. is the resultant of forces on the p particlC 4, 

. . F 

°a~ is its absolute acceleration, and m,, its mass. The vector 
variation can be written as (Kane and Levinson, 1983; Ev- 
erett, 1988; Desloge, 1987) 

N6°rt' = O°V/~ ~U n 
3u  n 

3 ° a ~  

- _ _  6u n Off,, 
(2) 

with summation on repeated indices implied. The quantities 
u~ (n = 1, 2 . . . . .  N) are quasi-coordinates or generalized 
speeds, the simplest choice being the time derivative of the 
holonomic generalized coordinates c),,, an alternative choice 
being a convenient linear combination of the q,,. With inde- 
pendent variations ~u,,, the system's time evolution is mod- 
eled with 

E - ~ u  ncT°v/~ . ( F p  _ m p a N  ) o  p x  = 0 (3 )  
p 

for each of the N generalized speeds u,. Kinematic differen- 
tial equations relating c~,, to u,, must also be supplied. If one 
chooses the simple form u,, = c)~ for the generalized speeds, 
then the equations of motion can be written as 

M(q,  t )q = Q(q, q, t) (4) 

where the matrix M has dimension N × N, and Q, q, and q 
are N × 1 column vectors. The mass matrix M(q, t) and the 
column vector Q(q, q, t) are chosen to be partitioned as 
follows: 

where 

aOv/4 ,,~°v~" a°v~ a°v;~ 
Mll = mp t~t~m ~qm ' M~2 = O0,---~ 30~, 

oOv~ ~-~°"P.N a°v~ a°v/~ 
M21 = mp 3qn' cgq,,, , M22 = mp Ot]n' 3qn' (6) 

and 
aOv~ 

Qm = Oq--" ~- "(Fp - mpGt, ) 

a°v~ 
Qn, = oc~,,--T . ( I~  - mpGp) (7) 

with summation on p implied. The vector Gp is the gyro- 
scopic terms left after the linear terms in ~/have been moved 
to the left-hand side of the equation. 

Now consider the same system of particles under the 
influence of M nonholonomic constraints of the form 
(Neimark and Fufaev, 1972; Barhorst and Everett, 1993): 

6U m = A m n ,  t~Un,, rl' E { I N - M } ,  m ~ {/fit} (8 )  

where {I/u- M} means the set of all N - M indices associated 
to independent generalized speeds. {/fit} is the set of M 
indices associated to dependent generalized speeds. Also, 
{lift} ~ {iiN-M}. The constraint tensor Am,  ,, is a function of 
the generalized coordinates q and time. Considering Eq. (8), 
the vector variation in Eq. (1) can be written as 
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with summation on repeated indices. Substitution of Eq. (9) 
into Eq. (1) allows general conclusions to be drawn. 
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An Alternative Derivation of Some New 
Perspectives on Constrained Motion 

A. A. Barhorst ~3 

An alternative derivation of some recently reported results is 
presented. Specifically, some results regarding the fundamental 
view of Lagrangian mechanics and nonholonomic constraints. 

I n t r o d u c t i o n  

In a recent paper (Udwadia and Kalaba, 1992), the general 
nonholonomic equations of motion for rigid bodies were 
developed via a constrained optimization procedure. The 
authors utilized the theory of generalized inverses for matri- 
ces. The resulting evolution equations were cast as an error 
equation similar to state feedback in the modern control 
theory. The authors mentioned that this interpretation of the 
nonholonomic dynamics is new and enlightening. 

In this Note, the intent is to show that the error type 
interpretation is also available from a physical formulation of 
the nonholonomic equations of motion. The presentation 
herein is more restrictive than the work in (Udwadia and 
Kalaba, 1992), but it does appear to cover all the cases that 
arise in engineering systems. 

D e r i v a t i o n  

Without loss of generality and to facilitate brevity, suppose 
a system of P particles with N degrees-of-freedom is under- 
going holonomic motion, uniquely described by N-indepen- 
dent generalized coordinates. D'Alembert's principle for this 
system of particles can be written as 

Y'~NG°rP. (Vp - mpa~)  = 0 (1) 
p 

where UG°rP is the absolute variation of the position of the 
pth particle as seen in the Newtonian frame N with origin o. 
The vector F. is the resultant of forces on the p particlC 4, 

. . F 

°a~ is its absolute acceleration, and m,, its mass. The vector 
variation can be written as (Kane and Levinson, 1983; Ev- 
erett, 1988; Desloge, 1987) 

N6°rt' = O°V/~ ~U n 
3u  n 

3 ° a ~  

- _ _  6u n Off,, 
(2) 

with summation on repeated indices implied. The quantities 
u~ (n = 1, 2 . . . . .  N) are quasi-coordinates or generalized 
speeds, the simplest choice being the time derivative of the 
holonomic generalized coordinates c),,, an alternative choice 
being a convenient linear combination of the q,,. With inde- 
pendent variations ~u,,, the system's time evolution is mod- 
eled with 

E - ~ u  ncT°v/~ . ( F p  _ m p a N  ) o  p x  = 0 (3 )  
p 

for each of the N generalized speeds u,. Kinematic differen- 
tial equations relating c~,, to u,, must also be supplied. If one 
chooses the simple form u,, = c)~ for the generalized speeds, 
then the equations of motion can be written as 

M(q,  t )q = Q(q, q, t) (4) 

where the matrix M has dimension N × N, and Q, q, and q 
are N × 1 column vectors. The mass matrix M(q, t) and the 
column vector Q(q, q, t) are chosen to be partitioned as 
follows: 

where 

aOv/4 ,,~°v~" a°v~ a°v;~ 
Mll = mp t~t~m ~qm ' M~2 = O0,---~ 30~, 

oOv~ ~-~°"P.N a°v~ a°v/~ 
M21 = mp 3qn' cgq,,, , M22 = mp Ot]n' 3qn' (6) 

and 
aOv~ 

Qm = Oq--" ~- "(Fp - mpGt, ) 

a°v~ 
Qn, = oc~,,--T . ( I~  - mpGp) (7) 

with summation on p implied. The vector Gp is the gyro- 
scopic terms left after the linear terms in ~/have been moved 
to the left-hand side of the equation. 

Now consider the same system of particles under the 
influence of M nonholonomic constraints of the form 
(Neimark and Fufaev, 1972; Barhorst and Everett, 1993): 

6U m = A m n ,  t~Un,, rl' E { I N - M } ,  m ~ {/fit} (8 )  

where {I/u- M} means the set of all N - M indices associated 
to independent generalized speeds. {/fit} is the set of M 
indices associated to dependent generalized speeds. Also, 
{lift} ~ {iiN-M}. The constraint tensor Am,  ,, is a function of 
the generalized coordinates q and time. Considering Eq. (8), 
the vector variation in Eq. (1) can be written as 
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The second term in the parentheses of Eq. (9), dot multi- 
plied into the d'Alembert force deficit in Eq. (1), can be 
thought of as the amount of generalized force needed to 
bring the system into compatibility with the constraints at this 
instant (Neimark and Fufaev, 1972; Barhorst and Everett, 
1993). This concept is key to understanding the control error 
type interpretation of the evolution of the dynamic system. 
However, there is really no need to keep the terms in  the 
parentheses separated. These relationships are just the par- 
tial velocities (written explicitly in the felicitous coordinates) 
for the system in its constrained configuration. For practical 
engineering applications it is usually frugal (relative to net 
mathematical operations) and straightforward to use the nat- 
ural coordinates implied by the geometry of the system under 
study (Kane and Levinson, 1985). However, for this presenta- 
tion the distinction between the partial velocities will remain. 

With independent 3u~, (satisfying the nonholonomic con- 
straints) the time evolution of the system is modeled with 

--Su~, + oumAm" ,, . ( V p - m ~ a } )  = 0  (10) 

for each n' ~ {//N- M}. Since the dependent variables due to 
the constraints have been left in the formulation, the extra 
coordinates are determined from the nonvariational form of 
the nonholonomic constraint (Neimark and Fufaev, 1972; 
Kane and Levinson, 1985): 

u m = A m , , u , , + d m ( t  ) (11) 

or  

a m = Amntl)ln, + bm(t ) ( 1 2 )  

and any kinematic differential equations of the form 

{1, = L,~ui + z , ( t ) ,  (i ,  n = 1, 2 . . . . .  N )  (13) 

with summation on i implied. 
With the assumption that the simple choice of u~ = 0n is 

utilized, the equations of motion for the nonholonomic sys- 
tem, with the full complement of N generalized coordinates, 
can be written as 

M'(q ,  t )q  = Q'(q, q, t) (14) 

or  

M21 + M~1 M22 + M22 On' =" Qn, + Q' (15) 

where the partition A,,,n, is the matrix of coefficients from 
Eq. 12. The other undefined terms are 

oOv~ oOv~ 
, _ _  _ r ( 1 6 )  M21 =m p  8q~ 80m Area' - A~n'M11 

and 

O ° v ~  e ° v l ~  , -  r ( 1 7 )  
M;2 = m e 0~1m " ~ q g A m n  -- Amn, M12 

OOv% 
Q ! = m 

Oqm • _ _ AmR, Qm Am.,  (Fp m p G p ) -  T ( 1 8 )  

where the superscript T denotes transpose. 
The proposed nonholonomic equations of motion are 

(Udwadia and Kalaba, 1992): 

M(q,  t)i] = Q(q, q, t) + Qc(q, q, t) (19) 

where the terms are as in Eq. (4) with the exception of the 
generalized force Qc(O, q, t) that enforces the constraints. 
Qc(O, q, t) is readily determined from the analysis herein. 

Substitution o f / ]  from Eq. (14) into Eq. (19) gives 

Oc = M M ' - I { Q  ' - M ' M  i Q } .  ( 2 0 )  

With straightforward matrix manipulations it is possible to 
partition the vector on the right-hand side above as 

{ Q ' - M ' M - ' Q }  = {Q, b - A M - 1 Q  I (21) 
- [M~i M~2]M-IQJ " 

The bottom partition can be shown to be identically zero 
with the aid of Eqs. (16)-(18), therefore the generalized 
constraint forces can be written as 

Qc = M M - ' I { b  - AM-1Q} (22) 

where b = {bin}. The long matrix A is partitioned as 

A =  I t  -Am, , ]  (23) 

and the tall augmented identity matrix i is partitioned as 

,=[:] (24, 

Comparing these results with the results in (Udwadia and 
Kalaba, 1992), it is seen that 

U = M 1 / 2 ( A M  - V2) "t = M M ' - ' l  (25) 

where (-)* denotes the Moore-Penrose pseudo-inverse. 
The evolution of the difference between the nonholonomic 

system and the holonomic system can be obtained by rear- 
ranging Eq. (19) while utilizing Eq. (22) and is 

~i - a = M ' - ' l { b  - Aa} (26) 

where a = M 1Q. It can be seen that M is the standard 
positive definite mass/inertia matrix and is nonsingular. M' 
is also invertible which can be verified by utilizing the equa- 
tions for matrix inversion by partitions, 

D i s c u s s i o n  

It can be seen that by taking the physical approach to the 
formulation of the nonholonomic equations of motion gives 
the same error-type interpretation of the evolution of the 
system's dynamics (Eq. (26)) as discussed in (Udwadia and 
Kalaba, 1992). However, the physical interpretation herein 
leads to a much simpler formula for the gain matrix K and 
reduces the number of operations needed to form the matrix. 
Of course, the results described herein are more restrictive 
than in (Udwadia and Kalaba, 1992) because (1) the system's 
configuration is assumed to be described by independent 
generalized coordinates written with consideration of the 
holonomic constraints, and (2) the constraint matrix A is 
required to be in the form shown in Eq. (12) or (23), which 
only allows nonholonomic constraints of the form described 
above. However, it is a widely used practice to incorporate 
holonomic and nonholonomic constraints consistent with Eq. 
(12), therefore the restrictions enumerated above are not that 
restrictive. 

Another advantage of using the physical approach to model 
a nonholonomic system is that one can "see" the contribution 
of each coordinate by virtue of the dot products used to form 
the mass matrix and the generalized force vector. This allows 
an analyst to obtain a better "feel" for the system's dynamics, 
which may lead to an improved overall understanding of the 
system, which may lend an advantage to a design engineer. 

If one's aim is to model the time evolution of a nonholo- 
nomic mechanical system, then, from an engineering view- 
point, it is recommended that one use the method of Gibbs- 
Appell (Desloge, 1987) or Kane (Kane and Levinson, 1985) 
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and natural or felicitous coordinates. This recommendation 
is based on the observation that the work required to gener- 
ate and integrate the equations of motion take fewer opera- 
tions (see Eq. (25)) and are closer to the physics of the 
problem than the scheme discussed in (Udwadia and Kalaba, 
1992). 
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T w o - P h a s e  So l ids  

B. J. Lee is and M. E. Mear 16 

1 Introduction 
Ponte Castaneda (1991) has introduced a clever technique 

for obtaining bounds on the overall response of nonlinear 
two-phase materials. The procedure exploits information for 
a comparison composite in which the actual nonlinear matrix 
material is replaced by a homogeneous, isotropic linearly 
elastic comparison matrix material. Here we consider a gen- 
eralization of Ponte Castaneda's procedure in which a special 
class of anisotropic comparison solids is used to obtain a 
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bound for isotropic nonlinear composites• The work is moti- 
vated by a desire to develop a procedure which provides 
bounds which are superior to those obtained using an 
isotropic comparison matrix, yet which retains the simplicity 
afforded by using a homogeneous comparison matrix mate- 
rial. 

Although the comparison matrix is anisotropic, the bounds 
generated by the procedure are isotropic. This result is 
achieved by selecting the secant compliances for the compari- 
son matrix such that they have the same "directional proper- 
ties" as those for the matrix material evaluated at the macro- 
scopic stress (also see Duva, 1984; He and Hutchinson, 1981; 
Tandon and Weng, 1988)• Certain parameters are left free in 
the compliances so that the degree of anisotropy can be 
varied, and the isotropic comparison solid originally consid- 
ered by Ponte Castaneda is obtained as a special case. 

The procedure is formulated for plane-strain deformation 
of power-law solids containing inhomogeneities which are 
either rigid or vacuous• Calculations are carried out for dilute 
concentrations of circular inhomogeneities, and the utility of 
the procedure for obtaining bounds on the overall response 
of the nonlinear composites is evaluated. 

Overall Response of Composite 
Consider the deformation of a nonlinear matrix which 

contains circular cylindrical inhomogeneities that are aligned 
with respect to the x3-direction of a reference cartesian 
coordinate system {xl, x2, x3}. The matrix material is as- 
sumed to be isotropic, incompressible, and to be character- 
ized by the potential of the stress 

~oGo(O 'e ]  n+l 

~ ( o ' )  n + 1 ~,05] (1) 

where {05, G, n} are material constants, ~ = (3G.'.~z.'./2) t/2 is e tj U/ 
the effective stress, and o~', = o- i , -  (Gkk/3)8  H is the stress 

• . J , J . J 

dewator. The stress-strain relatton is then given as 

EiJ c)O'~j 2 0 5 crij (2) 

and the secant compliances for the matrix, defined such that 
f f i j  = mijkl°kl ,  are given by 

1[_1 
mijkt = ~ ( o" o ] ~ 2 ( aieqt + aitSJk) 

1 3/3 } 
- ~ a, ak, + --o~ 2 o~}o-;, (3) 

where a = 1 and /3 = (n - 1)/2. In terms of these compli- 
ances, the potential for the matrix material can be expressed 
as ,5(~r) = mi'klO'iO'klAn + 1) J J . • . .  

The second-phase mhomogenelttes are taken to be either 
rigid or vacuous, and it is assumed that they are distributed 
in such a way that the solid is macroscopically homogeneous 
and isotropic in the plane of deformation• To determine the 
overall (plane-strain) response of such a composite, let trac- 
tions t i = Ei;n, be prescribed on the exterior surface of a 

• J J 

representatwe volume element, where nj is the outwardly 
directed unit normal to the surface and Eq is the macro- 
scopic stress tensor (Hill, 1967). If the volume element has 
in-plane area A r and is bounded by the curve Cr, then the 
macroscopic potential of the stress qb(~), defined such that 
the (work conjugate) macroscopic strain is given by 

0~  
Eij = dEi j  (4) 
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and natural or felicitous coordinates. This recommendation 
is based on the observation that the work required to gener- 
ate and integrate the equations of motion take fewer opera- 
tions (see Eq. (25)) and are closer to the physics of the 
problem than the scheme discussed in (Udwadia and Kalaba, 
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two-phase materials. The procedure exploits information for 
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bound for isotropic nonlinear composites• The work is moti- 
vated by a desire to develop a procedure which provides 
bounds which are superior to those obtained using an 
isotropic comparison matrix, yet which retains the simplicity 
afforded by using a homogeneous comparison matrix mate- 
rial. 

Although the comparison matrix is anisotropic, the bounds 
generated by the procedure are isotropic. This result is 
achieved by selecting the secant compliances for the compari- 
son matrix such that they have the same "directional proper- 
ties" as those for the matrix material evaluated at the macro- 
scopic stress (also see Duva, 1984; He and Hutchinson, 1981; 
Tandon and Weng, 1988)• Certain parameters are left free in 
the compliances so that the degree of anisotropy can be 
varied, and the isotropic comparison solid originally consid- 
ered by Ponte Castaneda is obtained as a special case. 

The procedure is formulated for plane-strain deformation 
of power-law solids containing inhomogeneities which are 
either rigid or vacuous• Calculations are carried out for dilute 
concentrations of circular inhomogeneities, and the utility of 
the procedure for obtaining bounds on the overall response 
of the nonlinear composites is evaluated. 

Overall Response of Composite 
Consider the deformation of a nonlinear matrix which 

contains circular cylindrical inhomogeneities that are aligned 
with respect to the x3-direction of a reference cartesian 
coordinate system {xl, x2, x3}. The matrix material is as- 
sumed to be isotropic, incompressible, and to be character- 
ized by the potential of the stress 

~oGo(O 'e ]  n+l 

~ ( o ' )  n + 1 ~,05] (1) 

where {05, G, n} are material constants, ~ = (3G.'.~z.'./2) t/2 is e tj U/ 
the effective stress, and o~', = o- i , -  (Gkk/3)8  H is the stress 

• . J , J . J 

dewator. The stress-strain relatton is then given as 

EiJ c)O'~j 2 0 5 crij (2) 

and the secant compliances for the matrix, defined such that 
f f i j  = mijkl°kl ,  are given by 

1[_1 
mijkt = ~ ( o" o ] ~ 2 ( aieqt + aitSJk) 

1 3/3 } 
- ~ a, ak, + --o~ 2 o~}o-;, (3) 

where a = 1 and /3 = (n - 1)/2. In terms of these compli- 
ances, the potential for the matrix material can be expressed 
as ,5(~r) = mi'klO'iO'klAn + 1) J J . • . .  

The second-phase mhomogenelttes are taken to be either 
rigid or vacuous, and it is assumed that they are distributed 
in such a way that the solid is macroscopically homogeneous 
and isotropic in the plane of deformation• To determine the 
overall (plane-strain) response of such a composite, let trac- 
tions t i = Ei;n, be prescribed on the exterior surface of a 

• J J 

representatwe volume element, where nj is the outwardly 
directed unit normal to the surface and Eq is the macro- 
scopic stress tensor (Hill, 1967). If the volume element has 
in-plane area A r and is bounded by the curve Cr, then the 
macroscopic potential of the stress qb(~), defined such that 
the (work conjugate) macroscopic strain is given by 

0~  
Eij = dEi j  (4) 
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can be expressed as (Hill, 1967) 

1 
= sup fa c~(°'~)dA 

~ ( ~ )  Z o -a m 
(5) 

where o-iT represents statically admissible stress fields and 
where A m denotes the area of the matrix material• 

For the class of two-phase materials considered here, the 
macroscopic potential can be expressed in the form (e.g., Lee 
and Mear, 1992a,b) 

where 

0 ( £ )  = (1 + p ) ~ °  (6) 

n + 1 (7) 

is the macroscopic potential in the absence of the inhomo- 
geneities, 

£e = (~11 -- ~22) 2 + 2 ( ~ 2  -{'- ~ 1 )  (8)  

is the macroscopic effective stress, and the function p de- 
pends upon the hardening exponent and the volume fraction 
and distribution of inhomogeneities. When the inhomo- 
geneities are vacuous, p also depends upon the stress triaxi- 
ality X ~ £m/£~ where 

£m = (£ , i  + £22)/2 (9) 

is the macroscopic mean stress. We remark that when the 
volume fraction c is dilute, p = c/) where /3 is independent 
of the volume fraction and distribution of inhomogeneities 
(assuming only that the distribution is such that the solid is 
macroscopically homogeneous and isotropic in the plane of 
deformation). 

Procedure to Obtain Bounds  
Following Ponte Castaneda (1991), we introduce a compar- 

ison composite which is comprised of a linearly elastic matrix 
with (as yet arbitrary) material constants but which has the 
same distribution of inhomogeneities as the nonlinear com- 
posite. Let ~c denote the potential of the stress for the linear 
comparison matrix material, and introduce the function tp 
according to 

¢ ( t r )  = 4,c(tr) - q.,(tr). (10) 

Then with the constant ~p_ defined by 

~0_--- sup {45~(tr) - q~(tr)} (11) 
or 

it follows from (5) that 

qb _> ~ -- (1 - c)q,_ (12) 

where ~ is the macroscopic potential for the linear compari- 
son composite. For any given linear comparison matrix (not 
necessarily isotropic or homogeneous), (12) provides a lower 
bound on qb. 

Using this relation, a bound on the constitutive potential 
for a nonlinear composite can be obtained if the exact 
constitutive potential (or a lower bound on this quantity) for 
a linear elastic matrix containing an equivalent distribution of 
inhomogeneities is known. Of course, as the actual nonlinear 
composite is isotropic in the plane of deformation, it is 
desired that the bounding procedure yield an expression for 
the overall response which is itself isotropic. Ponte Cas- 
taneda (1991) has considered the case in which the compari- 

son solid is isotropic, but here we examine a broader class of 
comparison solids which are anisotropic yet which render an 
isotropic bound. To obtain the best such bound an optimiza- 
tion on material constants of the linear comparison matrix is 
carried out, as discussed in the next section. 

Anisotropic Comparison Solid 
Let the comparison solid be comprised of a linearly elastic 

matrix material with compliances given by m~jkt = mi~kl(~)  
where mijkt is given by (3) and where a and /3 ar~ now 
treated as variables Note that the compliances m~,kl can be • j . 
regarded as the compliances for a homogeneous linearly 
elastic transversely isotropic body, and that it is necessary to 
enforce the restrictions a > 0 and /3 > - 1 / 2  so that the 
compliances are positive definite. 

It is now convenient to introduce a coordinate system {21, 
.22, x 3} obtained by a rotation of the {x~, x2, x 3} system about 
the x3-axis until the "~1 and .22 axes are coincident with the 
in-plane eigenvectors for the macroscopic stress. The compo- 
nents of the macroscopic stress deviator relative to this 
coordinate system, £'ij, are given in terms of the principal 

stresses {~11, £22'  £33 } as £'H = --E22--' = 1/2(~ n - ~22 ) and 
E~3 = O, and the components of the compliances of the 
comparison matrix material relative to the {2a, 22, x3} system 
are given by 

- -  Z )  { 3 G a (  £ " ' ~ - 1  1 _ 1 
~,3k, = nO'o "~ (a, kaj, + a,&k) ~ a, ak, 

• q- /3(C~li t~l j -  ¢~2,¢~2j)(81kal l -  a2ka2 / ) ) .  (13) 

The potential of the linear comparison matrix is then ob- 
tained as 

1 
4,c(,~) = ~ m,%~,o-~, 

- 2n% % [(1 + 2/3)R 2 + ~2] (14) 

where ~ij are the components of the local stress relative to 
the {21, 2 2, x 3} system, ~2 = 3/4(~n _ ~22)z and ,~2 = 3/2 
(~2 + ~i).  

From (11) it then follows that ~0 is given by 

g,_= s u_p 2 ~  G 7 [(1 + 2/3)R 2 + ~2] 
bGW 

n+l 
E° (~2 2 

(/l @ 1)Go n -'k ~2 )  (15)  

and when the indicated optimization is carried out, it emerges 
that there is a local maximum located along ~ = 0 and 
another located along ~ = 0. Which is the global maximum 
depends upon /3, and when /3 = 0 the maxima coincide. The 
results of the calculation can be summarized as 

where 

- -  (16) 

1 - 1/2 < /3  < 0 (17) 
Yc= 1 + 2 / 3  / 3 > 0  
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Consider now a linear comparison solid which contains the 
same distribution of rigid inclusions or voids as does the 
actual nonlinear composite, and let this comparison solid be 
subject to the same stress state ~ as is the actual solid (and 
upon which the compliances (13) are based). The potential 
for the comparison composite is then found as 

qbc(~ ) = ~c~(1 + 2/3)eoO'o(1 +Pc)  (18) 

where Pc depends upon the volume fraction and the distribu- 
tion of the inhomogeneities as well as upon /3, but it does not 
depend upon c~. This function is independent of ce because 
all components of the compliance are proportional to a, 
hence so should be the macroscopic potential. For voids, p~ 
also depends upon the stress triaxiality X, and since the solid 
is linear this dependence must be of the form Pc = f + g X2 
where {f, g} are functions of/3, the void volume fraction and 
the details of the void distribution. 

For any given {a, /3}, a bound for the potential of the 
nonlinear composite follows from (12) as 

(n l 
qb > - -  c~(1 + 2/3)(1 +Pc)  

n -2 1 (1 - c)(eeyc)O'+l)X"-')}qb ° =- ~b (19) 

and we now seek the best such bound over admissible values 
of a and /3 as 

~gtb = sup~b. (20) 
oe,/3 

Noting that q5 b is an analytic function of or, we form 0qsj&~ 
= 0 to obtain the value of a giving an extremal of ~b for a 
given value of /3. The result is 

(1 + 2/3)(1 +Pc)  1 ('' ,)/2 
oe = (1 -- c ) y,(. "------7 t )/( ,, - 1) 

from which we then obtain 

(21) 

CPgtb = ~ ° ( 1 - -  C)O-'O/2 sup[ ( l  + 2/3)(l  + pc) J 7c 

(22) 

Results for Dilute Concentration of Inhomogeneities 
We now specialize the results given above to cases in 

which the concentration of rigid inclusions or voids can be 
considered dilute for the linear comparison solid. Then Pc = 
c/3 c where /~  is independent of the volume concentration of 
inhomogeneities. 

To determine/~e it suffices to solve a kernel problem for a 
single inhomogeneity embedded within an infinite region of 
the matrix material (e.g., Lee and Mear, 1992a,b), and the 
solution to this kernel problem can be obtained from the 
results of Yang and Chou (1976). To utilize their solution, we 
introduce moduli for the comparison matrix as 

2n o/  ), n(1 
1 + 2/3 (61i62J- 62i62J)(6~i82j- 62i62Y) (23) 

where the parameter K represents a ficticious compressibility 
which has been introduced to facilitate the solution of the 
kernel problem (note that i~jkt is the inverse of Ni~)kt only 
when • = 0). For rigid inclusions it is not necessary to 
consider a compressible matrix, but for voids difficulties arise 
in the solution of the kernel problem if the compressibility is 
not present. The limit K ~ oo is taken at an appropriate stage 
of the analysis to obtain the results corresponding to an 
incompressible matrix (see Budiansky et al. (1982) where a 
similar calculation for an isotropic matrix is discussed). The 
calculation is straightforward (but somewhat lengthy), hence 
we omit the details and simply state the final results as 

= [ - ( 1 +  
/3c ~ 1 + (3X 2 + 1)/~/1 + 2/3 

rigid inclusion 
(24) 

void 

The optimal bound based on the anisotropic comparison 
solid is then obtained from (22) with Pc = Cpc where /~c is 
given by (24). It is readily verified that the optimal bound is 
achieved for/3 = 0 and that it is given by 

n+l 

(1 + pc) 2 
%lb  n - I  ~o. (25)  

( 1  - c )  2 

This result coincides with that obtained by directly using 
Ponte Castaneda (1991) original procedure based on an 
isotropic comparison solid. 

Thus, despite the additional freedom (for use in the opti- 
mization process) afforded by the anisotropic comparison 
solid, Ponte Castaneda's original procedure provides the best 
bound. Of course, this result has been established only for 
the case of plane-strain deformation of power-law solids 
containing a dilute concentration of circular voids or rigid 
inclusions. Under what circumstances, if any, the generalized 
technique provides bounds which are superior to those ob- 
tained with the original procedure remains unknown, and for 
this reason additional investigation of the technique may be 
warranted. 
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BRIEF NOTES 

Stress Concentration Equations for 
Straight-Shank and Countersunk 
Holes in Plates 

K. N. Shivakumar 17 and J. C. Newman, Jr. TM 

Stress" concentration equations for straight shank and counter- 
sunk holes in a large plate subjected to various loading condi- 
tions encountered in service were developed from three-dimen- 
sional finite element solutions. For straight shank holes, three 
types of loading." remote tension, remote bending, and pin load- 
ing were considered; and for the countersunk hole only remote 
tension and bending loads were considered. The equations are 
within one percent of  the finite element results and are valid for 
isotropic materials with Poisson's ratio of  O. 3. 

t t t tst t t t _ _ k ' ~ u  Wedge load, P 

TQnslon, S ~¢ndlne.  M 

(a) Loading on straight shank rivet hole 

• x 

Tension. S 
M 

Bandina. M 
(b) Loading on countersunk rivet hole 

Fig. 1 Loading types  on straight  shank  and counte rsunk  rivet 
holes  in plates 

Introduction 
Riveted joints are commonly used in joining structural 

components. Joining introduces stress discontinuities in the 
form of holes, change in the load path due to lapping, and 
additional loads like rivet bearing and bending moments. 
Accurate estimations of these local stresses are needed to 
predict joint strength and fatigue life. Exhaustive studies on 
stress concentration factors for holes and notches in two-di- 
mensional bodies have been reported in the literature (Peter- 
son, 1974; Savin, t961). Studies have also been made on 
three-dimensional stress concentrations at circular holes in 
plates subjected to remote tensile loads (Green, 1948; Folias 
and Wang, 1990). Only two papers in the literature reported 
results on stress concentration at countersunk holes. They 
were from the photoelastic experiments (Whaley, 1965; 
Cheng, 1978). Recently an exhaustive finite element analysis 
(Shivakumar and Newman, 1992) was conducted on stress 
concentration at straight shank and countersunk holes. Three 
types of loads, namely: remote tension, remote bending, and 
simulated pin loading were considered for the straight shank 
hole. Two types of loads, remote tension and remote bend- 
ing, were considered for countersunk holes. Based on these 
results, three-dimensional, stress concentration factor equa- 
tions were developed. This paper summarizes the developed 
three-dimensional stress concentration factor equations. 

conical section referred to as the countersink (depth, t - b). 
The two sections meet to form an edge referred to as the 
countersunk edge. The stress concentrations will depend on 
the countersunk depth. The two extreme cases of counter- 
sunk holes are when b = 0 (knife edge) and b = t (straight 
shank hole). The countersink angle is 0 c (see Fig. l(b)). In 
the analysis, the plate width and height were selected large 
enough so that the stress concentration solutions would not 
be greatly affected by the remote boundaries. A wide range 
of hole-radius-to-thickness ratios (r/t) and b/t ratios were 
considered in generating the data base on stress concentra- 
tion solutions (Shivakumar and Newman, 1992). 

Loading Conditions 
Figure l (a)  shows the three types of loads that were 

applied to the plate with the straight shank hole: remote 
tension stress (S), remote bending moment (M per unit 
width), and wedge load (P). The wedge load is imposed on 
the hole boundary as a normal pressure loading, defined as 
(2P/~rrt) cos 4' and applied over the angle 4~ = -+ 90 deg. The 
bending moment is applied as an equivalent remote stress 
varying linearly through the plate thickness. For countersunk 
holes, two loading types, remote tension and remote bending, 
were considered. 

Rivet Hole Configurations 
Plates with straight shank and countersunk rivit holes are 

shown in Fig. 1. In the plate with a countersunk hole, the 
thickness was divided into two sections: the cylindrical sec- 
tion referred to as the straight shank (depth, b) and the 
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Definition of Stress Concentration Factor 

Remote Tension Load. The tension stress concentration 
factor (K t) is the ratio of hoop stress (%y) at ~ = 90 deg 
along the hole bore and the remote applied stress (S), 

O'yy( Z ) 
K t ( z )  S (1) 

Remote Bending Load. The stress concentration factor 
for bending (K b) is ratio of hoop stress at 4, = 90 deg along 
the hole bore and the remote outer-fiber bending stress 
(6M/t2), 

%(0 
Kb(z  ) 6M/t 2 . (2) 
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4.5 b/t -- 0.25 and 0c = 100 deg 
I I 

Kt t 

2,5' 

0.5 * .... 
0.25 ~ ..... 

1.5 ~ I ~ I ~ I f I J I 
-0,5 -0.3 -0.1 0,1 0,3 0.5 

z/t 

Fig. 2 Comparison of tension stress concentration factor equation 
with finite element results for countersunk rivet holes 

b/t = 0,25 and 0c= 100 deg 
3 _  ~ 

0 -  J r/t FEM Equation 

-1 L f ~ 2.0 o - -  
~ l , ~ [ f "  1.0 [] - -  

- .j,,,.¢'~:~- 0.5 * .... 
-2, ~r~zZa ~ 0 . 2 5  . A - .... 

-3 I I I I I I i I i I 
-0.5 -0,3 -0.1 0.1 0.3 0.5 

z/t 

Fig, 3 Comparison of bending stress concentration factor equa- 
tion with finite element results for countersunk rivet holes 

Wedge Load. The stress concentration factor for wedge 
loading ( K  w) is ratio of hoop stress at ~ = 90 deg along the 
hole bore and the bearing stress P/(2rt), 

O~y( Z ) 
Kw(Z) P/(2rt) ' (3) 

Pin Load. The stress concentration for pin loading (Kp) 
was obtained from a superposition of remote tension and 
wedge loading (Shivakumar and Newman, 1992) K is de- . p 
fined as the ratio of hoop stress at ~ = 90 deg along the hole 
bore and the bearing stress P/(2rt),  

%~(~) 
Kp(Z) P/(2rt) ' (4) 

Stress  C o n c e n t r a t i o n  Factor  E q u a t i o n s  

Stress concentration factor equations were developed by 
fitting to the finite element results given in Shivakumar and 
Newman (1992). Separate equations were developed for 
straight shank and countersunk holes subjected to different 
loading conditions. 

Straight Shank Hole. The configuration for a plate with 
a straight shank hole is symmetric about the z = 0 plane, see 
Fig. l(a).  The tension and wedge load are symmetric about 
the z = 0 plane, whereas the bending load is antisymmetric 

B R I E F  N O T E S  

about the z = 0 plane. Therefore, an even power polynomial 
in z and a general polynomial in r/t was used to fit stress 
concentration factor results for tension and wedge loads. An 
odd power polynomial in z and a general polynomial in r/t 
was used to fit the bending stress concentration factor re- 
sults. The form of the stress concentration factor equations 
a r e  

4 4 

Km= E E °eij(r/l)i(z/l)  2j ( 5 )  
i = 0  j=O 

where m = t for remote tension and m = w for wedge 
loading and 

4 4 
Kb = E E a q ( r / t ) i ( z / t )  2j-1 (6) 

i = 0  j = l  

for bending loads. The coefficients (a i j )  for all three cases 
are given in Shivakumar and Newman (1992). Equations (5) 
and (6) apply over the range 0.1 _< r/t <_ 2.5. 

The stress concentration equation for simulated pin load- 
ing is written as (Shivakumar and Newman, 1992) 

Kw + (r/w)K,  
Kp = 2 (7) 

Equation (7) is restricted to r/w = 0.1 because K t and K w 
were generated for a plate with r/w = 0.1. 

Countersunk Rivet Holes. The configurations of the 
countersunk hole dictate that two separate stress concentra- 
tion factor equations be fit: one equation for the straight 
shank part { -0 .5  _< z / t  _< (b/ t  - 0.5)} and the other equa- 
tion for the countersunk portion {(b/t 0.5) _< z / t  _< 0.5). The 
stress concentration factor equations are given by 

3 4 

Km = E E °Lij(r/t)i(z/t) j ( 8 )  
i = 0  j = 0  

for - 0 . 5  < z / t  < ( b / t  - 0.5) and 

3 4 

Km = E E 13ij(r/t)i{( z - b + t / Z ) / ( t  - b)}  j (9) 
i = 0  j = 0  

for ( b / t -  0.5) < z / t  <_ 0.5. Equations (8) and (9) apply over 
the range 0.25 _< r/t < 2.5. Coefficients aq and /3 i, for vari- 
ous b/t ratios are given in Shivakumar and NewmAn (1992). 
Figures 2 and 3 show a typical comparison between Eqs. (8) 
and (9) with the finite element results for tension and bend- 
ing loads, respectively. The equations were within _+ 1 per- 
cent of the finite element results. 
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BRIEF NOTES 

Exact Expressions for the Roots of the 
Secular Equation for Rayleigh Waves 

M. Rahman t9'21 and J. R. Barber 2°'21 

(1958) for a line load moving steadily over the surface of the 
half-plane. Both these results can be used as Green's func- 
tions to generate convolution integrals for more general 
boundary value problems and the availability of an explicit 
factorization of the rationalized form (3) of R ( V )  permits 
such integrals to be broken down into simpler terms by 
partial fractions. 

1 I n t r o d u c t i o n  

The speed c n at which Rayleigh waves can propagate over 
the surface of an isotropic linear elastic half-space is a root 
of the equation 

R ( V )  ~ (2 - M~) 2 - 4 ¢ ( 1  - M?)(1 - M~) = 0, (1) 

where 
V V 

M 1 = - ;  M 2 = - ,  (2) 
Cl C 2 

c 1 = 1/(A + 21x)/p,  c 2 = ! / ~  are the dilatational and 
shear wave speeds, respectively, A, /x are LamCs constants 
and p is the density. 

Multiplying Eq. (1) by the expression ( 2 -  M22)2 + 
4V/(1 - M12)(1 - M22), of which the only real zero is V =  0, 
and cancelling the factor M22 corresponding to this trivial 
root, we obtain the equation 

m 3 -- 8m 2 + (24 -- 16A)m - 16(1 - A) = 0 (3) 

- M  2 where m - 2 

c22 (1 - 2v)  
A c] 2 ( 1 -  v) (4) 

and v is Poisson's ratio. We note that for the range - 1 _< v 
_< 0.5, 0 _< A _< 0.75. 

Equation (3) is a cubic equation in m and can therefore be 
solved explicitly by standard methods. In view of the simplic- 
ity of this procedure, it is remarkable that the resulting 
closed-form solutions are not given in any of the standard 
reference works on Elastodynamics, (e.g., Achenbach, 1984; 
Aki and Richards, 1980; Auld, 1973; Ben Menahem and 
Singh, 1981; Brekhovskikh and Godin, 1990; Bullen, 1962; 
Cagniard, 1964; Eringen and Suhubi, 1975; Ewing et al., 
1957; Fedorov, 1968; Hanyga, 1985; Jeffreys, 1952; Kolsky, 
1952; Love, 1944; Mal and Singh, 1991; Viktorov, 1967), 
except for the special cases v = 0, 0.25, nor as far as the 
present authors have been able to ascertain are they avail- 
able elsewhere in the literature. The purpose of the present 
Note is therefore to develop the closed-form solutions of (3), 
and hence of the Rayleigh Eq. (1) for general values of v. 

Of course, numerical solutions for cn are easily obtained 
to any desired accuracy and are widely available in the 
literature. However, apart from the aesthetic appeal of a 
closed-form solution, we note that the Rayleigh function 
R ( V )  appears widely in the solution of classical elastody- 
namic problems. For example, it appears in the denominator 
of Lamb's solution (1904) for an impulsive normal force on 
the surface of a half-space and in Cole and Huth's solution 
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2 S o l u t i o n  

Equation (3) can be reduced to the standard form 

by the substitution 

where 

x 3 +px  + q = 0 (5) 

8 
x = m - -~ (6) 

8 16 
p =  7 ( 1 - 6 A ) ;  q =  ~ ( 1 7 - 4 5 A ) .  (7) 

2 .1  N a t u r e  o f  t h e  R o o t s .  The sign of the discriminant 

q2 p 3 )  

D =  - ~ -  + - ~  (8) 

of Eq. (5) determines the nature of the three roots. In 
particular, 

(1) if D > 0, Eq. (5), and hence Eq. (3), has three distinct 
real roots. 

(2) if D = 0, the equation has three real roots, at least two 
of which are equal. 

(3) if D < 0, the equation has one real and two complex 
conjugate roots. 

Substituting (7) into (8), it is easily verified that D(A) is 
negative at A = 0 and changes sign once in the range 0 < A 
< 0.75. 

The exact value of A at which this sign change occurs is 
the root of the equation D(A) = 0, which can be written in 
the form 

107A2 31 11 a 3 - - -  + - = 0 .  ( 9 )  64 ~ A  

This is also a cubic equation and it can be converted into the 
form (5) by the substitution 

107 
A = x + 19---2 (10) 

in which case 

455 77293 
q* (11) 

12288 ; 3538944 

where the *s are used to distinguish these quantities from 
those defined in Eq. (7). Substituting these results into (8), 
we find that D* < 0 and hence deduce that Eq. (9) has only 
one real root. The value of this root is obtained from Cardan's 
formula (Cowles and Thompson, 1947) as 

~/ q* ~ q* 
x * =  - - - + V V Z - D  * + - - - - ~ - L - - D * .  (12) 

2 2 

Substituting for p*, q*, D* from Eqs. (11), (8) and using (10), 
we find that the corresponding critical value of A is 
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107 ~ 77293 V/ 6859 
A*=  + + 

192 7077888 56623104 

~ /  77293 V/ 6859 
+ 7077888 56623104 0.3214984 . . . .  (13) 

Solving Eq. (4) for v, we find 

(1 - 2A) 
v (14) 

2(1 - A)  

and the value corresponding to A* is 

v* = 0.2630821 . . . .  (15) 

Since A* is the only real root of (9) we conclude that 

(1) for - 1 < v < v*, Eq. (3) has three distinct real roots. 
(2) for v = v*, Eq. (3) has three real roots, two of which are 

equal. 
for v* < v* < 0.5, Eq. (3) has one real root (one of 

which is the Rayleigh root) and a pair of complex 
conjugate roots. 

(3) 

Hayes and Rivlin (1962) report that a similar conclusion 
was reached by Somigliana, who gave the critical value as 
v* = 0.2637. 

2.2 Expressions for the Roots. We now proceed to de- 
termine explicit expressions for the roots in these three 
ranges, 

easel: - 1 <  v< v*. 
For this case, the three roots of Eq. (3) are all real and can 

be written in the form 

m 1 = - ~  + 2  cos ~b+ (16) 

m 2 = - ~  + 2  cos qS+ (17) 

8 
m 3 = ~ + 2 -~ cos 4, (18) 

(see Cowles and Thompson, 1947), where 

~b= ~arccos( 3q 
2p -~--775 ) '  (19) 

If we define the principal value of arccos(x) in Eq. (19) to 
lie in the range 0 _< x _< rr, it follows that m 1 < m 2 < m 3. 

The root corresponding to the Rayleigh wave speed is 
ml--i.e.,  

c e = c 2 ~ -  (20) 

and the other two roots both correspond to speeds higher 
than the dilatational wave speed--i.e., m2, m 3 > M~ for all 
v. Hayes and Rivlin (1962) show that the elastodynamic 
solutions corresponding to these roots involve physically un- 
acceptable unbounded fields at infinity. 

Case 2: v= v*. 
This can be regarded as a limit of the preceeding case, in 

gg 

which ~b ~ ~ and m2, m 3 become equal. The results are 

8 
m 1 = -~ + 2o" (21) 

8 
m 2 = m 3 = ~ - -  O" (22) 

where 
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2 3 / 1 1 _ 5 6 v ,  

o-= 3 V 2 ( 1 -  v*) 
(23) 

Case 3.' v* < v<0 .5 .  
In this case only the Rayleigh root m~ is real and the three 

roots of Eq. (3) are given by Cardan's formula as 

8 
m ~ = - ~  + y +  r/ 

m2 3 ~ - -  + i - -~ - (y -  7) 

(24) 

(25) 

8 Y + ~ 7  V c~ 
m3 3 2 i --- f -(y-  7) (26) 

where 

3' = ~ - (17 - 45A) + !/(17 - 45A) 2 + 8(1 - 6A) 3 

(27) 

r / =  -~ (17 - 45A) - 1/(17 - 45A) 2 + 8(1 - 6A) 3 

and A is defined by Eq. (4). 

(28) 

3 C o n c l u s i o n  

This completes the solution for the roots of Eq. (3). In 
each case a closed-form expression for the Rayleigh wave 
speed can be written in the form 

cR =cza/rm-7. (29) 
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BRIEF NOTES 

The three roots, m~, m 2, m 3 are shown as functions of v in 
Fig. 1. It is notable that the second root, m2, is very close to 
the function I/A, when v is small. In fact, it can be shown 
that 

1 
m 2 = ~ + 32~  4 + O(,E 5) ( 3 0 )  

for v << 1, where 

1 // 

E =  z = - A  2 ( 1 -  v ' ' )  (31) 

We also note that the results permit the left-hand side of 
(3) to be factorized explicitly in the form ( m -  m t ) ( m -  
m 2 ) ( m -  m3).  It follows that the function R ( V )  -1, which 
appears in Lamb's solution (1904) for an impulsive load and 
Cole and Huth's solution (1985) for a moving line load, can 
be written in the rationalized form 

n(V) 
(2 - M2z) 2 + 4~/(1 - M12)(1 - M ~ )  

M22(M2 z _ m t ) ( M ~  _ m2)(Mz 2 _ m3 ) (32) 

which can be expanded as a set of partial fractions if desired. 
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Critical Strain Ranking of 12 Materials 
in Deformations Involving Adiabatic 
Shear Bands 

R. C. Batra 22'2s, X. Zhang 23, and 
T. W. Wright 24'2s 

Batra and Kim (1992) studied the initiation and growth of 
shear bands in 12 materials deformed in simple shear. Each 
material was modeled by the Johnson-Cook (1983) law, val- 
ues of material parameters were taken from Johnson and 
Cook's (1983) paper, and the effects of inertia forces and 
thermal conductivity were included. However, materials gen- 
erally are rarely tested in simple shear and the material data 
used was derived from tests conducted over a moderate 
range of strains, strain rates, and temperatures. In this Note, 
we report results of numerical simulation of torsion tests 
similar to those performed by Marchand and Duffy (1988) on 
HY-100 steel and rank 12 materials according to the values 
of the nominal strain at which the torque begins to drop 
precipitously. Values of material parameters taken from Ra- 
jendran's report (1992) and likely to be valid over a large 
range of strains, strain rates, and temperatures are used. 
However, the effect of thermal conductivity has been ne- 
glected because the computer code DYNA3D (Whirley and 
Hallquist, 1991) employed to study the problem assumes 
locally adiabatic deformations. Batra and Kim (1991) have 
shown that for simple shearing deformations of viscoplastic 
materials, realistic values of thermal conductivity have little 
effect on the values of the nominal strain at which deforma- 
tions begin to localize and thus shear bands initiate. 

In the simulations reported herein, the initial thickness, 
on(z), of the tube with inner radius of 4.75 mm is assumed to 
vary according to the relation 

[ (1 
oo(z) = 0.19 1.9 + 0.1sin ~ + - -  

2z)] 
2.5 ~" mm, 

0 _< z -= 2.5 mm. (1) 

Here z denotes the position of a point along the axis of the 
tube with z = 0 being the fixed end. The end z = 2.5 mm is 
twisted so as to produce a nominal strain rate of 5000 s -  1. It 
is assumed that the angular speed increases from zero to the 
steady value of 2530 rad/s  in 20 /zs. The thickness variation, 
depicted in Fig. 1, clearly shows that the minimum tube 
thickness occurs at its center, and equals 90 percent of that 
at its outer edges. 

The tube is assumed to be initially at rest, stress-free, and 
at the room temperature, T o, of 25°C. The inner and outer 
surfaces of the tube are taken to be traction-flee and ther- 
mally insulated, and its deformations are assumed to be 
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The three roots, m~, m 2, m 3 are shown as functions of v in 
Fig. 1. It is notable that the second root, m2, is very close to 
the function I/A, when v is small. In fact, it can be shown 
that 
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for v << 1, where 
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We also note that the results permit the left-hand side of 
(3) to be factorized explicitly in the form ( m -  m t ) ( m -  
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R. C. Batra 22'2s, X. Zhang 23, and 
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Batra and Kim (1992) studied the initiation and growth of 
shear bands in 12 materials deformed in simple shear. Each 
material was modeled by the Johnson-Cook (1983) law, val- 
ues of material parameters were taken from Johnson and 
Cook's (1983) paper, and the effects of inertia forces and 
thermal conductivity were included. However, materials gen- 
erally are rarely tested in simple shear and the material data 
used was derived from tests conducted over a moderate 
range of strains, strain rates, and temperatures. In this Note, 
we report results of numerical simulation of torsion tests 
similar to those performed by Marchand and Duffy (1988) on 
HY-100 steel and rank 12 materials according to the values 
of the nominal strain at which the torque begins to drop 
precipitously. Values of material parameters taken from Ra- 
jendran's report (1992) and likely to be valid over a large 
range of strains, strain rates, and temperatures are used. 
However, the effect of thermal conductivity has been ne- 
glected because the computer code DYNA3D (Whirley and 
Hallquist, 1991) employed to study the problem assumes 
locally adiabatic deformations. Batra and Kim (1991) have 
shown that for simple shearing deformations of viscoplastic 
materials, realistic values of thermal conductivity have little 
effect on the values of the nominal strain at which deforma- 
tions begin to localize and thus shear bands initiate. 

In the simulations reported herein, the initial thickness, 
on(z), of the tube with inner radius of 4.75 mm is assumed to 
vary according to the relation 

[ (1 
oo(z) = 0.19 1.9 + 0.1sin ~ + - -  

2z)] 
2.5 ~" mm, 

0 _< z -= 2.5 mm. (1) 

Here z denotes the position of a point along the axis of the 
tube with z = 0 being the fixed end. The end z = 2.5 mm is 
twisted so as to produce a nominal strain rate of 5000 s -  1. It 
is assumed that the angular speed increases from zero to the 
steady value of 2530 rad/s  in 20 /zs. The thickness variation, 
depicted in Fig. 1, clearly shows that the minimum tube 
thickness occurs at its center, and equals 90 percent of that 
at its outer edges. 

The tube is assumed to be initially at rest, stress-free, and 
at the room temperature, T o, of 25°C. The inner and outer 
surfaces of the tube are taken to be traction-flee and ther- 
mally insulated, and its deformations are assumed to be 
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BRIEF NOTES 

locally adiabatic. The thermomechanical response of each 
one of the 12 materials is modeled by the Johnson-Cook 
(1983) law: 

~r m = (A + B~; ')(1 + C In ~p/'~o)(1 - T ' m ) ;  

( T -  To) 
T* (T m _ To),  (2) 

where o- m is the equivalent or the effective stress, A equals 
the yield stress in a quasi-static simple tension or compres- 
sion test, B and n characterize the strain hardening of the 
material, C characterizes its strain rate sensitivity, and the 
factor (1 - T *m) determines the decrease in the flow stress 
because of the temperature rise. In Eq. (2) yp is the effective 
plastic strain, T m the melting temperature of the material, 
and 'Yo is the reference strain rate of 1/sec. Values of 
material parameters A, B, n, C, m, the mass density p, and 
the specific heat c are taken either from Rajendran (1992) or 
from a handbook, and are listed in Table 1. Values of the 
shear and bulk moduli are needed to account for the small 
elastic deformations of the tube material. 

The transient thermomechanical problem is analyzed by 
using the large-scale explicit finite element code DYNA3D 
(Whirley and Hallquist, 1991) with a suitably graded finite 
element mesh consisting of 8-noded brick elements with 30 
elements along the axial length of the tube, 4 elements across 
the thickness, and 40 elements along the circumference. In 
the axial direction, elements are finer near the center of the 
tube and increase in size gradually as one moves towards the 
ends of the tube. Preliminary computations indicated that the 
deformations of the tube were axisymmetric and stayed uni- 
form through the thickness of the tube. 

o . .=-l  T 7 7 7 / / /  / / / 7 7 7 2  

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

F i g .  1 T h e  p r e s u m e d  v a r i a t i o n  in  t h e  t h i c k n e s s  o f  t h e  t u b e  

Figures 2 and 3 depict the time history of the torque 
required to deform the tube and the evolution of the effec- 
tive plastic strain at the tube center for the 12 materials 
studied. In each case, the torque initially increases because 
of the increase in the angular speed of the twisted end, and 
continues to increase because of the hardening of the mate- 

3°I  
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F i g .  2 T h e  t o r q u e  r e q u i r e d  t o  d e f o r m  t h e  t u b e  v e r s u s  t h e  n o m i n a l  
s h e a r  s t r a i n  

T a b l e  1 M a t e r i a l  c o n s t a n t s  f o r  t h e  J o h n s o n - C o o k  m o d e l  

Material A B C n m # 0 m 
MPa MPa kg/m' *C 

OFHC Copper 89.63 291.64 0.025 0.31 [ 1.09 8,960 1,083 

Cartridge Brass 111.69 504.69 0.009 0.42 1.68 8,5'20 916 

Nickel 200 163.40 648.10 0.006 0.33 1.44 8,900 1,453 

Armeo Iron 175.12 800.00 0.06 0.32 0.55 7,890 1,538 

Carpenter Electric Iron 289.58 338.53 0.055 0.40 0.55 7,890 1,538 

1006 Steel 350.25 275.00 0.022 0.36 1.00 7,890 1,538 

2024-T351 Aluminum 264.75 426.09 i 0.015 0.34 1.00 2,770 502 

7039 Aluminum 336.46 342.66 0.01 0.41 1.00 2,770 604 

4340 Steel 792.19 509.51 0.014 0.26 1.03 7,840 1,520 

S-7 Tool Steel 1538.89 476.42 0.012 0.18 1.00 7,750 1,490 

Tungsten 1505.79 176.50 0.016 0.12 1.00 17,000 1,450 

Depleted Uranium 1079.01 1119.69 0.007 0.25 1.00 18,600 1,200 

K # c 
GPa GPa (J/kg°C) 

138 42 383 

112 41 385 

198 80 446 

140 76 452 

162 78 452 

169 S0 452 

76 28 875 

81 28 875 

157 76 477 

246 117 477 

257 133 134 

92 58 117 
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Fig. 3 The effective plastic strain at the band center versus the 
nominal shear strain 

rial due to strain and strain rate effects. However, when 
thermal softening of the material at the tube center exceeds 
the hardening of material there, the torque required to 
deform the tube decreases. For each one of the 12 materials 
except one (Carpenter electric iron) studied herein, the torque 
drops precipitously prior to the slope of the torque versus 
nominal shear strain curve becoming zero. This is due to the 
rather high value of the assumed variation of the tube thick- 
ness. Computations done with five percent variation in the 
thickness for three materials, namely, OFHC copper, 4340 
steel, and 2024-T351 aluminum, yielded similar results except 
that the slope of the curve representing the torque versus the 
nominal shear strain became zero prior to the rapid drop in 
the torque. For each material studied, the effective plastic 
strain at the tube center first gradually increases with an 
increase in the nominal strain, but when the torque begins to 
drop, the effective plastic strain at the tube center begins to 
increase sharply. We note that the deformations localized 
into essentially one element near the middle of the tube, and 

subsequently all of the deformations occurred only in this 
element. Computations were stopped shortly after this stage. 

We presume that the shear band initiates when the torque 
drops quickly, which essentially coincides with the instant of 
rapid increase of the effective plastic strain at the tube 
center, and we rank materials according to the value of the 
nominal strain at which this occurs. Marchand and Duffy 
(1988), based on their experimental observations, pointed out 
that a shear band initiates when the shear stress begins to 
drop rapidly. In the twelve materials studied herein, shear 
bands initiate in the following order: Tungsten, S-7 tool 
steel, Depleted Uranium, 2024-T351 aluminum, 7039 alu- 
minum, 4340 steel, Armco iron, Carpenter electric iron, 1006 
steel, Cartridge brass, Nickel 200 and OFHC copper. Compu- 
tations for the aforestated three materials with five percent 
thickness variation did not change their ranking as far as the 
nominal strain at the initiation of the shear band is con- 
cerned; this leads us to conclude that the amount of thick- 
ness variation does not affect the ranking. We note that the 
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nominal strain when the torque drops rapidly depends upon 
the assumed variation in the tube thickness, and also upon 
the finite element mesh used. Besides the size and shape of 
the geometric defect, other factors such as the mass density, 
specific heat, thermal conductivity, the nominal strain rate, 
strain and strain-rate hardening effects, and the rate of 
thermal softening affect the value of the nominal strain at 
the instant of the initiation of a shear band; e.g., see Wright 
(1992). Batra and Kim (1992) used a very fine finite element 
mesh within and around the shear band region to study the 
effect of geometric defect size on the localization of deforma- 
tions in simple shearing deformations of different materials. 
They found that the defect size had no effect on the critical 
strain ranking of the 12 materials studied. The results pre- 
sented herein are intended to help an experimentalist answer 
the following question: Among the 12 materials studied 
herein, having found the nominal strain at which a shear 
band initiates in torsional tests in a material, at what value of 
the nominal strain will a shear band initiate in an identical 
tube made of a different material? Also, these results should 
help ascertain the validity of any future analytical results 
obtained on the value of the nominal strain at which a shear 
band initiates in a material. 

Ballistic experiments (Magness and Farrand, 1990) with 
tungsten and depleted uranium penetrators and steel targets 
suggest that shear bands initiate first in uranium, in contra- 
diction to the ranking obtained herein. In penetration tests, 
the state of stress around a penetrator nose is triaxial rather 
than that of simple shearing. The problem of the initiation of 
shear bands under such general states of stress has not been 
studied so far. 
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Following Eringen's theory, the question whether a Stoneley 
mode can exist at an unbonded interface between two micropolar 
elastic half-spaces is examined analytically. Explicit conditions 
for its existence are derived when the two half-spaces are incom- 
pressible or Poisson solids whose material properties are close to 
each other. 

1 Introduction 
It is merely not possible to apply just the classical theory to 

engineering problems related to oriented media like polycrys- 
talline materials or materials with a fibrous or coarse-grained 
structure. The micropolar theory of elasticity describing the 
behavior of oriented materials is proposed by Eringen (1966). 

In the present analysis an attempt is made to study the 
micropolar effect on the Stoneley wave propagation at an 
unbonded interface between two half-spaces based on Erin- 
gen's theory together with the method of Murty (1975). By 
considering the plane harmonic waves, the analysis yields two 
frequency equations. It is seen from the first frequency 
equation that the wave is propagating with an extra velocity, 
known as micropolar wave, which has no counterpart in 
classical theory. This may be attributed to the micropolar 
nature of the medium. The second frequency equation is the 
counterpart of the Stoneley wave equation of classical theory 
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conditions for its existence are derived. The results of classi- 
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BRIEF NOTES 

u = [Ae  pz +Be  -pz +De  qz + E e  -qz +Fe  rz + Ge-rZ]e is(x-cO, 

w = i s [ p - l ( B e  -pz - A e  pz) + q - l ( E e - q z  - De qz) 

+ ~ - l ( G e - r z  - FerZ)]eis(x -ct) 

¢ = O(Fe "z + G e - r Z ) e  is(x-ct), (1) 

where s is the wave number, c is the wave speed, A, B, D, E, 
F, G are all constants, and p2, q2, r 2, 0, , are related to the 
body waves of micropolar theory, viz., 

p 2 =  [1 - c 2 p ( A  + 2/.~ + k ) - l ] s  2, 

q 2 =  [ 1 -  c2p(1 + e ) - l / z - ' ] s 2 ,  

r 2 = 2 , / z y  -1 + (1 -- c2p jT -1 ) s  2, • = k lx  -1,  

0 = r-1,-1[(1 + , ) ( 2 , t x j - l k  -1 - S2C2pj'y -1)  "F p ~ - 1 C 2 S 2 ] .  

(2) 

The remaining notations are standard as in Eringen (1966). 
Using (1) in the stress displacement relations, the relevant 
stresses can be computed. In the following, the subscripts 1 
and 2 are used for dependent variables and material parame- 
ters in the upper and lower half-spaces, respectively. Further, 
the displacements, stresses, and microrotation functions must 
decrease with increasing distances from the plane z = 0, 
where z > 0 defines the lower half-space. The question 
whether a Stoneley mode can exist when two half-spaces are 
not in welded contact is examined theoretically on the basis 
of Murty (1975). The related boundary conditions at z = 0 
are the normal components of the displacement vector and 
stress tensor, couple stress tensor, and the microrotation 
vectors are continuous while the shearing stress vanishes 
across the interface. Using (1) with the aforesaid conditions 
to write the related equations of both half-spaces into the 
boundary conditions, we obtain the frequency equation of the 
Stoneley wave propagation which gets factorized resulting in 

TI~I  + T2~2 = 0, (3) 
and 

p2d~[1  c2(b~ , 2 d ~ ) - ' ]  - 1~  -- + R 2 ( c  ) 

+ pedal1 c2(b~ + ,ida)-1] -1~ - R , ( c )  = 0. (4)  

In the above, bl, d 1 and b 2, d 2 are  the speeds of dilatational 
and shear waves, respectively, and f2, f22 are 

~:? = 2Elj{-101-1 -'F (1 -- C2plJlTI-1)S 2, 

~2 = 2E2j~- 1021 + (1 - cip2J2Y2' - l \ sg )  , (5) 

where R2(c)  is the frequency equation of Rayleigh waves in 
the micropolar elastic solid (medium 2), viz., 

R2(c ) = (2 + "2 --  c 2 d 2  - 2 )  - ( 2  -F , 2 )2 [1  -- c2(b22 

+,2d22)-1]1~[1 - c 2 ( 1  + ~2)-1d~'2] l'a, (6) 

and Ra(c) is similarly defined with suffix 2 replaced by suffix 
1. Equation (6) equated to zero gives the frequency equation 
of the Rayleigh surface waves (Eringen, 1968). Equation (3) 
shows an extra velocity not observed in classical theory and 

purely depends on new micropolar elastic constants. Hence, 
the waves related to these modes are known as micropolar 
waves. Equation (4) is the counterpart of the Stoneley wave 
equation of classical theory, which can be obtained by ignor- 
ing the terms o f ,  from it (Murty, 1975). It determines the 
condition for the existence of a Stoneley mode for which 
there should exist a real value of wave speed c (c is less than 
the smaller of the two shear wave speeds d 1 and d2). In 
general, the wave velocity of micropolar waves are different 
from that of the counterpart of the Stoneley wave equation 
of classical theory. 

3 R e s u l t s  and  D i s c u s s i o n  
We see from (4) that when the two sides of an unbonded 

interface are of the same material, the speed of the Stoneley 
wave is the same as that of the Rayleigh wave on the free 
surface of one of the half-spaces (Eringen, 1968). In the 
limiting case of d 2 ~ 0, Eq. (4) is reduced to the counterpart 
of frequency equation of Stoneley waves at a liquid-solid 
interface in connection with transmission of waves through 
oceans, which can be obtained by ignoring the micropolar 
terms from it (see Eq. 3.111, Ewing et al., 1957). 

It is interesting to investigate the case of medium "2" 
differing from the medium "1" whose material properties are 
close to each other. Then an explicit expression for the 
Stoneley wave speed as a perturbation over the Rayleigh 
wave speed can be obtained. In particular, let 

d 2 = d,(1 + 61), b 2 = bl(1 + 32), 

P2 = PI( 1 + 63), "2 = "1( 1 + 34), (7) 

where 16,.I << 1 (i = 1, 2, 3, 4). Thus the frequency Eq. (4) 
can be solved by power series expansion in the parameters 6i. 
To find the zeroth-order solution, consider the first-order 
terms by ignoring the squares and products of parameters. 
Assuming d 1 < d2, we see that the zeroth-order solution c o 
is 

R~(co) = 0. (8) 

When the medium "1" is incompressible, that is b 1 ~ co 
(Ewing et al., 1957), then the analogous Rayleigh wave speed 
c o is obtained: 

t = 0.955(1 + 0 .736e l )d1 ,  (9 )  C O ~ C o 

and when the medium "1" is a Poisson solid (that is, b 1 
= ~ d ~ ) ,  

e 0.919(1 + 0.932el)d 1 (10) C o = C O -.~ 

The corresponding first-order change in the Rayleigh wave 
speed can also be obtained from (4) as follows: 

Ri(c ) + [R1(c ) + A(c)]  

X(1 + aa61 + a2• 2 + a3• 3 + a464) = O, (11) 

where ai(i = 1, 2, 3, 4) and A(c) are 

-1 
a 1 = 4 - , l d 1 2 ( b  2 + e l d Z ) - 2 [ 1 - c 2 ( b ~  + , l d 2 )  -1]  , 

2 -1]-', 
a 2 = c  bl (b  I + - a 3 =  1, 

2a 4 = , lc2dZ(b 2 + , ld12)-2[1-c2(b21 + e l d 2 ) - ' ]  -1, 
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A(c)  = 4c281d[212 - cZd{ 2 - M - i n N  I/2] - 4cZb~62(b 2 

+,,d?) + - 

+eld l2) -2Mt~N-1/2]  _ 4c2e162b12(bl 2 + eldl2) -2  

×M1/2N_i/2 + e18412(2_ c 2 d { 2 ) _  2c2d~(bl  2 + e,d12) 2 

×M1/Z N -  1/2 _ 2c2d(2M-1/2N~/2 _ 4M1/2N1/2]. (12) 

In (12), M and N are defined as 

- I  
M =  1 - c 2 d 1 2 ( 1 +  e l ) - ' ,  N =  1 - c 2 ( b ~  + e,d~) 

To find the solution of (11), we write 

c = c  o +  6c, (13) 

and thus Ri(c) is given up to first order by 

R l ( c )  = R l ( c ° )  + \ Oc 8c. (14) 
Co 

Replacing suffix 2 by suffix 1 in (6), Rl(c)  is obtained. 
To find (3R1/dc)  c,, differentiate Rl(C) with respect to c, 

• ( . 

and then finally replace c by c o. Using (8), (13), and (14) into 
(11), we find 

aRl 
~c = - I A (  c o ) ] / 2 ( - ~ -  )Co, (15) 

where A(c o) can be obtained from the expression of A(c) 
replacing c by c o. Finally, using (9), (10), and (12)-(15), we 
obtain 

c = c~(1 + 0.531 + 0 .68e1~4)  , (16) 

for incompressible solids, while 

c = cPo(1 + 0.43261 + 0.06782 + 0.455e16 l 

+0.455ex62 + 0.82e1•4) ,  (17) 

for Poisson solids. The terms containing e t in (16) and (17) 
are the first-order correction to the Stoneley wave speed. 
Since e > 0, we can conclude that the micropolar effects 
increase the analogous speeds when compared to classical 
theory. Equating mieropolar terms to zero, the analogous 
results of the classical theory of Murty (1975) is obtained as a 
special case. Thus, a Stoneley mode exists at an ideal un- 
bonded interface between two micropolar elastic half-spaces 
under suitable conditions. 
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Two-Dimens iona l  Dynamic  Thermal  
Stresses in a Semi-infinite  Circular 
Cylinder 

Koichi Kaizu 27, Tsuyoshi Aoto 2s, and Shinji 
Tanimura 29 

1 Introduction 
The finite difference method based on the integration along 

the bi-characteristics is the most suitable method to the analysis 
of the two-dimensional stress wave propagation (Clifton, 1967; 
Tanimura et al., 1986). The advantage of this method is at- 
tributed to the fact that the characteristic surface coincides 
with the wave surface. Using this method, the propagation, 
reflection, and interaction of the stress waves in a body can 
be investigated in detail. 

The purpose of this work is to develop the finite difference 
method based on the integration along the bi-characteristics 
for the two-dimensional dynamic thermal stresses. In order to 
clarify the dynamic effect on the thermal stresses under an 
instantaneous heating, the numerical results are presented for 
the variations of  the stress distribution with time in a semi- 
infinite circular cylinder. 

2 Governing Equations 
Consider a semi-infinite circular cylinder having the diameter 

of 2a. A ramp-shaped rising heating is assumed to be applied 
to the free-end surface of this cylinder. The influence of the 
temperature on the strain field is not taken into account. Cy- 
lindrical coordinate (r, O, z) are taken, where the z-axis co- 
incides with the axis of the cylinder. From the symmetric 
property, the equations of motion are given as follows: 

p OVr/Ot= Oar~Or + Or,~lOz+ (or -  ao)/r 

p Ovz/Ot = OrrJOr + Oaz/OZ + ~rz/r (1) 

where Vr and vz are the velocity components, ar, no, az and rrz 
denote stress components, p the density, and t the time. 

The constitutive equations for an isotropic material in this 
case are 

OVr/Or= [ b r -  V( bo+ bz) l / E  + a] h 

Vr/r= { b o -  v( bz + ar) } / E +  ~J" 

OVz/OZ--: { b z -- P( br+ bO) } / E  + oIT 

OVr/OZ + OVz/Or = ~'rz/# (2) 

where T is the temperature and the dot denotes the time de- 
rivative. E is Young's modulus,/z is the Lame's constant, u is 
Poisson's ratio, and c~ is the coefficient of linear expansion. 
The physical constants do not depend on the temperature. 

From Eqs. (1)-(2), the governing equations in the dimen- 
sionless form may be written in a matrix form: 
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BRIEF NOTES 

Two-Dimens iona l  Dynamic  Thermal  
Stresses in a Semi-infinite  Circular 
Cylinder 

Koichi Kaizu 27, Tsuyoshi Aoto 2s, and Shinji 
Tanimura 29 

1 Introduction 
The finite difference method based on the integration along 

the bi-characteristics is the most suitable method to the analysis 
of the two-dimensional stress wave propagation (Clifton, 1967; 
Tanimura et al., 1986). The advantage of this method is at- 
tributed to the fact that the characteristic surface coincides 
with the wave surface. Using this method, the propagation, 
reflection, and interaction of the stress waves in a body can 
be investigated in detail. 

The purpose of this work is to develop the finite difference 
method based on the integration along the bi-characteristics 
for the two-dimensional dynamic thermal stresses. In order to 
clarify the dynamic effect on the thermal stresses under an 
instantaneous heating, the numerical results are presented for 
the variations of  the stress distribution with time in a semi- 
infinite circular cylinder. 

2 Governing Equations 
Consider a semi-infinite circular cylinder having the diameter 

of 2a. A ramp-shaped rising heating is assumed to be applied 
to the free-end surface of this cylinder. The influence of the 
temperature on the strain field is not taken into account. Cy- 
lindrical coordinate (r, O, z) are taken, where the z-axis co- 
incides with the axis of the cylinder. From the symmetric 
property, the equations of motion are given as follows: 

p OVr/Ot= Oar~Or + Or,~lOz+ (or -  ao)/r 

p Ovz/Ot = OrrJOr + Oaz/OZ + ~rz/r (1) 

where Vr and vz are the velocity components, ar, no, az and rrz 
denote stress components, p the density, and t the time. 

The constitutive equations for an isotropic material in this 
case are 

OVr/Or= [ b r -  V( bo+ bz) l / E  + a] h 

Vr/r= { b o -  v( bz + ar) } / E +  ~J" 

OVz/OZ--: { b z -- P( br+ bO) } / E  + oIT 

OVr/OZ + OVz/Or = ~'rz/# (2) 

where T is the temperature and the dot denotes the time de- 
rivative. E is Young's modulus,/z is the Lame's constant, u is 
Poisson's ratio, and c~ is the coefficient of linear expansion. 
The physical constants do not depend on the temperature. 

From Eqs. (1)-(2), the governing equations in the dimen- 
sionless form may be written in a matrix form: 
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L[W] = A  t Wt + Ar Wr + A z W z -  B =O (3) 

where the vectors W and B and matrices A t, Z r, and A z are 

A t =  

A z 

100 00 10 0 1 0 0 0 0 
0 0 M 0 Q 
0 0 0 H 0 
0 0 Q O N  
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 - 1  
0 0 0 0 0 
0 0 0 0 0 

0 - 1  0 0 0 
- 1  0 0 0 0 

A t =  

- 1  
0 
0 

0 ' 
0 
0 

0 0 - 1  

0 0 0 

- 1  0 0 
- 1  0 0 

0 0 0 

0 - 0 

U 

/3 

p 
q 

S 

n 

W =  B =  

By integrating Eq. (4) along the bi-characteristics for which 
3, = 3`, from the point (ro, Zo, to) to the point (ro, Zo, to - k) 
where this characteristic intersects the plane t = to - k and 

- 1  0 0 

O 0  - 1  

0 0 0 

0 0 0 

0 0 0 

0 0 0 

2q/r  
n / r  

u / r -  c~J" 

- u/r  

-ceJ" 
0 

and 

t = c i t / b ,  r = f / b ,  z = ~ / b ,  u = ~ / c l ,  v=~z/c l ,  

p = (Or + Oo)/2pc~, q = ( O r -  80)/2 pc~, s= Oz/p c~, n = Crz/p c~, 

r=cl /cE,  E = I ~ / o c l  2, T = T / T o ,  c~=&T0 

H = 2 ( I + v ) / E ,  M = 2 ( 1 - v ) / E ,  N = I / E ,  Q = - E v / E  

where a hat  ̂  denotes the corresponding dimensional  quantity 
and b and To are the representative length and representative 
temperature, respectively, ct is the velocity of dilatational waves 
and c2 the velocity of shear waves. 

The system of Eq. (3) is a system of  semilinear hyperbolic 
partial differential equations with constant  coefficients. In- 
tegration of the system is carried out by integrating the dif- 
ference equation along bi-characteristics, which was developed 
by Clifton (1967). The outline of the derivation will be de- 
scribed as follows. 

The differential equations along bi-characteristics are as fol- 
lows: 

cos 3,du + sin 3,dr + cos 2 3,(dp + dq) 

+ s i n  E 3,ds+sin2 3,dn= - S l ( 3 , ) d t  (4) 

for c = 1, and 

2F sin 3,du-  2F cos 3,dv + F E sin2 3,(dp + dq) 

- F  E sin2 3,ds-2F 2 cos2 3,ds = -Sa(3,)dt 

for c =  I /F ,  where 

Sx (3`)= [ (pa_  2)/pZ}(_ sin E 3'Ur + sin2 3,uJ2 + sin2 3,vr/2 

- c o s  2 3,re)- sin E 3, cos 3'pr+ sin 3, COS 2 3,pz- sin 2 3, cos 3"qr 

+ sin XX COS 2 XXqz + s i n  E 3' COS 3`s r -  sin 3, cos 2 Xs z 

+ sin 3, cos 2 Xxnr- cos 3  ̀cos2 3,n z - [ (pE _ 2 ) / p E  } ( u / r )  

- 2cos 3,(q/r) - sin 3,(n/r) + [ (3F 2 -  4 ) / P  E } otTt 

SE(3') = - sin2 3, Ur + 2 c o s  2 3'Uz - 2sin E XXVr + sin2 XXv z 

- 2 P  sin 3 3'pr + F sin2 3, sin 3'Pz-2F sin 3 3`qr 

+ P sin2 3, sin 3'qz 

- P  sin2 3, cos Xs~ + 2I' cos 3 ~s z + 4F sin E 3, cos 3'nr 

- 4 P  sin 3, cos 2 XX n z - 4 P  sin 3,(q/r)+ 2P cos 3,(n/r) (5) 

and c denotes the dimensionless wave velocity and 3, (0 <= 3, 

=< 2r)  is a parameter (Clifton, 1967). 

by using the increment of variable as 

~W= W(ro, Zo, to) -  W(ro, Zo, t o - k ) ,  (6) 

we have 

cos 3,i6u + sin 3,itSv + cos E 3'i(6P + 6q)+ cos z 3,i6s + sin2 Xxi~Sn 

= ( - k / 2 )  { S l ( 3 , i ) ° . + S l ( 3 ' i ) i }  - W i  (3' /)  ( 7 )  

for c = 1 and 

2F sin Xi~Su- 2F cos XxitSv+F 2 sin2 3,i(~p+tSq)-F E sin2 3'i6s 

- 2 r  2 cos 3'i6n = ( -  k /2)  { $2 (3,i) ° + SE (xxi)i, } - WE (3'i) 

for c=  I /F ,  where 

Wi (3`3 = cos 3'i(u0 - ui) + sin 3'i( Vo - vi) + cos z 3'i (19o - P 3  

+ COS 2 3'i (qo  -- q i )  + sine 3'i (So -- Si) + sin2 3' i ( n  o - ni) 

W2 (3'i) = 2P sin 3'i(Uo -- Ui,) 
- 2P cos XXi (Vo - vi, ) + pE sin2 3'i (Po 

- -Pi ,  + qo -- qi , )  --  1~2 sin2 3'i(So- si,) - 2P z cos XXi (no - ni,) 

and k is the dimensionless time interval. The superscript 0 
denotes evaluation of the function at the point  (r0, Zo, to) and 
the subscript 0 denotes evaluation of the function at the point  
(r0, z0, t 0 -  k). The subscript i denotes evaluation of  the function 
at the point where the bi-characteristic 3'i on the characteristic 
cone intersects the plane t = t o - k .  

Six additional differential equations,  obtained by integrating 
Eq. (3) along the time axis, are as follows: 

~u = ( k/2)  [pO + q O + nzO + 2(q0 + ~q)/ro + Pro + q,o + nzo + 2qo/ ro } 

6 v = (k/2)(nr ° + sz ° + ( no + 6n )/ro + nro + sro + no/ro) 

Fz6p + (3P z -- 4)a6T= (k/2)  [ (F z - 1)ur ° + (F 2 - 2)vz ° 

+ ( F  2 --  1)(Uo + ~u)/ro + (pz_  1)u,o + ( r  '2 - 2)Vzo + ( F  2 - 1)uo/ro } 

F2tSq = (k/2) { u~ ° - ( Uo + 6u ) /ro + U~o- uo/ro } 

PEt ' s  + ( 3 F  2 - 4)a3T= (k/2) { ( F  2 - -  2)u~ ° + pEvz° + ( I  ~2 - 2)(Uo 

+ ~ u ) / r o  + ( F 2 - 2)U~o + F2Vzo + ( r 2 - 2)uo/ro ] 

FEcSn = (k/2) { vz ° + u~ ° + Vzo +um }. (8) 

All the terms on the right-hand side of  Eqs. (7) and (8) can 
be evaluated from data on the plane t = t o - k  except those 
terms having the superscript 0. All the terms involving partial 
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Distribution ol the stress p + q at the z= 0 

derivatives at the point (r0, z0, to) can be eliminated by forming 
linear combinations of Eq. (8) and the equations obtained by 
writing Eq. (7) for Xi = ( i - l )  7r/2, with i = 1, 2, 3, 4. 
Consequently, six equations which determine the unknown 
increments 6u, 6v, ~p, ~Sq, ~s, and tSn are expressed as 

6u= (k /ro)6q+al ,  6v= (k/2ro)6n+a2 

6p = { k(F 2 - 2)/2F2r0 ] tSu - 3q - [ (3F z - 4) /F z ] atST+ a3 

6 q = a 4 -  (k/2F2ro)6u, 6s= [ ( F 2 - 2 ) / ( F 2 -  1)]6p 

- (c¢/N),ST+ as, 3n = a6 

al = (k2/2) [ [ (p2 _ 2)/r2 } (Uro/ro - Uo/~) + UrrO + b!zzO/r~2 q" { ( p2 

- 1)/P 2 ] VrzO] + k(p,o + q,~ + 2qo/ro + nzo) + [ (3F 2 - 4) /P 2 } otTro 

a2 = (k2/2F2)[ { ( In2 - -  2)/r0 } uz0 + ( p2 _ 1)Urzo + UrrO a t- r2OzzO] 

+ k (Szo + no/ro + n,o) + [ (3r  2 - 4 ) / r  2 ]ot Tzo 

a3 = ( kZ /2)[Prro + qrro + 2qro/ro -- 2qo/~o + [ 2(F 2 - 1)/p2 ] n~zo 

+ { (p2 _ 2)/p21 (szz0 + nzo/ro) ] + k[uro + [ (p2 _ 2)/V2(uo/ro 

+ Vzo)] + [ (3P 2 - 4 ) / r  2 } k2ot[Trro + { ( r 2  -- 2)/P21 Tzzo] 

a4 = (k2/2)(P,o + qrro + 2q,o/ro - qo/~ + nrzo) 

+ k [ U,o- uo/ro ] + [ (3P 2 -  4)/2F 2 ] k2c~Tr,o 

a5 = ( ~ / 2 N )  ( nrzo + nzo/ro + Szzo) + ( k / N )  Vzo 
+ [ k2(3F 2 - 4) /2NP 2 } aTzzo 

a6 = [ ( k2 /2)(Przo + qrzo + 2qzo/ro + Srzo "~- n,~o + nzzo 

+nro/ro-no/r~) + k ( u z o -  v,~)]/F 2. (9) 

The boundary  conditions are as follows: 

heated end (z = 0) : s = 0, n = 0 (10) 

side s u r f a c e ( r = a )  : p + q = O ,  n=O. 

For points on the boundary  or the corner, we can make use 
of boundary  conditions instead of  lost relations along hi-char- 
acteristics which are out  of the region. 

3 Heat Conduction 
From the symmetric property, the heat conduction equation 

in cylindrical coordinate (r, 0, z) takes the following form: 

K{O2T/Or2+(1/r)OT/Or+O2T/Oz 2 } =OT/Ot (11) 

where K is the heat conductivity. 
The heat function F(r ,  z, t) is assumed as follows: 

Journa l  of  A p p l i e d  M e c h a n i c s  

I 0 for t < 0 ,  

F(r,  O, t )= Tmt/tr for t<tr, (12) 

[.Tm for tr<t 

where Tin= T*/To and tr is the nondimensional  rising time. 
The boundary  conditions are assumed as follows: 

T(r,  O, t ) = F ( r ,  O, t) ,  T(a,  z, t )=273  [K]. (13) 

In order to solve this equation,  we replace the partial de- 
rivatives of the components  of  vector W in the direction r and 
z by the corresponding finite equations. 

4 Numerical Results 
The numerical calculation is carried out on an example as 

follows: a=0 .01  [m], b=0 .01  [m], parameters in the heat 
function tr = 1, T0=273 [K], and T* =323 [K] and 373 [K]. 
Meanwhile, since the material is steel, the material constants 
are chosen as follows: E = 2 0 6  [GPa], v=0 .3 ,  p=7860  [kg/ 
m3], c~= l l  × 10 -6 [ l /K] and K=2 .27×  10 -5 [m2/s]. 

In this study, we take k=0 .025  and h=O.1, which is in 
agreement with the study concerning the stability of difference 
equations (Clifton, 1967). 

Figure 1 shows the distribution of the stress s along the axis 
of the cylinder. It is found that stress waves propagate in the 
cylinder in a complex manner  with time and that values of 
stresses are dependent on the temperature. 

Figure 2 shows the distr ibution of the stress p + q at the z = 0 
(the heated surface). The stress distribution is changed with 
time because the stress waves go and return in the r-direction. 

In summary,  the dynamic response of the semi-infinite cyl- 
inder under instantaneous heating can be investigated in detail 
by this method. This method can get a wide application and 
the same idea might be applied to the other problems for the 
dynamic thermal stresses. 
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BRIEF NOTES 

A Theoretical Investigation of the 
Effect of Structural Stiffness in 
Underwater Shock Wave Loading 
Using the Plane Wave Approximation 

R. L. Dawson  3° and G. M. Sullivan 3° 

The equations o f  motion for  an explosively loaded infinite 
plate with stiffness are derived. The structural response o f  this 
plate is compared to that o f a n  explosively loaded infinite plate 
without stiffness. The effect o f  stiffness on water cavitation 
and plate displacement is determined. 

Response Formulation 
Taylor solved the equations of motion for an unstiffened 

infinite plate. Now consider a water-bounded infinite plate on 
a uniform elastic foundation with a stiffness per area of K. 
Fluid inertia will again be neglected. Three solutions exist de- 
pending upon the values of the variables chosen (Kennard, 
1941). The solutions can be simplified by noting that nondi- 
mensional frequency is oo0 where oo2=K/pa (the systems in 
vacuum natural frequency), t/O is nondimensional time, and 
a is nondimensional mass which is equal to p,/pocO. Using the 
classical definition from a single-degree-of-freedom system, 
the system is overdamped when 1/a>2ooO. The resulting so- 
lution is (noting that Y= dy/dt  = 0 at t = 0) 

y =  2PmO ~ ( )k 2 +1 ~ eX~,/o 
poc[ 1 - a[1 + (o)0)21 ~ ~)k 2 -- )kl/  

_ {X ,+  l ~ex2,/O_e-,/o" ~ 
\x~-xd ) (3) 

where 

Introduction 
Consider a water-bounded, air-backed, rigid plate with in- 

finite edges struck at normal incidence by an explosive shock 
wave. (An infinite plate will exclude any edge effects from the 
water boundary.) The exponential shock wave pressure is 
Pine -t/°, Pa is the mass per unit area associated with the plate, 
Po is the density of water, and e is the speed of  sound in water. 
Assuming any fluid inertial effects are negligible, the resulting 
force per unit area applied at the plate is given by 

F ( t ) - ~  dZY-2P  e - t / ° -  c dy 
- ~ .a  d t  2 - m P o  dt" (1) 

Equation (1) was originally derived by Taylor in 1941. The 
fluid and the plate interact and the shock wave loading will 
be modified by the plate displacing through the water. If the 
plate moves faster than the fluid particles then the density of  
the water near the plate will diminish considerably causing a 
region of water vapor. This condition is known as cavitation 
and will cause the loading from the shock wave to be abated. 
Cavitation will occur at the vapor pressure of the water, which 
will be assumed to be at zero pressure. Thus, cavitation at the 
plate will occur when 

dy > 2Pine- t / o  poC--~ - • (2) 

The nonlinear, one-dimensional, load function known as 
the plane wave approximation (PWA) can be stated by com- 
bining Eqs. (1) and (2). The PWA applies Eq. (1) until the 
water cavitates, at which time the force is zeroed. The solution 
is exact for the assumptions stated until the time of  cavitation. 
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1 1± /1 4(oo0)21 . ~kl,2 "~" 2 1 - ~ ~ - -  (4) 

When 1/a= 2oo0 the system is critically damped 

2PmO 
Y --poC[ 1 --a[1 + (w0)2] ] 

( )  I 
When 2oo0> l /a  the system is underdamped 

(5) 

2PmO y= 
poe[ 1 - a[1 + (oo0) z] I 

1 
/3 = ~ 4 ( o o 0 ) 2  - ~2 • 

(6) 

(7) 

Water Pressure Formulation 
The total shock wave pressure is simply the sum of  the 

incident and reflected pressure at the plate. When the total 
pressure is set to zero, the time of  cavitation as a function of 
location from the plate can be determined, as noted by Tem- 
perly in 1944. In a similar fashion, the time and location of 
cavitation for a plate with spring forces can be determined by 
setting the total water pressure to zero. Unfortunately, these 
equations cannot be solved directly, and a numerical procedure 
must be employed to determine the time and location of cav- 
itation. Letting x be the distance into the water from the plate, 
then x/Oc is this distance nondimensionalized. If the plate is 
overdamped or 1/a > 2000, then the resulting equation for time 
and location of cavitation is 
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When 1/a = 2~0 the system is critically damped: 

lit x\ t[ (2a-1) l t  X'~-] 
1 -  

When 2wO> 1/a the system is underdamped: 

=e-Ta\0-Tc)+0 cos B ~ _ x  

- c~ sin I/3 ( ~ - ~ c )  1 1 

with 

1 I - 2 a -  1 -] 

Discussion of  Results 
Temperly indicated that when stiffness is not included the 

initial point of cavitation is always at the plate, x/Oc = O. Equa- 
tions (8) through (10) indicate that the inclusion of stiffness 
to an explosively loaded plate can cause a layer of water to 
exist between the plate and the initial cavitation point. The 
fact that it was possible for cavitation to occur at some distance 

from the plate was recognized by Kennard in 1943; however, 
Kennard did not tie this phenomenon to plate stiffness. When 
cavitation starts at a distance away from the plate, cavitation 
then moves both toward and away from the plate simultane- 

(8) ously, but cavitation may not reach the plate in all cases. 
Initial cavitation times are found by iterating Eqs. (8) through 

(10) (Fig. 1). The case of oo0 = 0.05 nearly corresponds to that 
of Taylor's no stiffness solution. It can be seen that regardless 
of the mass chosen, the cavitation time of  a plate with stiffness 
will always be greater than the nonstiffened cavitation time. 

Figure 1 also reveals the existence of cavitation. The figure 
indicates cavitation will always occur for a plate with no stiff- 
ness, but may not happen for a similar plate with stiffness. 

(9) For example, if a = 1 then Fig. 1 indicates that with no stiffness 
cavitation will occur at t/O = 1. But if o00 = 2, then cavitation 
will not occur within the practical boundaries of time which 
were selected. Thus, this graph has important value for two 
reasons. First of all, if the stiffness of a plate is ignored then 
this can lead to erroneous conclusions as to the presence of 
cavitation. Secondly, it has been previously demonstrated (by 
Dawson in 1991) that the accuracy of the PWA is closely tied 
to the existence of cavitation. Figure 1 can be used as a tool 
for the analyst to determine not only if cavitation can be a 
potential problem, but to aid in selecting the loading schemes 

(10) to be used in the analysis. 
Figure 2 shows the percentage difference in displacement 

between a plate with and without stiffness as a function of 
dimensionless time. Once the water was cavitated, then the 
load is terminated, as indicated by the PWA. Any further 

(11) displacement of the unstiffened plate will be based upon its 
own momentum. The dashed lines in Fig. 2 indicate the oc- 
currence of cavitation for the unstiffened plate. When the 
dashed lines are terminated prior to the end of the graph, this 
shows that the stiffened plate has cavitated. From Fig. 2 it can 
be seen that Taylor's plate theory will always cavitate before 
that of a plate with stiffness. 

A positive value of displacement difference indicates that 
the displacement for the unstiffened plate is greater than that 
of the stiffened plate. From Fig. 2 the displacement from the 
unstiffened plate will always be equal to or greater than the 
displacement of  a stiffened plate. In other words, the unstif- 
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The Influence of Transient Flexural 
Waves on Dynamic Strains in 
Cylinders 

T. E. Simkins 31 

The displacement response o f  a semi-infinite, thin-walled cyl- 
inder to a pressure moving at a constant velocity has been 
solved by Sing-chih Tang in closed form except for  an integral 
term which Tang was forced to evaluate numerically. In this 
paper, an asymptotic evaluation o f  this integral is given which 
adds considerably to the physical interpretation o f  the solution. 
In brief, the asymptotic evaluation represents the long-term 
propagation o f  transients in the cylinder and their interaction 
with the steady-state solution. 

Nomenclature 
x = , / E x / h  
I V =  w/h 
T =  ,/7 vat/h 
P = p/12KG 
E = Young ' s  modu lus  
w = midwall  radial  d i sp lacement  
K = shear correct ion factor  

R = tube  radius at  midwal l  
Vc = critical value  of  Vp= 2 ~  
v~ = E/(1 - ~2)p 
q2 = E/12KG (h/R) 2 
c5 2 = (1 - v2)rG/E 
G = E / 2 ( I + ~ )  
x = dis tance f rom tube  ent rance  
t = t ime 
v = Po i sson ' s  ra t io  

Vp = pressure velocity 
Kc 46q  
Vp = vp/vd 
f/2 = K 4+62q2 

X~ = ~q/2 
K = kh/x/]2 
h = tube  wall thickness 
p = pressure 
p = density 
k = wave n u m b e r  
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Fig. 1 Moving pressure In a cylinder of Infinite length 

the problem, employing somewhat different paradigms. In his 
publication, Tang also gave the solution to the initial value 
problem of a uniform pressure entering and traveling along a 
semi-infinite cylinder at a constant velocity. D6rr (1940) also 
studied this problem. Of the two, Tang's work will be referred 
to in the sequel. Tang's solution to this problem, however, 
includes an integral that he was only able to evaluate numer- 
ically making a qualitative interpretation of the result incom- 
plete. The work herein makes use of the method of stationary 
phase to obtain an asymptotic evaluation of  this integral from 
which significant additional information is obtained. 

A synopsis of progress to date requires a brief review of the 
steady-state solution and its physical interpretation. The phys- 
ics involved can be represented by the simplest possible model 
of the problem. To this end, a thin-walled cylinder, extending 
to infinity in both directions, is first assumed. The cylinder is 
subjected to a uniform and axisymmetric steplike pressure 
moving at a constant velocity, V;, in the axial direction as 
shown in Fig. 1. Using Tang's notation, the equation of motion 
under these conditions is 

3 4 W , - 2  2 . . . .  3 2 W ~-~ + o q w +  ~ = ~2P(l - H ( X -  G T ) )  

- Q o < X < o o  and T>--0. (1) 

P is constant and represents the magnitude of the moving 
pressure. H is the Heaviside step function: 

H ( X -  VpT)= 0 X<_ Vdr 

=1 X>VpT. 

The steady-state solution to this system has been given in 
the previously cited references. Letting Vc denote the lowest 
critical velocity of the moving pressure, Tang's results for this 
problem appear as follows. 

For lip< Vc: 

W(X, T) = W 1 ( X -  VpT) (2) 

where 

Wi(7/) = ~  2 - e  mn cos n7/+--2--~-- n sin nn ; 7/_<0 

n -m sin 
W~ (7/)=zq- ~-~ nT/ 2ran nT/ ; ~_>0 

where K= ~n ±im is a (complex) root of the equation: 

For G >  G: 

K 4 - V/~K 2 + a2q 2 = 0. 

W(X, T) = W o ( X -  VaT) 

(3) 

(4) 

where 

p 1 ~  2 

W0(7/) = ~ - n 2 , n  2 n2 x cosn27/; 7/_<0 
t /  21. I - -  2.1 
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p~2 
Wo(7/)= - 2 2 2 cosn~7/; rl_>0 

nl(nl-n2)  

and where K =  ±nl ,  ±n2 is a real root of Eq. (3). 
Equation (3) is identical to the dispersion equation for freely 

propagating flexural waves if Vph(K) is substituted for Vp, 
where Vph represents the phase velocity of a flexural wave 
having real wave number K. The group velocity of such a wave 
is then simply 

Vg(K) =KV~(K) + Vph(K); Im(K) =0. (4) 

As pointed out by Reismann (1965), a condition for reso- 
nance is established when Vg(K) = Vph(K) = Vp. From Eq. (4) 
this condition amounts to the vanishing of V~o~(K). Setting 
V)h equal to zero gives a value K c = x / ~  such that 
Vph(Kc) = Vc= 2 ~ ,  a critical velocity of the pressure load 
which will cause Wi to become unbounded. While there are 
other critical pressure velocities, only the lowest, Vc, is avail- 
able from this elementary model. The curves representing 
Vg(K) and Vph(K) are shown in Fig. 2. 

Figures 3(a) and 3(b) show the radial displacement, Wl, in 
the neighborhood of the moving pressure front when Vp = .85 Vc 
and Vp = .985 Vc, respectively. The plots have been normalized 
with respect to P/q~, the deformation caused by a static ap- 
plication of P throughout the entire cylinder. When normalized 
in this way, the ordinate can be called the dynamic amplifi- 
cation. The abcissa represents the nondimensional distance 
measured from the pressure front. The figures exemplify the 
displacement amplification that occurs as Vp approaches Vc. 
Figure 4 summarizes this amplification as a function of the 
pressure velocity, Vp, and somewhat resembles that derived 
from the harmonic excitation of a single-degree-of-freedom 
system in which the abcissa is the forcing frequency. Thus one 
is tempted to draw at least a loose analogy between the two 
problems. 

2 Semi-Infinite Cylinder: The Initial Value Problem 
Once again the governing differential equation is taken to 

be (1). In treating this problem, Tang chose zero values for 
the initial velocity and displacement. Fixed radial displace- 
ments were chosen as the end condition at X =  0 and the dis- 
placement was required to be bounded as X - o o .  Tang found 
that when Vp< Vc, the radial displacement of  the tube wall in 
response to a moving pressure entering the tube at X =  0 at 
constant velocity, Vp, to be 

W(X, T) = W t ( X -  VpT) + Wz(X+ VpT) 

+ W3(XlX ) +I(X,  T) (5) 

where Wl (7/) is as defined in the previous section and 
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Fig. 3 Radial deformation in the neighborhood of the pressure front 
(~V~=.85Vo;tb) Vp=.985Vc 

n2 _ m 2 ) 
P e - r a n  _ _ _  

W2(n) = ~  cos n~ 2mn sin nn) 

W3(n) = - ~  e-~cos 

i (X ,T ,=-262p f~ ( ~  2- ~ _ . ~ ) c o s f l T s i n K X  
r K dK 

fi2-K4+~2q2" 
and 

Physically it can be expected that the pressure, which enters 
the tube at velocity Vp, will excite a strong transient as it 
suddenly expands the tube at the entrance, X =  0. However, 
even without damping, dispersion can be expected to attenuate 
the effect of this transient deformation as it travels sufficiently 
far into the tube at which time the deformation near the pres- 
sure front should appear very much like the steady-state so- 
lution W i ( X - V p T ) ,  given in the previous section. This 
expectation is supported by the explicit appearance of W] in 
the displacement expression (5). Except for W](X- VpT) and 
I(X, T), the remaining terms in Eq. (5) are needed to satisfy 
the diaphragm boundary condition and have negligible effects 
at sufficiently large X. This restriction on X depends on the 
difference between Vp and Vc; i.e., Xmus t  increase as Vp- Vc 
if the same level of approximation is to be maintained. The 
deformation near the pressure front, X= VpT, is of  particular 
interest. 

As noted by Tang, all of the terms in Eq. (5) except I(X, T) 

0 0.5 1 1.5 

Fig. 4 Eifect of pressure velocity on maximum radial displacement 

can be interpreted as steady-state solutions to particular load- 
ings of the infinite cylinder. It follows that any transient effects 
are contained in I(X, T). This term is analogous to that which 
appears in the solution to the harmonically forced oscillator 
and, in keeping with this analogy, can be thought of as a 
transition or start-up transient. Thus (at sufficiently large X) 
the two main terms in the solution in regions of  the tube not 
too close to the entrance, especially in the neighborhood of 
the pressure front, are the steady-state solution corresponding 
to a moving pressure in an infinite tube and the transition 
term, I(X, T). 

Pursuing the analogy of  the harmonically forced oscillator, 
where the "start-up" transient results in the formations of 
beats (a harmonic modulation of  the steady-state response) 
which become more and more apparent as the natural and 
forcing frequencies approach each other, it might be expected 
that a similar effect occurs for the case at hand. 

3 Asymptotic  Expansion of  I(X, I) 
Substituting 

cos fl T sin KX = ~ Im [ e ( iKx  + fiT) + e i ( K X  - fiT) } 

gives 

i 
oo 

l(X, T) = - 262p F(K) cos fiT sin KX dK 
7f 0 

= - - -  Im (K)eihl(K)TdK+ F(K) 
7r 

(6) 

where 

and 

h~(K)=-~+fl(K); KX fl h2 (K) =-~--  (K). 

Using the method of stationary phase as described by Whittam 
(1974) (see also Davies, 1948), the first term of an asymptotic 
expansion of (6) can be obtained for large T. The contribution 
from the first integral of (6) is negligible since hi (K) has no 
statiOnary point in the region K >  0. The major contribution 
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Fig. 5(b) Radial displacement at several stations along the cylinder at 
successive times. The beat wavelength Is clearly visible. 

from the second integral is from the neighborhood of K=Ko 
where K0 is the value of K such that h2(K) is stationary, i.e., 

or  

h '  K X ff, K 2( 0)= 7 - ( o)=O 

fl '  (K0) = ~.  (7) 

It is noted that fl '  (K0) is simply the group velocity associated 
with the wave number Ko. 

The stationary phase result for the second integral of  (6) 
can then be written 

-- --82P~r Im I:F(K)ei(Xx/r-u(g)) rdK = 

-$2-'-~-ImIF(K°)~ 7r Tiff" 27r (Ko) I -iO(KO)r+iKoX-i~r/4sgnfl"(Ko) 1 

=F(K°)82P ~JTrTI flT'2(Ko) I sin[ff(Ko) T 

7r 
- K o X + ~  sgn fi"(Ko)]. 

From the expression for f f2 ,  

2Ko 2 [fl2(Ko) +2q282]>0. 
fl" (K0) - fl(K0)3 

Thus, the asymptotic evaluation for I(X, T) is 

•/ 2 
F(K°)82P IrTfl" (Ko) sin tfi(Ko) T -  KoX+ ; ] .  (8) 

4 Interpretation of  Results  
The stationary phase result states that the dominant part of 

the transient disturbance initiated at (X= T= 0) that arrives at 
a particular location X at time T will have traveled with a 
group velocity X/T and will consist of the dominant wave 
number K0 determined from Eq. (7). If the motion at a fixed 
value of X is observed, where X is large enough for Eq. (8) 
to be satisfied and W2 + W3 to be ignored, the displacement 
will consist of the steady-state terms, Wt(X-VpT) having 
frequency n Vp and I(X, 7") oscillating with frequency fl (Ko). 
Referring again to Fig. 2, K0 is the wave number of  a freely 
propagating wave (excited at X = 0 by the sudden entrance of 
the pressure front) having Vp as its group velocity. The figure 
also shows that the phase velocity of  this free wave, V(Ko) is 
greater than Vp. The beat frequency observed at fixed X is 
simply (n Vp = ff(K0)): 

Moving along with the pressure front, X= VpT, Eq. (8) can 
be written 

[ 
1 I(X, T) -F(Ko)82P .[. 

~rT~" (Ko) N 
where 

{cos 3T+  sin 3T] (9) 

3= ff(Ko) -KoVp. 

Thus, for large T such that (8) is valid and W2 + W3 can be 
ignored, the radial displacement response (5) at the pressure 
front will essentially consist of a harmonic modulation of the 
steady-state re~onse  function W1 (X-  VpT) decreasing in am- 
plitude as x/1/T It is noted that 3 vanishes as Vp--Vc. 

Figures 5(a) and 5(b) show this displacement in the neigh- 
borhood of the pressure front progressively along the tube at 
successive times for the case Vp/Vc= .918. From Fig. 5(b) a 
beat wavelength can be observed--the distance, k, along the 
cylinder corresponding to one period of the modulation. Sub- 
stituting T=X/Vp in Eq. (9), 

271" 

k - [f l(Ko ) / Vp _ Ko 1. (10) 

has engineering significance in that it represents the distance 
between strain maxima along the tube. The net effect of  the 
transient is thus to periodically raise the strain levels in the 
tube, by an amount given by Eq. (9), to values greater than 
those predicted by the steady-state theory alone. 
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BRIEF NOTES 

A Note Related to Energy Release 
Rate Computat ions  for Kinking 
Interface Cracks 

P. H. Geubelle 32 and W. G. Knauss 33 

With the growing importance of composite materials and 
structures, including packaged electronic (chip) devices, the 
need to better understand and control failure behavior at and 
near interfaces has taken on also increased engineering sig- 
nificance. In comparison with fracture of homogeneous solids, 
the (linearly) elastic analysis of "brittle" interfacial fracture 
problems suffers from complications associated with the ap- 
pearance of a contact zone very close to the tip of the interface 
crack and with the '  'oscillatory" character of  the near-tip stress 
distribution. In contrast to homogeneous solids, this stress and 
deformation field behavior complicates the fracture analysis 
of the kinking behavior of an interface crack since it makes 
the usually so useful quantity of the energy release rate non- 
unique when the crack kinks away from the interface. 

The question arises then as to whether the dependence of 
the energy release rate G on the length Al of the (virtual) crack 
extension is related to the presence of a contact or inter- 
penetration zone adjacent to the tip of  the interface crack. The 
objective of the present note is to somewhat quantify the in- 
fluence of the small contact zone on the Al-dependence of  the 
energy release rate. This analysis can, for example, be used in 
finite element investigations of the interface crack kinking 
behavior (Geubelle and Knauss, 1991) to determine whether 
the discretization of the crack-tip region eliminates sufficient 
detail so as to introduce a sizable error in the numerical com- 
putation of the energy release rate. 

At least a partial answer to this question may be provided 
if one could determine the contribution to the energy release 
rate that derives from the immediate vicinity of the crack tip 
relative to that for a larger distance along the crack extension. 
Thus, if the total advance of the crack is Al, one would be 
interested in determining what contribution to G derives from 
an arbitrary fraction t5 of that length, but located immediately 
adjacent to the crack tip (Fig. 1). We provide an answer to 
this question in closed form when the crack propagates along 
the interface. While we recognize that propagation of a crack 
along an interface yields unique energy release rates, while the 
kink problem does not, we believe that the present contribution 
establishes a size scale relation that allows an estimate of the 
influence of the contact zone on the computed value of G. 

The size r~ of the oscillation zone can be expressed as (Rice, 
1988) 

r~ [- 1 1(2e) - 7 - sign(e)r)] (1) 7 = exp [ ~ (tan- 

where l is a characteristic length scale (such as, for example, 
the initial length of the crack) which appears in the definition 
of the stress intensity factors Ka (see relation (2) in (Geubelle 
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Geometry of the interface crack kinking problem 

and Knauss, 1991)), e is the commonly used oscillatory index 
and 7=tan-l(KE/K~). Assuming that the contact zone rep- 
resents a fraction ~5 = rJAl of the crack extension length A/, it 
is of interest to know how much of the computed energy release 
rate corresponds to this fraction of the extension length. In 
other words, one tries to compute the ratio 

h(~5;e) = GiG,  (2) 

where G is the total energy release rate corresponding to the 
extension M, and G~ is the fraction of G corresponding to a 
fraction cS.Al of the crack extension. 

A relatively simple analytical expression for h(5;e) can be 
derived when the crack extension is along the interface (¢0 = 0 
deg). In this case, one writes 34 

1 [zxt 
G=  lim [o~2(Xl)AU~(M-xl)]dxl, 

~1-o 2StJo 
1 ~*At 

G~= limat_0 ~ 3 o  [ac~2(Xl)&Uu(All-Xl)]dXl' (0-<6-<1) (3) 

where Au~ are the displacement jumps across the crack and 
a=~ are the stresses ahead of the crack tip. The analytical 
expression of G has been derived by Malyshev and Salganik 
(1965) as 

7rCl2(1 + 4e 2) 

G -  2 cosh(Tre) ' (4) 

where 

( c~ + c2) ( K~ + K~) 
Cl2 = 8'71"(1 + 4e2)cosh(ve) ' (5) 

with the material constants c~ defined in Section 4 of Geubelle 
and Knauss (1991). Combining the expressions of the stresses 
along the interface and the displacement jumps behind the 
crack tip with (3b), one obtains 

C ' 2 [ ~ A / ~ l ~ ( l ~ l x l X l  ) z ~ I  L JO "~/ XI G~ = lalrn ° cos e In dxl 

[~/ A / ~  s in(  e In Al -x l '~ - '  / -] + 2e 
J0 ~ Xl Xl / aXl A " (6) 

The transformation 

A I -  xl 
y - (7) 

XI 

leads to 

h(fi;e) = 2 cosh(Tre) 
7r(1 +4e  2) {~[ / ]  +2e~[ / ]  }, (8) 

where 

i 
o~ yl/2+i~ 

I = dy, (9) 
1-6/~ ( Y + l )  2 

and 9~[/] and ~[/l denote the real and imaginary parts of I, 
respectively. After integration by parts, (9) can be rewritten 
as 

a4Greek indices take the values 1 and 2. Summation on repeated indices is 
implied. 
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+i~, ~ -  I=t~l/2-ie(l--t~)l/Z+k + ~+ ie ie 

x 1-I1_~ ~+ie, ~ - i e  , (10) 

where B(a,b) is the Beta function and Ix(a,b) is the incomplete 
normalized Beta function (Abramowitz and Stegun, 1972) de- 
fined as 

where 

I "  ' "  Bx(a,b) 
xta,o)= B(~,b~ , (11) 

I~t '  a - Bx(a,b) = 1(1 -t)b-ldt. 

Using the properties 

Ix(a,b) = 1 -Ii-x(b,a), 

B + i~, ~ -  ie - c o s ~ r O '  

BRIEF NOTES 

the final expression of the integral I is obtained as 

(15) 

The value of h(tS;e) is then computed by combining (8) and the 
following series representation of I 

~1/2-i~(1-~)'/2+i~ [ l + 2ie 1 
I~- i- 1 +~-~-~  ~ Pn , (16) 

- -  ie n=l 
2 

where the coefficients Pn of the infinite sum are determined 
recursively by 

I 
Pl = ~, 

On= [1 n~ ~ On-l. (17) 

The &variation of h(~5;0 is illustrated in Fig. 2 for various 
values of e, showing very little effect of the oscillation param- 
eter. Furthermore, the result indicates that the contribution to 
the value of the total energy release rate over the contact zone 
is limited to less than ten percent for values of rc/Al of up to 
0.01. 
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Book 

Introduction to Optimization of  Structures, by N. V. Banichuk 
(English translation by V. Komkov of the 1986 Russian edi- 
tion). Springer-Verlag, New York, 1990. 300 pp. Price: $89.00. 

REVIEWED BY C. W. BERT 1 

This book presents an introduction and review of  the state 
of the art of structural optimization from a Russian point of  
view. It has two parts: the first part, consisting of  five chap- 
ters, presents the theory and techniques of structural optimi- 
zation. The second part, consisting of three chapters, is devoted 
to applying the individual criteria of  strength, rigidity, and 
stability. 

Chapter I presents an overview of static, dynamic, and mul- 
ticriteria optimal structural design. Chapter 2 introduces the 
concepts of auxiliary design parameters and dual optimization 
problems, while Chapter 3 discusses optimality conditions. 
Chapter 4 covers both analytical and numerical techniques for 
optimization of distributed-parameter structural systems. The 
specific techniques discussed include analytical, perturbation, 
finite difference, finite element, and boundary integral meth- 
ods. Chapter 5 treats techniques for optimizing discrete struc- 
tural systems. 

Chapter 6 deals with designing for minimum weight on the 
basis of constraints on strength. Structures considered include 
beam webs, many-member trusses, shells of revolution, and 
plates with stress concentration. Chapter 7 is concerned with 
designing for rigidity criteria in straight and curved beams, 
torsion bars, shells, and plates subjected to either plane stress 
or plate bending. Chapter 8 involves optimization for either 
conservative or nonconservative elastic stability with emphasis 
on problems involving one physical dimension. 

The book, unfortunately, does not give much detail on nu- 
merical/computational considerations nor does it consider 
structures composed of  composite materials. However, it con- 
tains an extensive number of references (totaling 444) at the 
end of each chapter plus an additional bibliography listing 72 
publications. The book is well written and it is recommended 
to those involved in structural optimization. 

Tyre Models for Vehicle Dynamics Analysis, edited by H. B. 
Pacejka, Swets & Zeitlinger, Amsterdam, 1993. 192 pp. Price: 
$145.00. 

REVIEWED BY C. W. BERT l 

This volume constitutes the Proceedings of the First Inter- 

~Benjamin H. Perkinson Chair and Director, School of Aerospace and Me- 
chanical Engineering, The University of Oklahoma, Norman, OK 73019-0601. 
Eellow ASME. 

national Colloquium on Tyre Models for Vehicle Dynamics 
Analysis, held in Delft, The Netherlands, Oct. 21-22, 1991. It 
is also a supplement to Vol. 21 of the journal, Vehicle System 
Dynamics. 

The volume contains 14 papers and two abstracts. The 
conference was truly international with papers from Austria, 
Czechoslovakia, Germany, Italy, Luxembourg, The Nether- 
lands, Sweden, United Kingdom, and the U.S. The topics of 
the papers ranged from analytical, empirical, and numerical 
modeling to system identification and experimentation. This 
book should be of interest to engineers and researchers 
concerned with the title subject, as well as automotive dy- 
namics specialists. 

Concepts in Submarine Design, by Roy Burcher and Louis 
Rydill. Cambridge University Press, New York, 1994. 300 
pages. Price: $74.95. 

REVIEWED BY C. W. BERT l 

This interesting book is the first one on this subject to 
appear in the past ten years. Its authors have been involved 
in design of naval submarines for about 30 years. Although 
emphasis is on naval submarines, much of the information 
should be applicable to other kinds of manned underwater 
vehicles. 

The objective of the book is to introduce the process of 
designing a submarine by providing the fundamental princi- 
ples. More emphasis is placed on creativity and concept 
synthesis than on methods of analysis. 

The first chapter provides a brief introduction to the 
general principles of submarine design, followed by a short 
chapter on the history with emphasis on design milestones 
since 1899. Succeeding chapters cover hydrostatics, the 
weight/space relationship, structures, propulsion, geometric 
form and internal arrangements, dynamics and control, major 
systems, and construction and costs. The final chapter ties all 
of the previous aspects together in connection with the 
process of generating a conceptual design to meet the opera- 
tional requirements. A list of references and bibliography are 
provided at the back of the book. 

This book should be of great assistance to the novice 
embarking on a career in submarine design or operation. It 
may also be of interest to naval architects and marine engi- 
neers experienced with surface ships but not familiar with the 
special requirements for underwater vehicles. 
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